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SPATIALLY EXPLICIT LOAD ENRICHMENT CALCULATION TOOL

TO IDENTIFY POTENTIAL E. COLI SOURCES IN WATERSHEDS

A. Teague,  R. Karthikeyan,  M. Babbar-Sebens,  R. Srinivasan,  R. A. Persyn

ABSTRACT. In 2006, bacterial pathogens were the leading cause of water quality concerns in the U.S. With more than 300 water
bodies in the state of Texas failing to meet water quality standards because of bacteria, managing bacteria pollution
commanded the attention of regulatory agencies, researchers, and stakeholders across Texas. In order to assess, monitor, and
manage water quality, it was necessary to characterize the sources of pathogens within the watershed. The objective of this
study was to develop a spatially explicit method to estimate potential E. coli loads in Plum Creek watershed in east central
Texas. Locations of contributing non‐point and point sources in the watershed were defined using Geographic Information
Systems (GIS). By distributing livestock, wildlife, wastewater treatment plants, septic systems, and pet sources, the bacterial
load in the watershed was spatially characterized. Contributions from each source were quantified by applying source specific
bacterial production rates, and ranking of each contributing source was assessed for the entire watershed. Cluster and
discriminant analyses were used to identify similar regions within the watershed for selecting appropriate best management
practices. Based on the statistical analysis and the spatially explicit method, four clusters of subwatersheds were found and
characterized. The analysis provided a basis for development of spatially explicit identification of best management practices
(BMPs) to be applied within the Watershed Protection Plan (WPP).

Keywords. Cluster analysis, Fecal bacteria, Impaired streams, Spatial statistics, TMDL.

he Clean Water Act authorized the U.S.
Environmental  Protection Agency (USEPA) to set
water quality standards. To ensure compliance with
the standards set by the EPA, the Total Maximum

Daily Load (TMDL) process was developed. The TMDL
process establishes the allowable pollutant loading for a
waterbody based on the relationship between pollutant
sources and water quality conditions (USEPA, 1991). The
steps in the TMDL process include quantification of sources,
modeling of existing conditions, and the definition of
reduction activities that will bring an impaired stream into
compliance with state water quality standards (USEPA,
1999). If a stream segment did not support its designated use
it was listed as impaired on the 303(d) list. In Texas, 41.7%
of the stream segments listed on the 303(d) list were impaired
due to pathogens (TCEQ, 2006). Escherichia coli (E. coli)
was used as the indicator organism for pathogens from fecal
contamination  (USEPA, 1986). The Texas Commission on
Environmental  Quality (TCEQ) set an E. coli limit of a
geometric mean of 126 cfu dL‐1 or a single grab sample of
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394 cfu dL‐1 (TCEQ, 2004). For the TMDL process
addressing pathogen contamination, the EPA published
recommendations  to assess E. coli source contribution and
identification,  characterize the sources, and estimate the
E.�coli  load produced by each source (USEPA, 2001). The
EPA document recommended identifying the location and
densities of E. coli contributing source populations to
characterize  the loads in a watershed.

The EPA recommended characterizing non‐point sources
by multiplying an individual species' excretion rate by the
corresponding species' population (USEPA, 2001). The total
estimated bacterial pollution is then calculated by combining
estimated non‐point and calculated point source
contributions.  Previous efforts have automated this non‐
spatial methodology using a spreadsheet program by
dividing the watershed into smaller management units or
subwatersheds (Zeckoski et al., 2005). Direct stream
monitoring methods such as ribotyping use genetic testing to
find the sources of bacteria (Carson et al. 2001; Ahmed et al.
2005). Load duration curves narrow the cause of potential
exceedances to either point or non‐point sources. This
method uses direct monitoring data of the stream flow and
bacterial concentrations (Cleland, 2002; Bonta and Cleland,
2003). Genetic fingerprinting and the load duration curve
method do not spatially reference the sources, and thus their
application within the Watershed Protection Plan (WPP) is
limited because they do not provide information regarding
the optimal placement of BMPs. The cost of a TMDL has
ranged from thousands to over a million dollars per
watershed (USEPA, 1996). Models have been used as an
alternative to intensive monitoring in order to save time,
reduce cost, and provide forecasting of TMDL
implementation  impacts (Shirmohammadi et al., 2006).
However, the cost of modeling to support TMDL efforts has
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averaged 32% of the total costs (USEPA, 1996). This
represents a considerable burden to the stakeholders. In order
to reduce the cost and effort required to fulfill the goal of
TMDL implementation, appropriate models must be chosen
based on the characteristics of the watershed. By
understanding the influence of watershed characteristics on
the contaminant load allocations and grouping discrete areas
based on these characteristics, appropriate management
efforts can be directed towards targeted areas.

