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Abstract: The SWAT2005 model was applied to the Lake Tana Basin for modeling of the hydrological water balance. 

The main objective of this study was to test the performance and feasibility of the SWAT model for prediction of stream-

flow in the Lake Tana Basin. The model was calibrated and validated on four tributaries of Lake Tana; Gumera, GilgelA-

bay, Megech and Ribb rivers using SUFI-2, GLUE and ParaSol algorithms. The sensitivity analysis of the model to sub-

basin delineation and HRU definition thresholds showed that the flow is more sensitive to the HRU definition thresholds 

than subbasin discretization effect. SUFI-2 and GLUE gave good result. All sources of uncertainties were captured by 

bracketing more than 60% of the observed river discharge. Baseflow (40% - 60%) is an important component of the total 

discharge within the study area that contributes more than the surface runoff. The calibrated model can be used for further 

analysis of the effect of climate and land use change as well as other different management scenarios on streamflow and 

soil erosion. 
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1. INTRODUCTION 

In the Lake Tana Basin the available land and water re-
sources are not utilized effectively to improve the livelihood 
and socioeconomic conditions of the inhabitants. The exist-
ing land and water resources system of the area is adversely 
affected by the rapid growth of population, deforestation, 
surface erosion and sediment transport. There is a need for 
hydrological research of the Lake Tana Basin that can sup-
port improved catchment management programs that can 
better safeguard the alarmingly degradation of soil and water 
resources in Ethiopian highlands. The lack of decision sup-
port tools and limitation of data concerning weather, hydro-
logical, topographic, soil and land use are factors that sig-
nificantly hinder research and development in the area. The 
tools concern various hydrological and soil erosion models. 
In recent years, distributed watershed models are increas-
ingly used to implement alternative management strategies in 
the areas of water resources allocation, flood control, impact 
of land use change and climate change, and finally environ-
mental pollution control. Many of these models share a 
common base in their attempt to incorporate the heterogene-
ity of the watershed and spatial distribution of topography, 
vegetation, land use, soil characteristics, rainfall and evapo-
ration. Some of the watershed models developed in the last 
two decades are CREAMS (Chemicals, Runoff, and Erosion 
from Agricultural Management Systems) [1], EPIC - Erosion 
Productivity Impact Calculator [2], AGNPS (Agricultural 
None Point Source model) [3], SWAT (Soil and Water As-  
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sessment Tool) [4] and HSPF (Hydrologic Simulation Pro-
gram – Fortran) [5]. Many of these watershed models are 
applied for runoff and soil loss prediction [e.g. 6-8], water 
quality modelling [e.g. 9-11], land use change effect assess-
ment [e.g. 12-14] and climate change impact assessment 
[e.g. 15-17]. Among the foregoing models, physically based 
distributed models such as SWAT are well established mod-
els for analyzing the impact of land management practices on 
water, sediment, and agricultural chemical yields in large 
complex watersheds. A comprehensive review of SWAT 
model applications is given by [18]. In this study we focus 
on calibration, evaluation and application of SWAT2005 
model for simulation of the hydrology of Lake Tana Basin. 
The main objective of this study was to test the performance 
and feasibility of the SWAT2005 model for prediction of 
streamflow in the Lake Tana Basin. There are few applica-
tions of SWAT model to Ethiopian conditions in relatively 
small watershed areas [e.g. 19-21]. The present study con-
siders large scale application of the model on a catchment 
area where most of the topographic features have slopes 
greater than 5%. For estimation of curve number to slopes 
above 5% an equation developed by reference [2] was used. 
Many distributed watershed models use different factors and 
parameters for the simulation of the hydrological processes. 
Hence it is important for these models to pass careful cali-
bration tests and uncertainty analysis. Different researchers 
used several calibration and uncertainty analysis techniques 
[e.g. 22-25]. In this paper application of SUFI-2, ParaSol and 
GLUE calibrations and uncertainty algorithms are discussed. 

2. STUDY AREA 

The Lake Tana basin comprises an area of 15,096 km
2
 

including the lake area (Fig. 1). The mean annual rainfall of 
the catchment area is about 1280 mm. The annual mean ac-
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tual evapotranspiration and water yield of the catchment area 
is estimated to be 773 mm and 392 mm, respectively. The 
climate of the region is ‘tropical highland monsoon’ with 
main rainy season between June and September. The air 
temperature shows large diurnal but small seasonal changes 
with an annual average of 20

 
°C. The mean annual relative 

humidity (1961–2004) at Bahr Dar gauge station (Fig. 4) is 
0.65. The basin has significance national importance due to 
its high potentials for irrigation, hydroelectric power devel-
opment, high value crops and livestock production, and 
ecotourism. Lake Tana, the main source of the Blue Nile 
River, is the largest lake in Ethiopia and the third largest in 
the Nile Basin. It is approximately 84 km long, 66 km wide 
and is located in the country's north-west highlands (Lat 12° 
0' North, Lon 37° 15' East). The lake is a natural freshwater 
lake which covers 3000 - 3600 km

2
 area at an elevation of 

1800 m. The lake is shallow with a maximum depth of 15 m. 
The main tributaries of the Lake Tana are GilgelAbay, Gu-
mera, Ribb and Megech rivers. The present study shows that 
these four inflow rivers contribute to more than 45% of the 
annual Lake water budget. The only surface outflow is the 

Blue Nile (Abba) River with an annual flow volume of 4 
billion cubic meters measured at Bahir Dar gauge station.  

