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Abstract An uncertainty assessment method for evaluating models, the Sources of UNcertainty GLobal 
Assessment using Split SamplES (SUNGLASSES), is presented, which assesses predictive uncertainty that 
is not captured by parameter or other input uncertainties. The method uses the split sample approach to 
generate a quantitative estimate of the fit-for-purpose of the model, thus focusing on the purpose for which 
the model is used. It operates by comparing the output to be used for decision making to its observed 
counterpart and the associated uncertainty. The described method is applied on a Soil Water Assessment 
Tool (SWAT) model of Honey Creek, a tributary of the Sandusky catchment in Ohio, USA. Water flow and 
sediment loads are analysed. In this case study the uncertainty estimated by the proposed method is much 
larger than the typically estimated parameter uncertainty.  
Key words  uncertainty; modelling; fit-for-purpose; catchment 

Analyse d’incertitude liée à la satisfaction des objectifs à l’aide d’évaluations par subdivision 
d’échantillon 
Résumé Une méthode d’évaluation de l’incertitude, appelée “Sources of UNcertainty GLobal Assessment 
using Split SamplES” (SUNGLASSES), dédiée à l’évaluation de modèles, est présentée. Elle évalue 
l’incertitude prédictive qui n’est pas capturée par les incertitudes des paramètres et des autres informations 
d’entrée. La méthode utilise l’approche de la subdivision de l’échantillon afin de générer une estimation 
quantitative de la satisfaction des objectifs du modèle, insistant ainsi sur la vocation du modèle. Elle procède 
par comparaison entre la sortie destinée à l’aide à la décision et l’observation et l’incertitude 
correspondantes. La méthode décrite est appliquée à une modélisation avec le modèle Soil Water 
Assessment Tool (SWAT) du ruisseau Honey Creek, affluent du bassin de Sandusky dans l’Ohio, Etats-
Unis. L’écoulement et la production sédimentaire sont analysés. Dans cette étude de cas, l’incertitude 
estimée par la méthode proposée est bien supérieure à l’incertitude typiquement estimée pour un paramètre. 
Mots clefs  incertitude; modélisation; satisfaction d’objectif; bassin versant 
 