The major objective of this study was to develop a
Spatially Explicit Load Enrichment Calculation Tool
(SELECT) for the characterization of E. coli sources and to
apply this standalone tool to Plum Creek watershed in Texas
for the WPP development process. The secondary objective
of this research was to identify similar clusters of
subwatersheds of the Plum Creek watershed based on the
identification  of distinguishing variables with the most
significant contribution to bacterial loads. Knowledge of the
influencing factors through factor and principal component
analysis would allow for optimal watershed modeling.
Furthermore, the watershed can be spatially characterized by
cluster analysis into groups allowing for implementing
BMPs. Discriminant analysis then was used to check the
results of the cluster analysis to further refine the selected
variables.

STUDY AREA: PLUM CREEK WATERSHED
The Plum Creek watershed is a part of the Guadalupe

River basin and is located in east central Texas. It
encompasses a drainage area of 1028 km2 in the counties of
Hays, Caldwell, and Travis (fig. 1). Plum Creek has a length
of 83 river km and joins the San Marcos River and eventually
the Guadalupe River. The watershed ranges in latitude from
29° 38′ 33.94″ N to 30° 5′ 20.11″ N and in longitude from 97°

54′ 36.29″ W to 97° 27′ 13.60″ W. Within the watershed are
several rapidly growing towns, including Lockhart, Kyle,
and Luling. As of 2006, the populations of Kyle, Lockhart,
and Luling were 19,335, 12,978, and 5,704, respectively
(Texas State Demographer, 2006). Land use varies from
urban to agriculture and oil field activities. The northern part
of the watershed is primarily urban, whereas the southern
section has crop and animal agriculture along with oil wells
(fig. 2). The watershed is 38% rangeland, 17% pasture, 11%
cultivated cropland, 18% forest, 8% developed land, 6% near
riparian forest, and 2% open water and barren land. The
landscape is characterized as rolling hills of pasture and
cropland surrounded by scrub oak forest (GBRA, 2006).

METHODOLOGY
SPATIALLY EXPLICIT METHODOLOGY

The SELECT methodology was developed using ArcGIS
9.2 with the Spatial Analyst extension available from ESRI.
This spatially explicit method divided the watershed into a
raster grid of 30 m × 30 m cells. For each of the cell locations
within the watershed, the E. coli loads were estimated from
the sources that were potentially present at each location.
Custom land use classification was performed by the Texas
A&M University Spatial Sciences Laboratory using the 2004
National Agricultural Imagery (NAIP) aerial photographs.
Delineating subwatersheds within Plum Creek using the Soil
and Water Assessment Tool (SWAT) model resulted in
35�subwatersheds (fig. 1) (SWAT, 2005). Table 1 lists the
spatial database files and formats used as SELECT input.

The SELECT method identified point and non‐point
sources throughout the watershed. The identified point
sources are active wastewater treatment plants, and non‐
point sources include livestock, dogs (Schueler 1999),

     
Figure 1. (a) Location of Plum Creek watershed with (b) subwatersheds delineated using SWAT.
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Figure 2. Land use classification of Plum Creek watershed (source: Texas A&M University Spatial Sciences Laboratory, 2006).

wildlife (Weiskel et al., 1996), and failing on‐site wastewater
treatment systems (OWTS) (Reed, Stowe, and Yanke LLC,
2001). Wildlife sources included many types of wild animals
and birds. In this study area, the known wildlife included feral
hogs, whitetail deer, raccoons, rodents, opossums, and
migratory birds. Feral hogs and deer were the only wildlife
sources included within SELECT because they were the only

populations of concern with available data. Livestock
production within the study area was primarily cattle, horses,
sheep, and goats. Generally, dogs were the primary pets allowed
to defecate outside the home, and most often the defecated
waste was not cleaned up. Cats and other pets were primarily
kept in homes, and their waste was disposed of directly to solid
waste management, so these contributions were neglected.

Table 1. Data sources and format used in SELECT to predict potential E. coli load in Plum Creek watershed.
Source Spatial Data File Format Data Source[a]

Livestock Counties
Ag inventory

Shapefile
Tabular

USDA‐NASS
USDA‐NASS

Wildlife Suitable habitat
Urban areas

Streams
Wildlife inventory

Shapefile
Shapefile
Shapefile
Shapefile

Local wildlife census
TIGER census

NHD Plus
Texas parks and wildlife

OWTS Subdivisions
Census blocks
Demographics

Shapefile
Shapefile
Tabular

Appraisal district
TIGER census
TIGER census

Pets Census blocks
Demographics

Shapefile
Tabular

TIGER census
TIGER census

WWTP Outfall locations
Permitted discharge

Shapefile
Field in shapefile

State regulatory agency
EPA Envirofacts warehouse

[a] TIGER = Topologically Integrated Geographic Encoding and Referencing system; NHD = National Hydrography Dataset (USGS, 2002).
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POTENTIAL E. COLI LOAD ESTIMATION
Each E. coli source was first distributed to the appropriate

locations within the watershed, and then the load was
calculated.  The average daily potential load was calculated
according to EPA guidance (USEPA, 2001). The population
of sources was multiplied by a daily average fecal coliform
excretion rate and then multiplied by 0.5. This 50%
conversion is a rule of thumb that estimates that 50% of fecal
coliform (FC) are E. coli (Doyle and Erikson, 2006).