3. METHODS 

The present study concerns the application of a physi-
cally based watershed model SWAT2005 in the Lake Tana 
Basin to examine the influence of topographic, landuse, soil 
and climatic condition on stream flow. The impact of sub-
basin discretization and hydrologic response units (HRU) 
definition on stream flow were also studied. The application 
of the model involved calibration, sensitivity and uncertainty 
analysis. For this purpose SUFI-2, ParaSol and GLUE cali-
bration and uncertainty analysis algorithms were used. To 
get converged solutions 2000, 3000, and 10000 iterations 
were needed for each method, respectively. A converged 
solution is reached when the objective functions such as 
Nash Sutcliffe efficiency, reach constant values. 

3.1. Description of SWAT Model 

SWAT (Soil Water Assessment Tool) is continuous time, 
spatially distributed model designed to simulate water, sedi-

 

 

 

 

 

 

 

 

 

 

Fig. (1). Location Map of the study area. 

 

 

 

 

 

 

 

 

 

Fig. (2). DEM of the Lake Tana Basin (meter above see level). 
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ment, nutrient and pesticide transport at a catchments scale 
on a daily time step. It uses hydrologic response units 
(HRUs) that consist of specific land use, soil and slope char-
acteristics. The HRUs are used to describe spatial heteroge-
neity in terms of land cover, soil type and slope class within 
a watershed. The model estimates relevant hydrologic com-
ponents such as evapotranspiration, surface runoff and peak 
rate of runoff, groundwater flow and sediment yield for each 
HRUs unit. SWAT is imbedded in a GIS interface. Arc-
SWAT ArcGIS extension is a graphical user interface for the 
SWAT2005 which is evolved from AVSWAT which is an 
ArcView extension developed for an earlier version of 
SWAT. The hydrologic cycle simulated by SWAT is based 
on the water balance equation (1). 
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In which, SWt is the final soil water content (mm water), 
SWo is the initial soil water content in day i (mm water), t is 
the time (days), Rday is the amount of precipitation in day i 
(mm water), Qsurf is the amount of surface runoff in day i 
(mm water), Ea is the amount of evapotranspiration in day i 
(mm water), Wseep is the amount of water entering the vadose 
zone from the soil profile in day i (mm water), and Qgw is the 

amount of return flow in day i (mm water). To estimate sur-
face runoff two methods are available. These are the SCS 
curve number procedure USDA Soil Conservation Service 
[26] and the Green & Ampt infiltration method [27]. In this 
study, the SCS curve number method was used to estimate 
surface runoff. Hargreaves method was used for estimation 
of potential evapotranspiration (PET) [28]. The SCS curve 
number is described by equation 2. 
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In which, Qsurf is the accumulated runoff or rainfall ex-
cess (mm), Rday is the rainfall depth for the day (mm), S is 
the retention parameter (mm). The retention parameter is 
defined by equation 3. 
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The SCS curve number is a function of the soil’s perme-
ability, landuse and antecedent soil water conditions. SCS 
defines three antecedent moisture conditions: 1 – dry (wilt-
ing point), 2 – average moisture, and 3 – wet (field capacity). 

Fig. (3). Soil types (a) and land cover (b) maps in Lake Tana Basin. 

 

 

 

 

 

 

 

 

Fig. (4). Weather and streamflow gauge stations, subbasins and river layers in Lake Tana Basin. 
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The moisture condition 1 curve number is the lowest value 
that the daily curve number can assume in dry conditions. 
The curve numbers for moisture conditions 2 and 3 are cal-
culated from equations 4 and 5. 
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In which CN1 is the moisture condition 1 curve number, 
CN2 is the moisture condition 2 curve number, and CN3 is 
the moisture condition 3 curve number. 

Typical curve numbers for moisture condition 2 are listed 
in various tables [29] which are appropriate to slope less than 
5%. But in the Lake Tana basin there are areas with slopes 
greater than 5%. To adjust the curve number for higher 
slopes an equation developed by [2] was used (equation 6). 
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In which CN2S is the moisture condition 2 curve number 
adjusted for slope, CN3 is the moisture condition 3 curve 
number for the default 5% slope, CN2 is the moisture condi-
tion 2 curve number for the default 5% slope, and slp is the 
average percent slope of the subbasin. 

3.2. Model Input 

The spatially distributed data (GIS input) needed for the 
ArcSWAT interface include the Digital Elevation Model 
(DEM), soil data, land use and stream network layers. Data 
on weather and river discharge were also used for prediction 
of streamflow and calibration purposes.  

Digital Elevation Model 

Topography was defined by a DEM that describes the 
elevation of any point in a given area at a specific spatial 
resolution. A 90 m by 90 m resolution DEM (Fig. 2) was 
downloaded from SRTM (Shuttle Radar Topography Mis-
sion) website on 20 September 2007 [30]. The DEM was 
used to delineate the watershed and to analyze the drainage 
patterns of the land surface terrain. Subbasin parameters such 
as slope gradient, slope length of the terrain, and the stream 
network characteristics such as channel slope, length, and 
width were derived from the DEM. 