 
1 INTRODUCTION 
Model uncertainty analysis aims at a quantitative assessment of the reliability of model outputs. 
Many water quality modelling applications used to support policy and land management decisions 
lack this information and thereby lose credibility (Beck, 1987). Several sources of modelling 
unknowns and uncertainties result in the fact that model predictions are not a certain value, but 
should be represented with a confidence range of values (Kuczera, 1983a,b; Beven, 1993; Gupta et 
al., 1998; Vrugt et al. 2003). These sources of uncertainty are often categorized as input 
uncertainties (such as errors in rainfall or pollutant sources inputs), model structure/model 
hypothesis uncertainties (uncertainties caused by inappropriateness of the model to reflect reality 
or the inability to identify the model parameters) and uncertainties in the observations used to 
calibrate/validate the model outputs. 
 Over the last decade, model uncertainty analysis has been investigated by several research 
groups from a variety of perspectives. Most of these methods have typically focused on model 
parametric uncertainty and do not address overall model predictive uncertainty, which encom-
passes uncertainty introduced by data errors (in input and output observations), model structural 
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errors and uncertainties introduced by the likelihood measure or objective function used to develop 
a model and its particular application to a single location (Kuczera & Mroczkowski, 1998; 
Thiemann et al., 2001; Gupta et al., 2003). It is important to note that proper assessment of model 
prediction uncertainty is somewhat of an unattainable goal and that questions about the in-
formativeness of data and model structural error are typically best assessed in a comparison mode 
such as one model structure is superior in a specific situation as opposed to a wholesale accounting 
of the size of model structural error (e.g. Gupta et al., 1998). This problem of not being able to 
quantitatively account for model structural error and errors introduced during the model calibration 
process has been a continuing source of problems and has generally prohibited the use of robust 
statistical methods for assessing uncertainty since these methods typically assume that the 
structural form of the model is correct, and that only model parameters need to be adjusted to 
properly match a computational model to the observations (Beven & Young, 2003; Gupta et al., 
2003). It is well known that hydrological models, particularly those of the rainfall–runoff process 
and even more so for models of water quality, are not perfect models and thus the assumption that 
the model is correct does not hold for the application of hydrological models (e.g. see Beven, 
1993; Mroczkowski et al., 1997; Boyle et al., 2001; Meixner et al., 2002). 
 A fundamental necessity noted by many is that the model must be evaluated using data not 
used for model calibration (Klemeš, 1986), also called the split sample methodology. Typically 
this split sample approach is conducted using one half of a data set to calibrate the model, and the 
second half of the time series to evaluate the calibration data set. The split sample methodology is 
not without flaws. It is well-known that a model typically performs worse during an evaluation 
time period than during the calibration period, and if a model performs almost as well during the 
evaluation period, it is generally accepted that the model is at least an acceptable representation of 
the natural system it represents (e.g. Meixner et al., 2000).  
 Singh (1988) discusses the problem of model calibration at length and particularly notes that 
the model calibration problem has several fundamental attributes. First, model calibration starts 
with the problem that the data with which the model is being calibrated have some errors 
associated with them. Next, Singh (1988) notes that model calibration typically over-compensates 
for the data error and that the standard error (i.e. the difference between the simulations and 
observations) of the estimate ends up being smaller than it should be. When the calibrated model is 
then taken to another time period for evaluation, the standard error of prediction is generally larger 
than the original standard error of the data since the model was overly tuned to the observations for 
the calibration period. Singh notes that, while the standard error of the data and of the estimate can 
be quantified using standard methods, there is no formalized methodology for estimation of the 
standard error of the prediction, which we are most interested in. This problem remains to this day.  
 The framework established by Singh (1988) proves useful as we think about the problem of 
estimating model predictive uncertainty. Since most methods estimate the standard error of the 
estimate, they misleadingly represent only the reduced uncertainty level indicated by Singh (1988). 
Given the fundamental interest in knowing the uncertainty of model predictions, as opposed to 
estimates during the calibration period, it should prove useful to investigate methods that can 
assess the uncertainty of predictions. The discussion above would indicate that using the split 
sample approach and an assessment of model performance during the evaluation period would be 
useful for estimating the overall model predictive uncertainty. 
 Many researchers have noted the problem that parameter uncertainty was much smaller than 
expected for the level of trust we should have in model predictions (Beven & Freer, 2001; 
Thiemann et al., 2001; Freer et al., 2003). Here a methodology—Sources of UNcertainty GLobal 
Assessment using Split SamplES (SUNGLASSES)—is presented that uses a split sample approach 
to estimate overall model predictive uncertainty, and these results are compared to those garnered 
using a previously developed parametric uncertainty method based on statistical approaches, 
ParaSol (Parameter Solutions) (van Griensven & Meixner, 2007). The SUNGLASSES and 
ParaSol approaches are then compared using the commonly used river basin water quality model, 
the Soil Water Assessment Tool (SWAT). 
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2 METHODS 
The ParaSol method is an optimization and statistical uncertainty method that assesses model 
parameter uncertainty. On top of ParaSol, SUNGLASSES uses all parameter sets and simulations 
performed by ParaSol to re-estimate uncertainty using a split-sampling procedure. Additional 
sources of uncertainty are detected by means of an evaluation period in addition to the calibration 
period.  
 
2.1 Description of ParaSol 
The method “ParaSol” (parameter solutions) (van Griensven & Meixner, 2007) is developed to 
perform the optimization and a model parameter uncertainty analysis for complex models. 
Distributed (water quality) models, typically have a high number of parameters, high parameter 
correlations, several output variables and a complex structure leading to multiple minima in the 
objective function response surface. The ParaSol method calculates the objective function (OF) 
based on model outputs and observation time series for a selected variable and aggregates several 
fitting criteria to a global optimization criterion (GOC). ParaSol minimizes the OF or a GOC using 
the SCE-UA algorithm and performs uncertainty analysis with a choice between two statistical 
concepts: χ2 statistics that are discussed below and Bayesian statistics (van Griensven & Meixner, 
2007).  
 