POINT SOURCES

Wastewater Treatment Plants
Wastewater treatment plants (WWTPs) were point

sources permitted to discharge treated effluent into Plum
Creek. There were 13 permitted WWTPs in the watershed,
but only five release effluent into the streams. Each WWTP
was permitted to release effluent at the water quality standard
of 126 cfu dL‐1. The load from each WWTP was calculated
by multiplying the permitted concentration by the permitted
effluent outflow.

NON‐POINT SOURCES
Livestock

E. coli in animal manure can either be directly deposited
into the stream or can be carried by runoff from the fields to
the streams (Benham et al., 2006). Range animals such as
cattle, sheep, and goats were primarily kept in pasture and on
rangeland. Horses were principally confined to pasture areas.
Livestock populations within city limits were not included in
this study. Watershed areas that were classified as pasture and
rangelands were selected from digitized land use data, and
areas within the city limits were eliminated. The animal
populations obtained from the 2002 Census of Agriculture
were aggregated per county (USDA‐NASS, 2002). These
data were uniformly distributed across the non‐urban
rangeland and pasture of each county. Based on this
distribution, a density of animals per 900 m2 was calculated.
The non‐urban rangeland and pasture lands in Plum Creek
were assigned these densities and multiplied by the fecal
coliform excretion rate and then converted to E. coli potential
(see equations in table 2). Then E. coli loads were aggregated
to the subwatershed level.

Pets
Dog waste was a significant source of pathogen

contamination  of water resources (Geldreich, 1996).
According to the American Veterinary Medical Association,
Texans own 5.4 million dogs (AVMA, 2002, pp. 1, 2, 13, 19).
By dividing this number by the number of households in
Texas, the average number of dogs per household was found
to be 0.8. This average was multiplied by the number of
households in each census block as published by the U.S.
Census Bureau. This provided an estimated number of dogs
per census block. Because the census blocks overlap multiple
subwatersheds, the density of dogs per area should be
calculated in order to account for the spatial variability of
high to low density areas. Using the area of each census
block, a density of dogs per 900 m2 was found. Then the
census polygons were converted to a raster, and the dog
density was assigned to each 30 m × 30 m cell. Published
values report that dogs produce 5  109 fecal coliform
organisms per day (USEPA, 2001). Again, the 50% rule of
thumb was applied to find the E. coli load per day from each

Table 2. Calculation of potential E. coli loads
from various sources in the watershed.

Source Calculation

Cattle 119
headdcfu102.7cattle#EC

−−⋅⋅=

Horses 118
headdcfu102.1horses#EC

−−⋅⋅=

Sheep and goats
119

headdcfu109sheep#EC
−−⋅⋅=

Deer 118
headdcfu101.75deer#EC

−−⋅⋅=

Feral hogs
119

headdcfu104.45hogs#EC
−−⋅⋅=

Dogs

119
headdcfu102.5

household

dogs0.8
households#EC

−−⋅⋅

⋅=

Failing septic
systems

household

persons#Avg

person/day

mL102.65

mL100

cfu105
systemsfailing#EC

5

5

⋅
⋅

⋅

⋅
⋅=

WWTP

gal

mL3758.2

MGD

gal10

mL100

cfu126
MGDpermittedEC

6

⋅⋅

⋅=

household. The E. coli load was calculated according to the
equation in table 2. The potential E. coli load contribution
from dogs was aggregated for each subwatershed.

Wildlife
Wildlife also contributed to the E. coli within Plum Creek

watershed. Within the watershed, data were available only
for two major wildlife contributors: deer and feral hogs. Deer
habitat included shrubland and forest areas. Feral hogs
primarily used riparian corridors of undeveloped land. To
distribute the deer population within Plum Creek watershed,
appropriate land use areas with a contiguous area of greater
than 20 acres were first selected. Texas Parks and Wildlife
Department (TPWD) annual surveys report a density of deer
per 1000 acres for resource management units (RMUs)
(Lockwood, 2005). The total number of deer was calculated
based on the area of Plum Creek in each RMU. With the area
of appropriate land use within each Plum Creek section of the
appropriate RMU, a density of animals per 900 m2 was
calculated.  A fecal coliform excretion rate of 3.5 × 108 cfu
day‐1 animal‐1 (Zeckoski et al., 2005) was multiplied by the
deer per unit area in order to find the E. coli load (see the
equation in table 2). Then the potential E. coli load was
aggregated to the subwatershed level.