Soil Data 

SWAT model requires different soil textural and physico-
chemical properties such as soil texture, available water con-
tent, hydraulic conductivity, bulk density and organic carbon 
content for different layers of each soil type. These data were 
obtained mainly from the following sources: Soil and Terrain 
Database for northeastern Africa CD-ROM (Food and Agri-
culture Organization of the United Nations [31], Major Soils 
of the world CD-ROM [32], Digital Soil Map of the World 
and Derived Soil Properties CD-ROM [33], Properties and 
Management of Soils of the Tropics CD-ROM [34], Abbay 
River basin Integrated Development Master Plan Project - 

Semi detailed Soil Survey and the Soils of Anjeni Area, 
Ethiopia (SCRP report). Major soil types in the basin are 
Chromic Luvisols, Eutric Cambisols,Eutric Fluvisols, Eutric 
Leptosols, Eutric Regosols, Eutric Vertisols, Haplic Alisols, 
Haplic Luvisols, Haplic Nitisols and Lithic Leptosols (Fig. 
3a). 

Land Use 

Land use is one of the most important factors that affects 
surface erosion, runoff, and evapotranspiration in a water-
shed. The land use map of the study area was obtained from 
ministry of water resources Ethiopia. We have reclassified 
the land use map of the area based on the available topog-
raphic map (1:50,000), aerial photographs and satellite im-
ages. The reclassification of the land use map was done to 
represent the landuse according to the specific land cover 
types such as type of crop, pasture and forest. Fig. (3b) 
shows that more than 50% of the Lake Tana watershed is 
used for agriculture. 

Weather Data 

SWAT requires daily meteorological data that can either 
be read from a measured data set or be generated by a 
weather generator model. The weather variables used in this 
study for driving the hydrological balance are daily precipi-
tation, minimum and maximum air temperature for the pe-
riod 1978 – 2004. These data were obtained from Ethiopian 
National Meteorological Agency (NMA) for stations located 
within and around the watershed (Fig. 4). We have used a 
weather generator developed by [35] to fill the gaps due to 
missing data. 

River Discharge 

Daily river discharge values for Ribb, Gumera, GilgelA-

bay, Megech rivers and the outflow river Blue Nile (Abbay) 

were obtained from the Hydrology Department of the Minis-

try of Water Resources of Ethiopia. These daily river dis-

charges at four tributaries of Lake Tana; Gumera, GilgelA-

bay, Megech and Ribb rivers gauging stations (Fig. 4) were 

used for model calibration and validation. Fig. (5) indicated 

that the peak flows for all inflow rivers occur in August. But 

the outflow river gets its peak flow at the month of Septem-

ber. There is a one month delay of peak flow for outflow 

river. This is due to the influence of the lake which retards 

the flow before it reach the outlet. The record of the outflow 

river (Abbay) at BahirDar gauge station was not used for 

model calibration and validation. This is because we have 

seen a significant difference between the default simulated 

and measured stream flow data at this gauge station. There is 

abstraction of water from the lake for irrigation and other 

purposes. But there is no available information on the 

amount of water losses from the lake. The outflow river 

measured data was used to study the water balance of the 

lake and understand the amount of unknown losses of water 
from the lake. 

3.3. Model Setup 

The model setup involved five steps: (1) data prepara-
tion; (2) subbasin discretization: (3) HRU definition; (4) pa-
rameter sensitivity analysis; (5) calibration and uncertainty 
analysis. 
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The required spatial datasets were projected to the same 
projection called Adindan UTM Zone 37N, which is the 
transverse mercator projection parameters for Ethiopia, using 
ArcGIS 9.1. The DEM was used to delineate the watershed 
and to analyze the drainage patterns of the land surface ter-
rain. DEM mask was used that was superimposed on the 
DEM. The ArcSWAT interface uses only the masked area 
for stream delineation. A predefined digital stream network 
layer was imported and superimposed onto the DEM to accu-
rately delineate the location of the streams. The Land 
use/Land cover spatial data were reclassified into SWAT 
land cover/plant types. A user look up table was created to 
identify the SWAT code for the different categories of land 
cover/land use on the map as per the required format. The 
soil map was linked with the soil database which is a soil 
database designed to hold data for soils not included in the 
U.S. The watershed and subwatershed delineation was done 
using DEM data. The watershed delineation process include 
five major steps, DEM setup, stream definition, outlet and 
inlet definition, watershed outlets selection and definition 
and calculation of subbasin parameters. For the stream defi-
nition the threshold based stream definition option was used 
to define the minimum size of the subbasin. The ArcSWAT 
interface allows the user to fix the number of subbasins by 
deciding the initial threshold area (TA). The threshold area 
defines the minimum drainage area required to form the ori-
gin of a stream. To explore the sensitivity of SWAT2005 
model flow predictions to threshold area values for subbasin 
delineation eight different scenarios were tested in the Lake 
Tana Basin using the same DEM. The first scenario was the 
threshold area suggested by the interface (49954 hectares). 
Other seven scenarios were cases below (1/4, 1/3, 1/2 and 
3/4) and above (5/4, 3/2, and 7/4) the suggested threshold 
area (12488, 15000, 24977, 37465, 62442, 74931 and 87419 
hectares). 