 2.1.1 The shuffled complex evolution (SCE-UA) algorithm The SCE-UA algorithm is a 
global search algorithm for the minimization of a single function (Duan et al., 1992). It combines 
the direct search method of the simplex procedure with the concept of a controlled random search 
of Nelder & Mead (1965), a systematic evolution of points in the direction of global improvement, 
competitive evolution (Holland, 1975) and the concept of complex shuffling. In a first step (zero-
loop), the algorithm selects an initial “population” by random sampling throughout the feasible 
parameters space for P parameters to be optimized (delineated by given parameter ranges).  
 The SCE-UA has been widely used in watershed model calibration and other areas of 
hydrology such as soil erosion, subsurface hydrology, remote sensing and land surface modelling 
(Duan, 2003). It was generally found to be robust, effective and efficient (Duan, 2003). The SCE-
UA has also been applied with success on SWAT for the calibration of the hydrological 
parameters (Eckardt & Arnold, 2001) and of the hydrological and water quality parameters (van 
Griensven & Bauwens, 2003).  
 
 2.1.2 Objective functions Within an optimization algorithm it is necessary to minimize or 
optimize a function that replaces the expert perception of curve-fitting during manual calibration. 
There are a wide array of possible error functions to choose from and many reasons to pick one 
versus another (for some discussions on this topic see Gupta et al., 1998; Legates & McCabe, 
1999). This study used a sum of the squares of the errors (SSE) that is similar to the mean square 
error method (MSE), and aims to match a simulated series to a measured time series:  
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where N is the number of pairs consisting of the simulation yn,sim and the corresponding 
observation yn,obs. 
 
 2.1.3 Global optimization criterion Since the SCE-UA minimizes a single function, it cannot 
be applied directly for multi-objective optimization. There are several methods available in the 
literature to aggregate objective functions to a global optimization criterion (Madsen, 2003; van 
Griensven & Bauwens, 2003) for multi-objective calibration, but they do not provide uncertainty 
analysis.  
 Based on Bayesian theory, a GOC is defined by the following equation (van Griensven & 
Meixner, 2007): 
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where SSEm is the sum of the squared errors for variable m; Nm is the number of observations of 
variable m; and SSEm, min is the minimum value that was found for the objective function SSEm. for 
all performed simulations (see below). For details of ParaSol and how equation (2) is derived, the 
reader is referred to van Griensven & Meixner (2007). 
 The probability p() that the parameter vector θ is the true one—or the likelihood of the 
parameter vector θ—consisting of the P parameters (θ1, θ2, …, θP) when conditioned by the 
observation yn,obs can be related to the GOC according to: 

[ ]GOCexp)| obs −∝Yp(θ   (3) 

 Thus the sum of the squares of the residuals for a given variable gets a weight that is equal to 
the number of observations divided by the minimum of SSE for that variable. The minima of the 
individual objective functions are not initially known. To solve this problem, an update is 
performed for the minima of the objective functions after each loop in the SCE-UA optimization 
using the newly gathered information within the loop. The main advantage of using equation (2) to 
calculate the GOC is that it allows for a global uncertainty analysis considering all components of 
the objective function as described below. 
 Note that, in all cases, the probability for the entire parameter space is to be equal to one. 
Therefore, a rescaling or normalization is performed in order to assign absolute probabilities 
through a weighting factor that is equal to the integration of equation (3) over the entire parameter 
space (Box & Tiao, 1973). 
 
 2.1.4 Uncertainty analysis method The uncertainty analysis divides the simulations that have 
been performed by the SCE-UA optimization into “good” simulations and “not good” simulations, 
similarly to the GLUE methodology (Beven & Binley, 1992). The simulations gathered by SCE-
UA are very valuable as the algorithm samples over the entire parameter space with a focus of 
solutions near the optimum/optima.  
 The ParaSol algorithm uses a threshold value for the objective function (GOC) to select the 
“good” simulations by considering all the simulations that give an objective function below this 
threshold. The threshold value can be defined by χ2 statistics where the selected simulations 
correspond to the confidence region (CR). For a single objective calibration, the SCE-UA will find 
a parameter set θ* consisting of the P free parameters (θ*1, θ*2, …, θ*P), that corresponds to the 
minimum of the OF(θ*). A criterion will be used for selecting the “good” parameter sets that have 
an objective function higher than the minimum but below the criterion, using the equation: 
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whereby the χ2
P,0.975 gets a higher value for more free parameters P.  