Feral hog population densities and distribution data were
scarce for Plum Creek watershed. Estimates of feral hog
densities for the Rio Grande Plains and lower coastal prairie
of Texas range from 3.2 to 6 hogs km‐2 (Hellgren, 1997).
Feral hogs utilize nearly all types of landscape, but primarily
use forested and shrublands adjacent to river bottomlands.
Plum Creek habitat was comparable to the landscape of the
Rio Grande Plains and lower coastal prairies. A landscape
wide density of 5 hogs km‐2 was applied to the entire
watershed to produce an estimate of 5,141 hogs for the entire
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watershed. These hogs were then uniformly distributed to
riparian corridors, or the undeveloped land within 100 m of
a stream. Based on the number of cells with appropriate
habitat, the density of hogs per cell was determined and
multiplied by the fecal coliform excretion standard. This was
calculated according to the equation found in table 2, where
4.45 × 109 cfu animal‐1 day‐1 was the fecal coliform excretion
rate multiplied by the 50% rule of thumb. Then the
distributed E. coli load was aggregated to the subwatershed
level.

On‐Site Wastewater Treatment Systems
On‐site wastewater treatment systems (OWTSs) could

contribute pathogens to a water body due to system failure
and surface or subsurface malfunction (USEPA, 2001).
According to stakeholder input, there were a number of older
failing systems within the study area. However, there were no
local data concerning the distribution or number of failing
systems. Based on a report for the Texas On‐Site Waste Water
Treatment Research Council, it was assumed that regulated
septic systems have a failure rate of 12%, and unregulated
systems have a 50% failure rate (Reed, Stowe, and Yanke
LLC, 2001). On‐site wastewater treatment systems were
regulated starting in 1989, while systems installed prior to
1989 remained unregulated (Lesikar, 2005).

First, the number of households that utilize OWTSs was
estimated. Households outside of a city limit were assumed
to use a domestic septic treatment system. All census blocks
that fell within the watershed and were outside of a city limit
were selected to calculate the number of households using
septic systems. Next, the number of failing systems was
calculated.  Subdivision data containing the number of lots
and the date the subdivision was built were obtained from
Caldwell and Hays counties. The number of houses both
inside and outside of a subdivision was estimated. Based on
each subdivision's date built, the number of failing systems
in each subdivision was calculated. All households outside of
a subdivision were assumed to be non‐regulated, and the
number of failing systems calculated accordingly.

The number of systems in each subdivision was checked
to ensure that they did not exceed the number of households
reported in the census. If the number of households found
from subdivision data exceeded the number of households
reported by the census, then the number of households
reported by the census was assumed to be equal to the number
of households in the subdivision.

Next, the density of failing systems per raster cell was
assessed. The area of each census block was found, and the
density of failing systems per 900 m2 calculated. With an
estimated 265 L person‐1 day‐1 (70 gal person‐1 day‐1)
discharge and a 5 × 106 cfu dL‐1 concentration in this
discharge, the E. coli load was calculated according to the
equation in table 2 and units were appropriately converted.
The average number per household was the average number
of people in each household as reported by the 2000 U.S.
Census (USCB, 2000). Then potential E. coli load was
aggregated for each subwatershed.

STATISTICAL CLUSTERING OF SUBWATERSHEDS

Using SELECT methodology, total potential E. coli load
resulting from point and non‐point sources and the potential
E. coli load resulting from each source could be estimated. In
reality, not all potential E. coli will eventually reach the

stream. The actual E. coli amount in streams will depend on
various fate and transport processes in the watershed. To
estimate the actual E. coli concentrations in streams, a
process‐based model simulating watershed processes should
be incorporated using the potential E. coli outputs generated
by SELECT as inputs to the model.

Here, statistical clustering techniques were implemented
to weigh the influence of the populations and sources of E.
coli contamination using total potential load and watershed
characteristics.  The statistical clustering identified areas
within the watershed vulnerable to contributing E. coli to
waterbodies. The 35 subwatersheds were grouped into
“clusters” with statistically similar characteristics to
recommend and implement BMPs effectively. This process
provides stakeholders and decision makers with useful
information for implementing mitigation efforts in areas of
greatest concern for E. coli impairment.

In our analysis, each subwatershed was characterized by
25 variables (table 3). Variables reflecting the percent land
use, the average straight‐line distance from the NHD Plus
defined stream to particular land use types, length of the
stream within each subwatershed, drainage factor, and
potential E. coli source population for each subwatershed, as
calculated based on SELECT results, were included in the
analysis. Each of the percent land use, average distance from
land use to stream, length of stream, and drainage factor
variables for each subwatershed were calculated using
ArcGIS functions. The drainage factor was calculated by
dividing the area of the subwatershed by the length of the
stream within the subwatershed. Each variable was tested for
normality using the Kolmogorv‐Smirnov test (Haan, 2002,
pp. 213‐219). Variables that were not distributed normally
were then transformed (Box and Cox, 1964; Juang et al.,
2001) to ensure normality as required by factor and principal
component analysis.