Subdividing the sub watershed into areas having unique 
land use, soil and slope combinations makes it possible to 
study the differences in evapotranspiration and other hydro-
logic conditions for different land covers, soils and slopes. 
The landuse, soil and slope datasets were imported overlaid 
and linked with the SWAT2005 databases. To define the 

distributions of HRUs both single and multiple HRU defini-
tion options were tested. For multiple HRU definition the 
ArcSWAT user's manual suggests that a 20 percent land use, 
a 10 percent soil and 20% slope threshold are adequate for 
most applications. To identify the most reasonable threshold 
level in the area the suggested threshold and other landuse, 
soil and slope combinations scenarios were tested in Lake 
Tana Basin. These were 20% - 10% - 20%, 10% - 20% - 
10%, 10% - 10% - 20%, 20% - 20% - 10%, and 25% - 30% - 
20%.  Each scenario was arranged in order of land use per-
centage over subbasin area, soil class percentage over land 
use area and slope class percentage over soil area. For exam-
ple, if a 20% soil area is defined in HRU distribution, only 
soils that occupy more than 20% of a subwatershed area are 
considered in HRU distributions. Land uses, soils or slope 
that cover a percentage of the subbasin area less than the 
threshold level were eliminated. After the elimination proc-
esses the area of the land use, soil or slope is reallocated so 
that 100 percent of the land area, soil or slope in the subbasin 
is included in the simulation.  

The parameter sensitivity analysis was done using the 
ArcSWAT interface [36] for the whole catchment area. 
Twenty six hydrological parameters were tested for sensitiv-
ity analysis for the simulation of the stream flow in the study 
area. Here, we used the default lower and upper bound pa-
rameter values. The details of all hydrological parameters are 
found in the ArcSWAT interface for SWAT user’s manual 
[37]. 

The calibration and uncertainty analysis were done using 
three different algorithms, i.e., Sequential Uncertainty Fitting 
(SUFI-2) [22, 11], Parameter Solution (ParaSol) [38] and 
Generalized Likelihood Uncertainty Estimation (GLUE) 
[39]. These methods are chosen for their applicability from 
simple to complex hydrological models. SUFI-2 and GLUE 
algorithms account for several sources of uncertainties such 
as uncertainty in driving variables (e.g., rainfall), conceptual 
model, parameters, and measured data. But ParaSol assesses 
only model parameter uncertainty. The degree to which un-
certainties are accounted for is quantified by a P-factor 
which is the percentage of measured data bracketed by the 
95% prediction uncertainty (95PPU). The 95PPU is calcu-

 

 

 

 

 

 

 

 

 

Fig. (5). Average monthly flows for the major tributary rivers of Lake Tana and Outflow river. 
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lated at the 2.5% and 97.5% levels of the cumulative distri-
bution of an output variable obtained through Latin hyper-
cube sampling [11]. Another measure quantifying the 
strength of a calibration or uncertainty analysis is the r-factor 
which is the average thickness of the 95PPU band divided by 
the standard deviation of the measured data. The goodness of 
calibration and prediction uncertainty is judged on the basis 
of the closeness of the p-factor to 100% (i.e., all observations 
bracketed by the prediction uncertainty) and the r-factor to 1. 
The average thickness of the 95PPU band (  ) and the r-factor 
are calculated by Equation 7 and 8. 
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lower boundaries of the 95PPU, and obs� is the standard 

deviation of the measured data.  

The other factor is the goodness of fit that can be quanti-
fied by the coefficient of determination (R

2
) and Nash-

Sutcliff efficiency (NSE) [40] between the observations and 
the final best simulations. Coefficient of determination (R

2
) 

and Nash-Sutcliffe coefficient (NSE) are calculated by equa-
tion 9 and 10. 
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In which mQ is the measured discharge, sQ  is the simu-

lated discharge, 
m

Q  is the average measured discharge and 

s
Q is the average simulated discharge 

After setting up of the model, the default simulations of 
stream flow, using the default parameter values, were done 
in the Lake Tana Basin for the calibration period (1978-
1992). The default simulation outputs were compared with 
the observed streamflow data on four tributaries of Lake 
Tana. In this study the automatic calibration was done after 
the model was manually calibrated and reached to stage that 
the differences between observed and simulated flows were 
minimized and shown improved objective function values. 
The data for period 1981 to 1992 were used for calibration. 
An independent precipitation, temperature and streamflow 
dataset (1993 to 2004) was used for validation of the model 

in the four river basins. Periods 1978 to 1980 and 1990 to 
1992 were used as “warm-up” periods for calibration and 
validation purposes, respectively. The warm-up period al-
lows the model to get the hydrologic cycle fully operational. 

4. RESULT AND DISCUSSION 

The results and discussion include five components: (i) 
the analysis of SWAT2005 model sensitivity to the level of 
subbasin discretization, (ii) effect of land use, soil and slope 
threshold in defining HRU on SWAT2005 model perform-
ance, (iii) flow parameter sensitivity analysis (iv) 
SWAT2005 model calibration and validation for flow at Gil-
gelAbay, Gumera, Ribb and Megech rivers of Lake Tana 
Basin using manual and automatic calibration methods and 
(v) analysis of base flow and other hydrological components. 