 For multi-objective calibration, the selections are made using the GOC of equation (2) that 
normalizes the sum of the squares for the total of observations NT, equal to the sum of N1, …, Nm, 
…, NM observations. A threshold for the GOC is calculated by:   
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thus all simulations with GOC(θ) < cParaSol are deemed acceptable. The uncertainty bounds for the 
model outputs are computed by propagating all the parameter sets, that were simulated during the 
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ParaSol optimisation, that pass the threshold (GOC < cParaSol) by taking the minimum and 
maximum output values of all these simulations. 
 
2.2 Description of SUNGLASSES 
In order to get a stronger evaluation of the prediction power of a model, the SUNGLASSES 
method is designed to assess predictive uncertainty that is not captured by parameter uncertainty. 
The goal of the method is to have a good fit to observations (expressed by the SSEs) and a proper 
assessment of systematic errors that may lead to over- or underestimations of the outputs to be 
used for decision making. The latter is evaluated by assessing the increases in model prediction 
errors when simulations are done outside the calibration period by using a split sample strategy, 
whereby the evaluation period is used to re-evaluate the assessed uncertainties on the model 
outputs. The assessment of the prediction power is hereby based on a fit-to-purpose criterion that 
is related to the sort of decision the model is being used for (for instance the total exported 
pollution loads, or the percentage of time oxygen is below a threshold value). In case a systematic 
under- or overestimation is found for this evaluation criteria for all the ParaSol results, an update 
(increase) of the threshold c is done whereby more simulations will be selected according to the 
inequality: GOC(θ) < cSUNGLASSES, whereby cParaSol < cSUNGLASSES. The parameter cSUNGLASSES is not 
defined by an equation, but by the minimum threshold value that gives the smallest uncertainty 
ranges on the output values possible and includes both under- and overestimations of the decision 
variables for both the calibration and validation periods. These final uncertainty ranges depend on: 
the GOC composed of objective functions representing a fit to observations, on the one hand, and, 
on the other, a fit-to-purpose evaluation criterion (to be related to decision making) for defining a 
new value c that is used to estimate uncertainty bounds of the model outputs. The GOC is used to 
assess the degree of error on the process dynamics, while the evaluation criterion defines a 
threshold on the GOC in such a way that no systematic over- or underestimation of the output 
values is allowed.  
 In brief, SUNGLASSES is applied by the following procedure: 
1. Split the data sets into two parts—calibration and validation data set—typically, two periods 

in time with equal length. 
2. Define a calibration objective (e.g. minimisation of the mean-squared-error or global 

optimisation criterion) and perform a calibration followed by parameter uncertainty method. 
Statistical methods can be used to define a threshold considering parameter uncertainty. In this 
paper, ParaSol was used to define such a threshold.  

3. Define what outputs are of interest for model-based decision making (in this case mass flux 
model bias  since the total erosion volume is of important for erosion control). 

4. Compute the uncertainty bounds for the model outputs for both calibration and validation 
period by propagating all the acceptable parameter sets that pass the threshold for parameter 
uncertainty defined in Step 2. 

5. Verify whether there is a bias in the calibration/validation period with regard to the model 
output to be used for decision making, as defined in Step 3. 

6. If there is no bias, no action is needed and the uncertainty bounds for SUNGLASSES are 
equal to the uncertainty bounds of ParaSol.  

7. If there is a bias, a threshold cSUNGLASSES > cParaSol needs to be defined. The SUNGLASSES 
method operates by ranking the GOCs (Fig. 1) and by gradually increasing the threshold until 
the corresponding uncertainty bounds on the model outputs, computed by propagating all the 
simulations with GOC lower than the threshold, contain simulations with both under- and 
overestimations of the model bias. Thus, the simulation do not systematically under- or 
overestimate the observed value. 
This methodology is flexible in the sense that different combinations of objective functions 

can be used within the GOC. Also, alternatives for the bias as the criterion for the model  
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Fig. 1 Selection of good parameter sets using a threshold imposed by ParaSol or by SUNGLASSES.    