Table 3. Variables used to characterize subwatersheds.
Percent land use Percent open developed
variables Percent low‐intensity developed

Percent medium‐intensity developed
Percent high‐intensity developed
Percent open water
Percent barren
Percent forest land
Percent near riparian corridor
Percent mixed forest
Percent rangeland
Percent pasture
Percent cultivated crops

Source population Households using sewers
variables Failing septic systems

Cattle
Sheep and goats
Horses
Dogs
Deer
Feral hogs

Average distance Average distance to wetland
from stream and Average distance to forest
other variables Average distance to residential

Average distance to pasture
Drainage factor
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Factor and principal component analysis (FAPCA) was
conducted in order to reduce the number of variables while
at the same time retaining the variability of the dataset
(Jolliffe, 2002, pp. 111‐119) using SAS (SAS, 2003). Factor
analysis was performed on the normalized data in order to
identify the factors that would affect the load of E. coli from
a subwatershed. Both the Kaiser criterion and Scree test
(Thyne et al., 2004; Jackson, 1993) were used to determine
the number of factors to retain.

Cluster analysis was performed using the factors in a
K‐means clustering algorithm. The K‐means clustering
algorithm was employed to group the subwatersheds into
clusters ranging from one to 35 clusters. The clusters were
evaluated using the pseudo F (PSF) statistic, cubic clustering
criterion (CCC), and silhouette width. In each of these
statistics, the local maximum indicates an appropriate

number of clusters (DeGaetano, 1996). Discriminant
analysis was then conducted to identify discriminating
variables. Based on the identified discriminating variables,
the factor and cluster analyses were performed again. The
final clusters were then further characterized using Duncan's
multiple range test.

RESULTS AND DISCUSSION
The results from SELECT for all sources are shown in

figures 3 through 6. The larger potential E. coli loads are
found in the darker shaded (red) subwatersheds. The mid‐
range loads are in the medium shaded (orange)
subwatersheds, and the lowest loads are in the lightest shaded
(white and yellow) subwatersheds.

     

     
Figure 3. Average daily potential E. coli load in Plum Creek watershed resulting from various non‐point domesticated animal sources: (a) cattle,
(b)�sheep and goats, (c) horses, and (d) dogs.
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Figure 4. Average daily potential E. coli load in Plum Creek watershed resulting from various non‐point wildlife sources: (a) feral hogs and (b) deer.

     
Figure 5. Average daily potential E. coli loading from (a) wastewater treatment plants (point source) and (b) failing OWTSs (non‐point source).

NON‐POINT SOURCES
Livestock

Non‐point sources include livestock, dogs, wildlife, and
failing OWTSs. The load allocations from cattle, sheep and
goats, and horses are shown in figures 3a, 3b, and 3c. Greater
E. coli loads from cattle were estimated for subwatersheds on
the southwestern portion of the watershed and along the
southeastern edge (fig. 3). The subwatersheds that have
larger estimated loads of E. coli from cattle have the highest

amounts of land used for pasture and rangeland and range
from first to 19th in percent land used for pasture and
rangeland (fig. 2). In contrast, the high estimated E. coli
potential subwatersheds for sheep and goats were in the north
of the watershed (fig. 3). These subwatersheds have
percentages of pasture and rangeland from second to 31st.
Similar to subwatersheds that have the highest potential loads
from cattle, these subwatersheds are characterized by a
greater than 50% pasture and rangeland. Subwatershed 34
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Figure 6. (a) Average daily total potential daily E. coli load and (b) relative percent contributions resulting from all sources in Plum Creek watershed.

was the exception, with a low percentage (38% and rank of
31st) of pasture and rangeland (fig. 2). Subwatershed 34's
large load was due to its large area (fig. 1). The E. coli loads
from sheep were estimated to be primarily in the northern part
of the watershed, whereas the E. coli loads from cattle were
estimated to be primarily in the southern portion of the
watershed because, according to the USDA census, there was
greater sheep and goat production in Hays and Travis
counties and greater cattle production in Caldwell county
(USDA‐NASS, 2002). Potential loads estimated from horses
were primarily found in the southern and middle section of
the watershed (fig. 3), and these subwatersheds had large
areas of pasture lands (fig. 2). When the total loads allocated
to cattle, sheep and goats, and horses were compared (fig. 3),
the magnitudes were quite different. The total estimated
potential loads for cattle and sheep and goats were two orders
of magnitude larger than the estimated load for horses
(fig.�3). Because of the higher population of cattle, cattle had
a larger potential load than sheep and goats. This suggests
that agricultural BMPs such as riparian fencing, vegetative
filter strips, and alternative watering (Anderson and Flaig,
1995) should be prioritized for cattle producers in the
southern section of the watershed and for sheep and goat
producers in the northern section of the watershed.