4.1. Impact of Subbasin Discretization  

The model efficiency was computed using the default 
simulation result and the measured flow data. It was ob-
served that the threshold area of 15000 hectares resulted in 
34 subbasins that accounts for the main drainage lines within 
the watershed. This resulted in a better representation of the 
hydrological processes and produced streamflow yield which 
had a better model efficiency in comparison to the measured 
streamflow. Number of subbasins above this threshold has 
brought no significant changes in the simulation of stream-
flow. The overall results indicated that the simulation of 
streamflow is not significantly affected by increasing the size 
of threshold area from 1/3 to 7/3 of suggested threshold area. 
The streamflow increased by less than 10 percent as the 
number of subwatershed increased by 26 percent. This is due 
to an increase in transmission gains (subsurface flow). The 
results have shown that subbasin discretization on 
SWAT2005 model has limited impact on streamflow predic-
tion in the study area. This is mainly due to the fact that pre-
diction of surface runoff is highly related to curve number 
which is not affected significantly by the size of the sub-
basin. Generally, there are many factors that affect runoff 
such as climatic and watershed or physiographic factors. 
SWAT model uses SCS curve number method (i.e., equation 
2) to calculate the surface runoff that accounts for the pre-
cipitation and the retention parameter. The latter parameter is 
calculated with the value of curve number (i.e., equation 3). 
Curve number depends primarily on the soil type, landuse 
and to the lesser extent on slope. The calculation of CN in 
the Lake Tana basin was adjusted for slope greater than 5%. 
Thus making runoff to be less dependent on subbasin discre-
tization.  

4.2. Effect of Landuse, Soil and Slope Thresholds  

The analysis of HRU definition indicated that dominant 
type of HRU definition resulted in a single HRU for each 
subbasin where the dominant land use, soil and slope within 
the basin was considered to be the land use, soil and slope of 
each subbasin. This single HRU with in each subbasin was 
not able to properly represent the characteristics of the sub-
basins. Accordingly the simulated streamflow shows unsatis-
factory result as compared to the measured stream flows in 
the four river basins of the study area. The multiple scenarios 
that accounts for 10% landuse, 20% soil and 10% slope 
threshold combination gives a better estimation of stream-
flow in the Lake Tana Basin. It resulted in 214 HRUs in the 

r
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whole basin. This scenario resulted in detailed land use, 
slope and soil database, containing many HRUS, which in 
turn represent the heterogeneity of the study area. The com-
parison between the default model predictions and measured 
discharge produced the highest Nash-Suttcliffe efficiency 
(NSE). The distribution of landuse, soil and slope character-
istics with in each HRU have the greatest impact on the pre-
dicted streamflow. As the percentage of land use, slope and 
soil threshold increases the actual evapotranspiration de-
creases due to eliminated land use classes. Hence, the char-
acteristics of HRUs are the key factor affecting streamflow. 

4.3. Parameter Sensitivity Analysis 

In this study we have evaluated the relative sensitivity 
values found in the parameter estimation process. Nineteen 
parameters were found to be sensitive with the relative sensi-
tivity values ranges from 0.001 to 0.45. Among which the 
most sensitive parameters were: soil evaporation compensa-
tion factor (ESCO), initial SCS Curve Number II value 
(CN2), base flow alpha factor (Alpha_Bf) [days], threshold 
depth of water in the shallow aquifer for “revap” to occur 
(REVAPMN.gw) [mm H2O], [days], available water capac-
ity (Sol_Awc) [mm WATER/mm soil], groundwater "revap" 
coefficient (Gw_Revap), channel effective hydraulic conduc-
tivity (Ch_K2) [mm/hr] and threshold depth of water in the 
shallow aquifer for return flow to occur (GWQMN.gw) [mm 
H2O]. These sensitive parameters were considered for model 
calibration. The remaining parameters had no significant 
effect on streamflow simulations. Changes in their values do 
not cause significant changes in the model output. 

4.4. Default Simulation and Manual Calibration 

The comparison of default simulation output with the ob-
served streamflow data on four tributaries of Lake Tana 

showed a clear difference between the observed and simu-
lated flow results. For manual calibration the model was run 
in order of yearly, monthly and daily bases. Parameters 
manually adjusted were evaporation compensation factor 
(ESCO), curve number (CN), available water holding capac-
ity of the soil layer (Sol_AWC, mm/mm), saturated hydrau-
lic conductivity (Sol_K, mm/hr), and surface runoff lag time. 
The manual calibration was time intensive but it helped to 
get better automatic calibration results.  

4.5. Flow Calibration Using SUFI-2 Algorithm 

The comparison between the observed and calibrated 
flow discharge values for twelve years of simulations indi-
cated that there is a good agreement between the observed 
and simulated flows using SUFI-2 algorithms with higher 
values of coefficient of determination and Nash Sutcliffe 
efficiency (NSE) for Gilgel Abay, Gumera and Ribb rivers. 
[41-43] suggested that model simulation can be judged as 
satisfactory if R� is greater than 0.6 and NSE is greater than 
0.5. Hence our results agree reasonably well with these val-
ues. Calibrated model predictive performance for all rivers 
on daily flows is summarized in Table 1. Fig. (6) shows the 
time series of measured and simulated daily flow at GilgelA-
bay river gauge station during calibration period. 

The p-factor, which is the percentage of observations 
bracketed by the 95% prediction uncertainty (95PPU), 
brackets 83% of the observation and r-factor equals 0.81 for 
GilgelAbay river. The 95PPU brackets only 53% of the ob-
servations and r-factor equals 0.39 for Megech river. This 
shows that the SUFI-2 did not capture the observations well 
during calibration period for Megech river. This problem 
coupled with the lower values of NSE and R

2
 for Megech 

river indicate that there is high uncertainty of simulated flow 
due to errors in inputs data such as rainfall and temperature 