 
 
evaluation period are possible depending on the model outputs to be used for decision making. 
Examples of alternative criteria are the percentage of time a certain output variable is higher or 
lower than a certain threshold (being common for water quality policy) or the maximum value or 
the value of a certain model prediction percentile (often important for flood control).  
 
 
3 APPLICATION ON A SWAT MODEL 
The SUNGLASSES method was programmed within SWAT (to be part of SWAT2005) and was 
applied on a small and simple catchment model for evaluation purposes of the methodology and 
for comparison purposes to the ParaSol method.  
 
3.1 SWAT 
The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a semi-distributed and 
semi-conceptual program that calculates water, nutrient and pesticide transport at the catchment 
scale on a daily time step. It represents hydrology by interception, evapotranspiration, surface 
runoff (SCS curve number method, USDA Soil Conservation Service, 1972), soil percolation, 
lateral flow and groundwater flow and river routing (variable storage coefficient method, 
Williams, 1969) processes. The nutrient, erosion, crop and pesticide processes are based on the 
GLEAMS (Leonard et al., 1987), CREAMS (Knisel, 1980) and EPIC (Williams et al., 1984) 
modelling tools. The catchment is divided into sub-basins, river reaches and hydrological response 
units (HRUs). While the sub-basins can be delineated and located spatially, the further sub-
division into HRUs is performed in a stochastic way by considering a certain percentage of sub-
basin area for each combination of soil and land-use classes, without any specified location in the 
sub-basin.  
 
3.2 Parameter change options for SWAT 
In the ParaSol algorithm, as implemented in SWAT2005, parameters affecting hydrology or 
pollution can be changed either in a lumped way (over the entire catchment), or in a distributed 
way (for selected sub-basins or HRUs). They can be modified by replacement, by addition (for an 
absolute change) or by a multiplication (for a relative change). A relative change means that the 
parameters, or several distributed parameters simultaneously, are changed by a certain percentage. 
However, a parameter is never allowed to go beyond the predefined parameter range. For instance, 
all soil conductivities for all HRUs can be changed simultaneously over a range of –50 to +50% of 
their initial values that are different for the HRUs according to their soil type. This mechanism 
allows for a lumped calibration of distributed parameters while keeping their relative physical 
meaning (soil conductivity of sand will be higher than soil conductivity of clay).  
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3.3 Honey Creek model description 
Honey Creek is a sub-basin within the Sandusky River watershed (Ohio, USA) within the Erie 
Watershed and Great Lakes basin. The SWAT model for Honey Creek was abstracted from the 
SWAT model of the Sandusky that was provided by the University of Florida to the research 
group at the University of California, Riverside (van Griensven et al., 2006). It covers an area of 
338 km2. To facilitate large numbers of simulations, a minimalist model structure was chosen 
consisting of one sub-basin, represented by five HRUs, a river reach and a point source. Daily 
observations during the years 1998–1999 were used to calibrate the model. These consisted of 661 
flow observations and 518 sediment concentration observations.  
 The model for this basin is used to develop sediment management plans. Therefore, 
calibrations and uncertainty analysis are applied on daily series of flows and sediment loads. A 
sensitivity analysis was to select the 10 most important parameters for flow and sediments (van 
Griensven et al., 2006) (Table 1). The distributed parameters are changed in a lumped way by 
considering a single relative change that is applied on all. A more detailed description of the 
SWAT model is provided in van Griensven et al. (2006).  
 
 
Table 1 Parameters used in calibration, with sensitivity rank according to SSE for the daily observed flows  
(Q) and the sediment concentrations (SS). 
Parameter Description  Q  SS  
SMFMX Maximum melt rate for snow during (mm °C-1 d-1)  Lumped   2 17 
ALPHA_BF Baseflow alpha factor (d). Lumped   8 1 
ch_k2 Channel conductivity (mm/h) Distributed   5 14 
USLE-P USLE equation support practice (P) factor. Distributed No effect 4 
CN2 SCS runoff curve number for moisture condition II. Distributed   3 2 
sol_awc Available water capacity of the soil layer (mm/mm soil). Distributed 10 3 
surlag Surface runoff lag coefficient Lumped   1 7 
SFTMP Snowfall temperature (°C) Lumped 15 6 
SMTMP Snowmelt base temperature (°C) Lumped   7 5 
Sol_z Soil depth  Lumped   9 10 
 
 
3.4 Objective functions 
The purpose for which SWAT was applied to the Honey Creek catchment was to estimate 
sediment export from the catchment. Therefore, the joint calibration included the SSE for the 
streamflow and the SSE for sediment concentrations with a Box-Cox transformation to reduce the 
heteroscedastic nature of the residuals (Box & Cox, 1982). The GOC thus represents errors 
associated with both flow and water quality variables.  
 