Pets
The potential E. coli load estimated from pets (dogs) is

shown in figure 3. Subwatersheds with large allocations were
associated with the cities of Kyle, Lockhart, and Luling. This
could be attributed to the large number of households in the
urban areas. In addition, as with OWTS failure,
subwatersheds 1, 2, 4, and 7 (fig. 1) were estimated to have
higher potential loads of E. coli. This area had higher
population in comparison to the other subwatersheds, despite
the lack of urban centers. The higher population of this area
was attributed to urban sprawl from the nearby metropolitan
area of Austin. This conclusion implies that best manage-
ment practices such as pooper scooper programs and dog

owner education (Kemper, 2000) should be implemented not
only in the cities of Kyle, Lockhart, and Luling, but also in
the areas where urban sprawl is a concern, primarily in the
northern portion of the watershed.

Wildlife
The potential E. coli estimated from feral hogs is shown

in figure 4. As stated in the methodology, feral hogs are
distributed in the riparian areas around streams. Each
subwatershed had an estimated potential contribution from
feral hogs. The highest potential loads were in areas along the
east and south of the watershed (fig. 4), where there was a
large area of undeveloped land adjacent to a stream ranging
in subwatershed rank from first to 18th. Feral hogs had an
estimated potential load (fig. 4) that was of the same
magnitude as cattle and sheep and goats (fig. 3). Unfor-
tunately, best management practices to address E. coli
contamination  from feral hogs are quite challenging because
fencing and other traditional practices are not practical in
addressing this source population. Feral hogs are highly
invasive and destroy agricultural crops and riparian
vegetation (Baron, 1982). Therefore, landowner education
and population control could be the most appropriate
measures to implement in the southern portion of the
watershed.

The potential E. coli load from deer is shown in figure 4.
The southeastern portion of the watershed had the highest
loads from deer, where there were large sections of range and
forested areas that account for greater than 63% of the
subwatershed. The estimated potential load for deer was two
orders of magnitude smaller than the estimated load for feral
hogs (fig. 4). This suggests that wildlife BMPs could be more
efficiently focused on addressing feral hogs than deer.

OWTS Failure
The estimated potential E. coli load from OWTS failure

is shown in figure 5. The darker subwatersheds indicate the
larger estimated potential E. coli load. Larger loads (2.13 ×
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1010 to 2.34 × 1012 cfu) were associated with subwatersheds
that correspond to the cities of Lockhart and Kyle. However,
large loads were also associated with subwatersheds 1, 2, 4,
and 7 (figs. 5 and 1). These subwatersheds had the first,
second, fourth, and fifth highest percentages of low‐intensity
development (fig. 2). The area in subwatersheds 1, 2, 4, and
7 (fig. 1) in the north of the watershed had a large population
reported in the 2000 census, which was not yet incorporated
into a city and thus not provided with sewer service. In
addition, the average age of the subdivisions in
subwatersheds 1, 4, and 7 were all pre‐1988. As a result, the
septic systems in these subwatersheds were unregulated.
Therefore, the results suggest that BMPs within this region
should address regulation of septic systems, focusing on
proper operation and owner maintenance of the system
(Lesikar, 2005).

POINT SOURCES

Wastewater Treatment Plants
The estimation of potential E. coli loads from WWTPs is

shown in figure 5. The five subwatersheds in which WWTPs
are located are highlighted; the higher the permitted effluent
discharge, the higher the estimated potential load and the
darker subwatersheds are in figure 5. This suggests that best
management  practices such as tertiary treatment (Godfree
and Farrell, 2005) or overflow monitoring would be most
efficient for the subwatersheds that fall near the cities of
Lockhart and Kyle.

POTENTIAL E. COLI SOURCES THROUGHOUT 
THE WATERSHED

In general, two sources, OWTSs and dogs, were
considered to be both urban and rural sources. However,
because these sources were estimated based on an even
distribution corresponding to human populations, the larger
estimated loads correspond to population centers. Thus,
because of the underlying assumptions, the populations for
rural areas may be underestimated. Based on the analysis of
estimations,  the contributions from urban areas would not
only be larger in magnitude but also concentrated in a small
area. In the rural areas, these sources were estimated to be
diffuse and smaller in magnitude. The WPP should address
these sources across the entire watershed. In urban areas, a
total approach can be taken for dogs and OWTSs. Large
BMPs that are in structural in nature, such as detention ponds
that collect runoff, could be efficient in urban areas due to the
magnitude of the load. For rural areas, homeowner education
could be implemented to increase septic maintenance, but
should focus particularly on residences near streams.