Table 1. Stream Flow Calibration and Validation Result for GilgelAbay, Gumera, Megech and Ribb Rivers Using SUFI-2, GLUE 

and ParaSol Methods 

Rivers 

GilgelAbay Gumera Megech Ribb Objective Function 

Cal Val Cal Val Cal Val Cal Val 

SUFI-2 0.71 0.69 0.62 0.60 0.18 0.04 0.51 0.48 

GLUE 0.58 0.69 0.60 0.60 0.20 0.04 0.50 0.48 NSE 

PARASOL 0.73 0.71 0.61 0.61 0.22 0.20 0.55 0.45 

SUFI-2 0.80 0.80 0.69 0.70 0.19 0.32 0.59 0.55 

GLUE 0.79 0.80 0.71 0.70 0.25 0.32 0.58 0.55 R2 

PARASOL 0.80 0.78 0.71 0.70 0.20 0.31 0.59 0.57 

SUFI-2 83% 79% 79% 73% 53% 57% 73% 65% 

GLUE 76% 75% 73% 64% 55% 46% 66% 61% p-factor 

PARASOL 21% 19% 19% 17% 15% 15% 17% 16% 

SUFI-2 0.81 0.77 0.75 0.72 0.39 0.33 0.58 0.54 

GLUE 0.65 0.69 0.62 0.65 0.11 0.13 0.45 0.49 r-factor 

PARASOL 0.10 0.08 0.08 0.05 0.02 0.02 0.06 0.05 

Cal= Calibration, Val=Validation 
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and/or other sources of uncertainties such as upstream dam 
construction for town water supply, diversion of streams for 
irrigation, and other unknown activities in the subbasins. 
However, the uncertainties may not only depend on rainfall 
and temperature. We have used the Hargreaves method to 
calculate evapotranspiration that depends on minimum and 
maximum temperatures. Thus, the main inputs used in the 
model are rainfall and temperature. The lack of meteorologi-
cal data did not allow to consider additional factors. We have 
assumed that the model deficiency in Megech watershed 
could be due to the input uncertainty as well as construction 
of infrastructures in the upstream of the watershed. However, 
we cannot rule out the possibility of an error in the type of 
soil and the corresponding soil properties in the area. This 
can create some uncertainty on the simulated result. Another 

issue is the soil erosion that affects the structure, infililtration 
capacity and other properties of the soil. Since the model 
does not consider the effect of soil erosion on runoff, the 
predictions can be uncertain. Hargreaves method does not 
include the effect of wind on evapotranspiration. In cases 
where the wind is a predominating factor the method can 
introduce some errors.  

Table 2 lists various performance statistics for each cali-

bration year. For GilgelAbay, Gumera and Ribb river basins, 

the NSE and R
2
 values are good for all calibration years 

whereas the evaluation statistics for Megech river shows 

lower values for the years 1981, 1983, 1984, 1987, 1989 and 

1991. This might show that there might be input (precipita-

tion and temperature) or measured streamflow data uncer-

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Observed and simulated discharge in GilgelAbay and Gumera rivers for the calibration period. 

Table 2. Daily Flow Calibration Result for all Rivers for Each Year of Calibration Period (1981 – 1992)  

GilgelAbay River Gumera River Ribb River Megech River 
Year 

NS R2 NS R2 NS R2 NS R2 

1981 0.82 0.89 0.35 0.44 0.68 0.72 0.28 0.36 

1982 0.62 0.67 0.44 0.61 0.72 0.76 0.64 0.66 

1983 0.70 0.79 0.61 0.66 0.76 0.61 0.31 0.31 

1984 0.67 0.78 0.66 0.56 0.61 0.51 0.24 0.32 

1985 0.78 0.82 0.56 0.48 0.51 0.50 0.48 0.52 

1986 0.79 0.85 0.48 0.69 0.50 0.57 0.58 0.67 

1987 0.50 0.67 0.69 0.55 0.57 0.55 0.36 0.47 

1988 0.64 0.81 0.55 0.57 0.55 0.78 0.79 0.89 

1989 0.54 0.77 0.57 0.71 0.78 0.78 0.10 0.54 

1990 0.58 0.78 0.71 0.53 0.78 0.72 1.00 0.66 

1991 0.83 0.89 0.53 0.41 0.72 0.64 -0.63 0.21 

1992 0.54 0.63 0.41 0.58 0.64 0.58 0.59 0.64 

GilgelAbay River

0

175

350

525

700

875

1/1/81 5/1/82 9/1/83 1/1/85 5/1/86 9/1/87 1/1/89 5/1/90 9/1/91
Date

Da
ily

 S
tre

am
flo

w 
(m

3/s
)

Observed Simulated

Gumera River

0

175

350

525

700

875

1/1/81 5/1/82 9/1/83 1/1/85 5/1/86 9/1/87 1/1/89 5/1/90 9/1/91
Date

Da
ily

 S
tre

am
 flo

w 
(m

3/s
) Observed Simulated



Hydrological Modelling in the Lake Tana Basin The Open Hydrology Journal, 2008, Volume 2    57 

tainty during the mentioned years. Moreover, NSE is more 

sensitive to extreme values hence in such years there is a 

high variability between the whole observed flow data and 

their average. In year 1990 the NSE value for Megech river 

is one. This shows that the ratio between the mean square 

error to the variance in the observed data is zero. It shows 

that the peak flows of the measured and observed flows 

matches very well. But for the year 1991 the negative NSE 

value indicate that observed mean is a better predictor than 

the model. There is a higher variability between the observed 
and measured peak flows. 