3.5 Evaluation criterion 
Based on the assumption that the model purpose was to assess global fluxes of sediment load at 
the outlet of the creek, the evaluation criterion was described by the model bias on the mass flux 
that was calculated as: 
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for N the number of pairs (simulation, observation), SIMn the simulation at day n and OBSn the 
observation of day n. The bias was calculated for the water flow and the sediment loads in the 
calibration and validation period.  
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3.6 Results 
 3.6.1 Entire parameter space Before evaluating model bias, the bias results were assessed 
for the case when all parameters were allowed to vary freely between the a priori parameter 
ranges. This situation represents the absolute maximum degree of uncertainty that the final results 
could have. The characteristics for the entire parameter space are calculated based on all simu-
lations that were performed during the ParaSol optimization. It was shown that the model bias on 
the water volumes can vary from an underestimation of almost 100% (i.e. nearly no water leaves 
the system) to an overestimation of as big as three times of the total volume (Table 2). For the 
sediment loads, the overestimation can be as much as 32 times the total loads. These results clearly 
show the risk of using model results that have not been conditioned with observations. 
 
 
Table 2 Minimum and maximum error on global balance (in percentage). 
  FLOW Sediment loads 
1998–1999 Min –98.60 –99.81 
  Max 263.81 1501.90 
2000–2001 Min –97.37 –99.81 
  Max 302.49 3171.40 
 
 
 3.6.2 ParaSol and SUNGLASSES confidence space A total of 34 669 simulations were 
performed to minimize the GOC. According to ParaSol, all the simulations with GOC smaller then 
cParaSol were accepted and defined an uncertainty range for the outputs as in Fig. 2. The ParaSol 
results, using χ2-statistics for 97.5% confidence probability, show clear bias for the sediment load 
predictions during the calibration period: between –23% and –27% and an opposite bias for the 
validation period (34–43%) (Fig. 2). Here we see an underestimation of the sediment loads in the 
calibration period and an overestimation in the validation period. This means that the bias depends 
on the period of observations. It is also clear that the uncertainty method within ParaSol does not 
foresee this strong bias and that the zero-bias is not captured. This result is probably due to the 
compromises that have to be made between the different objective functions. The uncertainty 
threshold should hence be updated according to the SUNGLASSES methodology. This leads to 
higher uncertainty bounds that include the zero bias of sediment transport for both calibration and 
validation period (Fig. 2).  
 An application of SUNGLASSES shows that the sediment load calculations can have an 
overestimation of up to 167%. This result means that the model, when calibrated on a period of 
two years, is not performing well and is thus highly uncertain in assessing total mass fluxes. The 
confidence ranges for the time series give much wider bounds for SUNGLASSES that capture 
more of the observations as well (Fig. 4). For instance, the missed observation at the beginning of 
 
 

Model bias for the sediment loads (%)
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Fig. 2 Uncertainty intervals for the sediment load calculations according to ParaSol and SUNGLASSES. 
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Fig. 3 Uncertainty intervals for the time series of the daily sediment loads according to ParaSol.  
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Fig. 4 Uncertainty intervals for the time series of the daily sediment loads according to SUNGLASSES.  

 
 
1999 was not captured in ParaSol (Fig. 3), while it was captured with SUNGLASSES (Fig. 4). We 
therefore conclude that SUNGLASSES gives an overall more liberal estimation of the confidence 
regions (Fig. 5).  
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Fig. 5 Uncertainty intervals for the parameters according to ParaSol and SUNGLASSES. 