The total estimated potential E. coli loads in different
subwatersheds are shown in figure 6. The darker subwatersheds
(4.87 × 1011 to 3.95 × 1012 cfu) have the highest estimated
potential loads. These subwatersheds correspond to urban areas,

including the cities of Kyle, Lockhart, and Luling. Mid‐range
estimated loads (3.96 × 1012 to 1.02 × 1013 cfu) were highly
influenced by regional effects (fig. 6). Figure 6 also shows the
relative contribution of each source to the total estimated load
for each subwatershed. The mid‐range load subwatersheds in
the northern section of the watershed show mixed influence of
OWTSs, dogs, and agricultural animal sources (fig. 6). In the
mid‐range load subwatersheds in the southern and eastern
portions of the watershed, a high percentage of the load was
estimated from agricultural animals and wildlife sources
(fig.�6).

Table 4 displays the subwatersheds with the highest
potential E. coli contribution and the highest potential
sources within each of these subwatersheds. Overall, cattle
had the highest estimated potential contribution, with 41% of
the total average potential E. coli load (table 3). The second
highest potential daily contributor was urban runoff, with
27% of the total potential load. Dogs and feral hogs each had
a potential of approximately 10.5% of the total potential load,
and failing OWTSs comprise approximately 6.5% of the
total. All other sources contributed less than 5% to the total
potential load. Even though our analysis did not indicate that
WWTPs were a major source of E. coli, regrowth of E. coli
further downstream of the wastewater outfall should be
addressed (Petersen et al., 2005). This can be achieved by
combining SELECT with a fate and transport model to
simulate E. coli population dynamics in streams (Steets and
Holden, 2003). Statistical clustering techniques were
implemented in this research to determine the influence of
the variables describing the populations of sources of E. coli
contamination  in the watershed.

STATISTICAL CLUSTERING OF SUBWATERSHEDS

Initial factor analysis was performed, and five factors (out
of 25) were retained based on the results of the Scree test and
Kaiser criterion. The identified factors were calculated from
the subwatershed characterization variables for use in cluster
analysis. After the subwatersheds were assigned membership
to four clusters by means of the K‐means clustering
algorithm, discriminant analysis (DA) was used to identify
the discriminating variables and test the cluster membership.
Based on a 35% error rate between discriminant analysis and
cluster analysis, factor analysis was repeated using the
discriminating variables. The eight discriminating variables
identified by DA have an average squared canonical
correlation (ASCC) of 0.82 and thus account for 82% of the
variability of the original dataset (Rencher, 1992). The
discriminating variables included the population of cattle,
estimated dogs, the estimated number of households using
sewers, percent of open developed land, the average distance
to wetlands, percent cultivated cropland, percent of medium
developed land, and percent rangeland. These variables
accounted for the greatest variability between the clusters.

Table 4. Ranking of Plum Creek subwatersheds receiving E. coli from high‐contributing potential sources.

Rank Subwatershed

Highest Potential Sources of E. coli

First Highest Second Highest Third Highest Fourth Highest Fifth Highest

1 34 Urban Dogs Septic systems Cattle Sheep and goats
2 16 Urban Dogs Cattle Septic systems Feral hogs
3 32 Urban Cattle Dog Feral hogs Septic systems
4 18 Urban Cattle Dog Septic systems Feral hogs
5 3 Urban Cattle Sheep and goats Feral hogs Dogs
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Table 5. Cluster comparison using Duncan's multiple range test.

Variable
Duncan

Results[a]
Cluster 1

(8 subwatersheds)
Cluster 2

(2 subwatersheds)
Cluster 3

(13 subwatersheds)
Cluster 4

(12 subwatersheds)

Percent open developed land (2)(1,3,4) Low[b] High Low Low
Percent medium intensity (2)(1,3,4) Low High Low Low
Percent rangeland (1,3,4)(2,3,4) High Low Medium Medium
Percent cultivated crops (2,3,4)(1,3) Low High Medium High
Average distance to wetland (1,2,3)(2,3,4) High Medium Medium Low
Numbers of sewers (2)(1,3,4) Low High Low Low
Numbers of cows (1)(3,4)(2,4) High Low Medium Medium
Numbers of dogs (1)(2,3,4) Low High Low Low
[a] Similar clusters are grouped in parentheses. Dissimilar clusters are in different parenthetical groups.
[b] Low, medium, and high are qualitative descriptions of the cluster mean in relation to other cluster means.

These variables were used to calculate three factors as
determined by the repeated FAPCA. Three factors were
retained for use in cluster analysis. The first factor included
the percent open developed land, the average distance to
wetlands, and the number of households using sewers. This
factor accounted for the variables describing urban
development near streams. The second factor included the
variables of percent rangeland and the population of cattle,
accounting for ranching activities. The third factor included
the variables percent medium intensity development and
estimated dog populations, describing suburban develop-
ment.