To understand the prediction performance of SWAT2005 

model for different rainfall conditions we have compared the 
annual average rainfall and other hydrological components 

for each year of the calibration and validation periods for 

GilgelAbay river. Table 3 shows that year 1982 was a dry 
year and 1991 was a wet year for calibration period and 1994 

and 2003 were driest and wettest years, respectively during 

the validation period for GilgelAbay river. The use of the 
term ‘dry’ is relative as the rainfall is greater than 900mm. 

The wet years produce a larger water yield than the dry 

years. The water fluxes in Table 3 indicate that in a wet year 
surface runoff dominates water yield which is the total 

amount of water leaving the HRU and entering main channel 

during the time step. However, in dry year, lateral flow con-

tribution makes up a larger part of the water yield. As indi-

cated in Fig. (7) in a dry year the simulated streamflow is 
lower than the observed flow. It resulted is some degree of 

prediction uncertainties. However, in wet year condition the 

simulated flow fits the observed stream flow. This indicates 
that the model efficiency differs between wet and dry years 

conditions in the study area.  

Based on the above result we can assume that the model 

can better predict the surface runoff than the groundwater 

contribution to stream flow during wet season. One reason 

could be due to the soil data quality and estimation of the 

curve number at dry moisture condition. Since the SCS curve 

number is a function of the soil’s permeability, landuse and 

antecedent soil water conditions the estimation of curve 

number at dry moisture condition (wilting point) might not 

be efficient in that watershed.  

The calibration process using SUFI-2 algorithm gave the 

final fitted parameters for each river basin (Table 4). The 

final values for CN2, Soil_AWC includes the amount ad-

justed during the manual calibration. These final fitted pa-

rameter values were incorporated into the SWAT2005 model 

for validation and further applications. 

Table 3. Breakdown of Different Hydrological Components for GilgelAbay River at Wet and Dry Years 

Year Rainfall (mm) ET (mm) SW (mm) PERC (mm) SURQ (mm) GW_Q (mm)  LAT_Q (mm) WYLD (mm) 

Calibration period 

1982 Dry  902 699 142 120 25 17 54 96 

1991 Wet 1799 813 138 580 280 421 118 819 

Validation period 

1994 Dry  1085 741 132 235 55 100 69 224 

2003 Wet 1658 700 137 562 278 390 110 778 

ET=Actual Evapotranspiration from HRU, SW=Soil water content, PERC=water that percolates past the root zone during the time step 

SURQ=Surface runoff contribution to streamflow during time step, TLOSS= Transmisson losses, water lost from tributary channels in the HRU via , transmis-

sion through the bed, GW_Q= Ground water contribution to streamflow, LAT_Q= Lateral floe contribution to streamflow 

WYLD=water yield (water yield=SURQ+LATQ+GWQ-TLOSS-pond abstractions) 

Table 4. SWAT Flow Sensitive Parameters and Fitted Values After Calibration Using SUFI-2 

Final Fitted Value 
No. 

Sensitive Parame-

ters 

Lower and Upper 

Bound 
GilgelAbay River Megech River Ribb River Gumera River 

1 ESCO 0 - 1 0.8 0.8 0.8 0.8 

2 CN2 ±25% -10 -9 -10 -8 

3 ALPHA_BF 0 - 1 0.1 0.1 0.1 0 

4 REVAPMN 0 - 500 300 289 372 446 

5 SOL_AWC ±25% 0.2 -0.2 -0.1 0.2 

6 GW_REVAP ±0.036 0 0.1 0 0.1 

7 CH_K2 0 - 5 4.6 3.2 1.9 0.7 

8 GWQMN 0 - 5000 108 17 333 98 
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Fig. (7). Low flow (top) and high flow (middle) condition in GilgelAbay river for Validation period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (8). Time series of measured and simulated daily flow validation results at GilgelAbay river gauge station. 
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4.6. Flow Validation Using SUFI-2 Algorithm 

The validation result was good for GilgelAbay, Gumera 
and Ribb rivers with high values of R

2
 and NSE (Table 1). 

Further more 79% of the observed data bracketed by 95PPU 
for GilgelAbay river, 73% for Gumera and 65 for Ribb riv-
ers. Time series of measured and simulated daily flows with 
respect to the depth of rainfall in Gilgel Abay river basin 
indicated that both the observed and simulated flow dis-
charge follows the rainfall pattern of the area. The higher 
discharge occurs during the months of June to September. 
This high flow corresponds to the longer rainy season. 
Above 75% percent of annual flow occurs in this period. Fig. 
(8) shows the time series of measured and simulated daily 
flow at GilgelAbay river gauge station during validation pe-
riod. 

The monthly calibration results of SUFI-2 algorithm has 
also shown a good agreement between monthly observed and 
simulated flows in all river basins both during calibration 
and validation processes which is shown by the coefficient of 
determinations (R

2
) and the Nash-Sutcliffe simulation effi-

ciency (NSE) greater than 0.8. Fig. (9) shows the monthly 
calibration result for GilgelAbay River Basin. 