 
 
4 DISCUSSION 

Both ParaSol and SUNGLASSES give uncertainty assessments, but they use different approaches 
and represent different sources of uncertainties. ParaSol is a typical statistical method to assess 
parameter uncertainties such as other methods like SCEM-UA (Vrugt et al., 2003), and BaRE 
(Thiemann et al., 2001). SUNGLASSES does not have these underlying statistics; it assesses 
overall uncertainty but does not explain where the uncertainty comes from. It is thus a diagnostic 
method indicating that something is wrong rather than quantifying the specific source of the 
uncertainty. To identify the specific uncertainty source the model user would need to employ 
additional analysis or methods.  
 The results show an important drawback in traditional statistical uncertainty methods: these do 
account for the number of observations, but do not consider whether these data also cover the 
variability of the system necessary to identify the overall process parameters. This problem leads 
to a bad assessment of indicators (such as global mass fluxes) that might be used in decision 
making. SUNGLASSES reveals such problems by evaluating predictions outside the calibration 
period. SUNGLASSES thus gives a joint evaluation of the model and the parameter identification 
procedure. When either of these fails the test, more selections of parameter combinations and 
much wider uncertainty ranges will be obtained. 
 Our results thus indicate that the uncertainty assessment with ParaSol on the SWAT model 
fails or is at least incomplete. The big question is, why are the ParaSol results so biased? This 
problem occurs with the ParaSol method in particular, and with most parameter uncertainty 
methods in general because these methods are built on assumptions that are often not fulfilled, for 
example: 
(a) The data represent seasonal and long time variability. In case of failure, the χ2 statistics do 

not account for long-term climatic patterns and their affect on the system: such variability may 
cause a model bias for the validation period, even though the model was not biased for the 
calibration period. Since catchment hydrology is subject to strong variability in climate, cali-
bration and validation periods will typically have different characteristics and distributions for 
the forcing weather inputs, and so will the flow observations. Longer time series could be 
used so that more system variability could be accounted for. Previously, some have found that 
approximately 10 years of data is needed to properly calibrate a hydrological model (Yapo et 
al., 1996). These results are likely site and climate specific. It is unknown what period of 
water quality data would be sufficient.  

(b) The dynamic inputs (such as weather) are correct or represent the spatial and temporal 
variability of the system. The spatial distribution of precipitation gauges is typically coarse 
compared to the spatial variability of the rainfall events (Willems & Berlamont, 2002). This 
difference may cause errors in model outputs that do not follow a normal distribution. Strange 
patterns of errors may occur, especially when rainfall data outside the modelling area is used: 
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rainfall storms may be recorded that did not happen in the area of modelling, leading to a 
runoff peak that was not observed. While most of the model applications do not consider these 
input uncertainties, there are few examples (e.g. Krzysztofowicz, 2002) that incorporate the 
input uncertainties in modelling.  

(c) The model structure and hypothesis (the process equations) are correct and represent 
the real world. Model errors are considered by using multiple models in a Bayesian frame-
work (Hoeting et al., 1999; Montanari & Brath, 2004), by regionalized sensitivity analysis 
(Osidele & Beck, 2001), the GLUE methodology (Beven & Binley, 1992) or with a Pareto 
analysis (Meixner et al., 2002; Gupta et al., 2003). Such methods allow for a relative 
evaluation of model structures and/or a discrimination of models while a quantification of the 
errors associated with model uncertainty is not straightforward. 

(d) The model is unbiased or the model errors are randomly distributed. The unbiased nature 
of the model is a generally accepted assumption in statistically based uncertainty analysis. 
This assumption is because parameter calibration is generally able to remove the model bias. 
However, for a variety of reasons, the complete removal of bias is not necessarily true. First, 
the objective functions typically used, such as sum of the squares, are not always unbiased 
error estimators if the errors are not normally distributed. Second, split sample evaluations 
often reveal large biases during validation periods (as shown in Figs 2 and 5). Third, even 
when a longer period of data is used for calibration, this will still lead to biased results for 
sub-periods due to parameters that have different optimal values for different time periods. 
Several studies have revealed periodic, often seasonal, preference of calibrated parameters for 
certain values (Freer et al., 2003) and a necessity to compromise as a consequence. These 
studies suggest that at least some parameters cannot be generalized for any data set, no matter 
how long. In order to fulfill the assumptions of unbiased and randomly distributed residuals, it 
is thus necessary to improve the modelling tools to prevent having a preference of the 
parameters based on a specific period of data. 