These new factors were calculated from the variables
selected by discriminant analysis and used to reassign cluster
membership, which changed the cluster membership of three
subwatersheds. Then Duncan's multiple range test was
performed to determine the similarity of the clusters for each
discriminating variable. The results of the test are shown in
table 5. Clusters that are grouped together in parentheses are
similar, and clusters in different parenthetical groups are
dissimilar. Each cluster was then given a qualitative ranking
of high, medium, or low based on the average mean for that
variable within each cluster.

Figure 7. Final clusters of subwatersheds in Plum Creek watershed based
on statistical clustering analysis.

Cluster 1
Cluster 1 had eight subwatersheds. These subwatersheds

were on the southwestern and eastern edges of the watershed
(fig.�7). Cluster 1 had the greatest mean of percent open
developed land, rangeland, cattle, and distance to mixed
forest. Duncan's multiple range test identified the cattle
population of this Cluster as being significantly different
from the other clusters' cattle populations (table 6). It would
be most efficient for best management practices (BMPs) to
focus on addressing loads from agriculture, such as cattle.

Cluster 2
Cluster 2 contained two subwatersheds, 34 and 16 (figs. 3

and 7). Both of these subwatersheds were urban areas
encompassing the cities of Kyle and Lockhart. Duncan's
multiple range test identified Cluster 2 as being distinctly
different from the other clusters, with respect to the
characteristics  of dogs and percent medium‐intensity
development (table 6). When the discriminating variable
cluster means were examined, Cluster 2 had a high mean for
medium‐intensity  development, dogs, and sewers.
Therefore, BMPs should focus on reducing loads from urban
runoff, dogs, and wastewater treatment plant effluent.

Cluster 3
Cluster 3 contained 13 subwatersheds, with nine sub-

watersheds in the center of the southern portion of the
watershed (fig. 7). The other four subwatersheds were
separate and isolated, with three placed in the northern
portion and the fourth at the southern tip of the watershed.
Duncan's multiple range test did not identify any variable for
which Cluster 3 was distinctive from all the other clusters
(table 6). In addition, Cluster 3 did not have any variable
means that were the highest or lowest of the four clusters. The
cluster means and Duncan's multiple range test did not
identify any general distinctive characteristics that would
assist in identification and targeting of BMPs.

Table 6. Ranking of E. coli contributing potential
sources in Plum Creek subwatersheds.

Source

Rank (1 to 5) of Subwatersheds (1 to 35)

1 2 3 4 5

Cattle 33 13 31 35 20
Urban 34 16 32 18 3
Dogs 16 34 4 32 18

Feral hogs 35 20 33 27 13
Septic 4 34 1 2 18
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Cluster 4
Cluster 4 had four groupings of subwatersheds (fig. 7).

Two groups of four subwatersheds were in the northern
portion of the watershed, and two groups of two
subwatersheds were located in the center and on the north
central edge of the watershed. Duncan's multiple range test
identified only the number of households using sewers as a
variable that caused Cluster 4 to be significantly different
from the other clusters (table 6); Cluster 4 was identified as
having low numbers. Cluster 4 also had the highest mean of
percent cultivated crops, but this distinguishing charac-
teristic of Cluster 4 did not assist in decision making or
placement of BMPs.

CONCLUSIONS
The SELECT methodology estimated the daily average

potential E. coli production from specified sources within the
Plum Creek watershed. It contributed to spatial
understanding of the most appropriate placement of BMPs
for efficient allocation of resources.

Plum Creek was statistically characterized in order to
cluster the subwatersheds into groupings of management
areas. Four clusters were identified: one cluster was high‐
density urban, one was high in cultivated crops, another was
high in range and forest lands, and the fourth cluster had no
distinguishing characteristics. The discriminating variables
that distinguish the subwatersheds were identified. The
variables of cattle population and dog population contributed
most of the variability within the dataset. This information
provides important support for selection of BMPs. In
addition, it provides direction for future modeling efforts.

The SELECT method provides decision assistance for
stakeholders, engineers, and other specialists participating in
technical water assessments as part of the TMDL process. It
could provide input for watershed models that couple the
potential input from SELECT and transport processes. When
coupled with statistical cluster analysis, resources for BMPs
could be efficiently allocated. The strength of the
combination of SELECT and cluster analysis is that this
method can guide stakeholders in determining what further
refinements of the data are needed, where sampling should be
implemented,  and how the effectiveness of BMPs can be
evaluated. It is a generic tool that can be applied to any
watershed by proper selection of contamination sources. It
can also be applied to watersheds for which lack of data
prohibits using other modeling techniques. Furthermore,
SELECT can be modified to evaluate other water
contaminants,  such as nutrients, given sufficient information
concerning application and production rates.

Currently, SELECT is being developed in Visual Basic for
Applications (VBA) within ArcGIS 9.X to provide a
graphical user interface (GUI). This automation will help
users adjust project parameters for various pollutant loading
scenarios, use the visual outputs to identify areas of greatest
concern for contamination contribution, and incorporate that
information while developing the WPP or the TMDL.
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