  The trade-off between different fitting criteria may lead to a model bias in the calibration 
period, which happened in the case presented here. Such trade-offs are caused by model 
structural errors (Meixner et al., 2002; Gupta et al., 2003), and have to be solved by a better 
mathematical representation of the system.  

(e) Observations are typically considered as being correct. Most observation databases only 
provide the observations without giving additional information on the uncertainty of 
measurements. Meta-databases providing background information on these measurements are 
thus needed. Also, some observations, such as flow data, typically have a heteroscedastic 
distribution of errors as opposed to the generally assumed normal distribution (Sorooshian & 
Dracup, 1980). These differences can be corrected for.  

(f) The residuals are independent identically distributed with normal distribution. All 
previous sources of uncertainty may lead to residuals that show periodical biases or do not 
follow a random pattern. It is often observed that the distribution of model errors is not 
normal, but having a heteroscedastic pattern (e.g. Sorooshian, 1980; Sorooshian & Dracup, 
1980) or auto-correlated pattern (e.g. Sorooshian & Dracup, 1980). Other distributions or 
transformation functions have been used to account for heteroscedastic error situations in 
hydrology (Sorooshian, 1980; Thiemann et al., 2001) or auto-correlations (Sorooshian & 
Dracup, 1980), but are less popular as such distributions incorporate case dependent (and time 
period dependent!) constants that have to be defined. However, other sources of uncertainty 
(e.g. model structure and input uncertainty) will prevent errors from being consistent with 
certain known and well-understood distributions.  

 In brief, hydrological models typically do not fulfil these assumptions. Apparently, these 
problems cannot be neglected as it leads to a wide increase of the uncertainty bounds under 
SUNGLASSES.  
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 While several of these problems can be considered in the uncertainty analysis by paying more 
attention to the assumptions that underlay the statistics and methods of comparison or 
quantification of these uncertainties are available, some sources of uncertainty remain at the 
present state-of-the-art inaccessible and thus hard to consider. A global evaluation of the overall 
procedure, such as performed by SUNGLASSES, is thus needed to improve the reliability of the 
model results so that decision makers can have a firm understanding of the degree to which they 
can trust model results. 
 
 
5 CONCLUSIONS 
The results show an important drawback in traditional statistical uncertainty methods: these do 
account for the number of observations, but do not consider whether these data also cover the 
variability of the system necessary to identify the overall process parameters, or for model errors 
(model structural errors or errors in process descriptions). This problem leads to wrong 
assessments of indicators (like global mass balances) that might be used in decision making. 
SUNGLASSES reveals these problems by evaluating predictions of importance. The 
SUNGLASSES results show more selections of parameter combinations and much wider 
uncertainty ranges. 
 Our purpose here is to assess predictive uncertainty and develop methodologies that will help 
decision makers understand how uncertain their models are so that they can put the proper level of 
trust in computational models of the environment as they move forward to make decisions. The 
preliminary results indicate that the main concern should be about the uncertainty associated with 
model structural error and data errors, and less so on model parametric uncertainty. As others have 
noted, the inability of a model to simulate a second period of time when it has been calibrated with 
an earlier period of data should be cause for rejecting a model as non-behavioural (not acceptable) 
noting that the model obviously has flaws and needs to be improved (Freer et al., 2003). While the 
notion of rejecting such a model is an appropriate one in a scientific context, it is less acceptable in 
a policy application context. Since models certainly need improvement, there is always a point at 
which we must apply our models as they stand, to actually make decisions (Grayson & Blöschl, 
2001). For these decisions to be good and properly informed, they must incorporate all the sources 
of uncertainty, including model structural and data errors. For this reason, instead of taking the 
approach of rejecting model simulations during a comparison period as non-behavioural, 
SUNGLASSES incorporates the evaluation period to help set the threshold of model acceptability 
in order to incorporate elements of model structural uncertainty and data uncertainty into overall 
model predictive uncertainty. While SUNGLASSES is by no means the only methodology that can 
be used to assess model predictive uncertainty, the split sample approach it takes bears further 
investigation as a way to incorporate data errors and model structural errors into predictive 
uncertainty estimation. 
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