4.7. Calibration and Validation Using GLUE and Para-
Sol Algorithms 

In GLUE method four iteration levels were tested with 
simulations sample sizes of 1000, 2000, 5000 and 10000 for 
four river basins. The comparison showed that there are dif-
ferences in the simulation results for different levels of itera-
tions. Good results were found at 10000 iteration level for 

each river basin. The NSE and R
2
 values showed that there is 

a good agreement between the measured and simulated flows 
both for calibration and validation periods. Moreover most of 
the observations are bracketed by the 95PPUs for GilgelA-
bay and Gumera rivers. Table 1 lists NSE, R

2
, p-factor and r-

factor for all rivers computed by comparing the measured 
flow with the best simulation streamflow. According to [44] 
the disadvantage of GLUE method is its excessive computa-
tional burden due to its random sampling strategy. ParaSol 
calibration process converges within 2000 to 3000 iterations. 
This is because the model was already calibrated manually 
and the minimum and maximum parameters boundary ranges 
were narrowed for automatic calibration. In ParaSol method 
the best simulation result matches the observation quite well 
during both calibration and validation periods for all the riv-
ers (Table 1). But the method was not able to bracket the 
observed flow. For instance only 21%, 19%, 15% and 17% 
of measurements were bracketed by 95PPU during the cali-
bration period for GilgelAbay, Gumera, Megech and Ribb 
rivers, respectively. This is because ParaSol doesn’t consider 
the error in the model structure, measured input and meas-
ured response. 

4.8. Hydrological Water Balance 

The baseflows were evaluated on an annual basis for Gil-
gelabay, Gumera, Megech, and Ribb river basins (Table 5). 
The baseflow filter program by [45] generates a range of 
predicted baseflow volumes. On an annual basis, the meas-
ured flow at GilgelAbay river gauge station is estimated as 
59% baseflow over the calibration period. In comparison, the 
simulated flow at GilgelAbay is estimated as 54% baseflow 

 

 

 

 

 

 

 

Fig. (9). Time series of monthly calibration result for GilgelAbay river. 

Table 5. Baseflow Contribution at four River Gauge Stations for the Calibration Period 

Station Mean Measured Flow (m3/s) 
Mean Simulated Flow 

(m3/s) 

Observed Mean Baseflow Contri-

bution (%) 

Simulated Mean Baseflow 

Contribution (%) 

GilgelAbay 53 47 59 54 

Megech 3.9 3.6 49 60 

Gumera 29 22 58 64 

Ribb 13 12 60 65 
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over the calibration period. Therefore the calibrated model 
was considered to generate acceptable predictions of base-
flow on an annual basis. 

The main water balance components of the four river ba-
sins includes: the total amount of precipitation falling on the 

subbasin during the time step, actual evapotranspiration from 
the basin and the net amount of water that leaves the basin 
and contributes to streamflow in the reach (water yield). The 
water yield includes surface runoff contribution to stream-
flow, lateral flow contribution to streamflow (water flowing 
laterally within the soil profile that enters the main channel), 

 

 

 

 

 

 

 

 

Fig. (10). Time series graph showing Baseflow separated from Observed and simulated flow for Gilgelabay River. 

Table 6. Water Balance Components on an Annual Average Basis Over the Calibration and Validation Periods for the Lake Tana 

Basin 

Period   Rainfall ET SurQ LatQ GW_Q WYLD SW PERC TLOSS 

Calibration (mm) 1168 758 95 73 137 305 217 251 12 

  (%) 100.0 64.9 8.1 6.2 11.7 26.1 18.6 21.5 1.0 

Validation (mm) 1394 782 120 101 254 474 227 400 13 

  (%) 100.0 56.1 8.6 7.2 18.2 34.0 16.3 28.7 1.0 

ET = evapotranspiration, SURQ = surface runoff, LATQ = lateral flow into stream, GW_Q = groundwater contribution to stream flow, WYLD = SURQ + 

LATQ + GW_Q - LOSSES, SW = soil water, PERC = percolation below root zone (groundwater recharge). 

Table 7. Inflow and Outflow Components of Lake Tana Water Balance 

Annual Budget 
Water Balance Components 

(BM3) (%) Over Total Input 

Direct rainfall over the Lake 4.3 51 

Inflow from main rivers and small streams 3.7 44 

Surface runoff from unmonitored sub-watershed (runoff coefficient of 0.22 (Shahin, 1988).) 0.4 5 

Total Input to the Lake 8.4  

Lake evaporation 3.9 46 

Out flow from the Lake 4.0 48 

Total losses from the Lake 7.9  

Change in water balance (unknown losses) 0.5 6 
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groundwater contribution to streamflow (water from the 
shallow aquifer that returns to the reach) minus the transmis-
sion losses (water lost from tributary channels in the HRU 
via transmission through the bed and becomes recharge for 
the shallow aquifer during the time step). Table 6 lists the 
simulated water balance components on an annual average 
basis for the Lake Tana Basin over the calibration and vali-
dation period. The results indicated that 65% of the annual 
precipitation is lost by evapotranspiration in the basin during 
calibration as compared to 56% during validation period. 
Surface runoff contributes 31% and 25% of the water yield 
during calibration and validation period respectively. Where 
as the ground water contribute 45% and 54% of the water 
yield during calibration and validation period respectively. 
Fig. (10) shows time series graph showing Baseflow sepa-
rated from Observed and simulated flow for Gilgelabay 
River. 

Water Balance of Lake Tana 

The water balance components of the Lake Tana includes 
the direct rainfall over the lake surface (P), inflow from main 
rivers and small streams (Qinflow), surface runoff inflow from 
unmonitored sub-watershed (Qsurq,), Out flow from the Lake 
((Qoutflow), Lake evaporation (EL), change in water balance 
(unidentified losses) (�S). We can assume the following 
water balance equation to the Lake (equation 11). 

� � �++=++ SEQQQP Loutflowsurqlowinf
     (11) 

The prediction of Lake Tana water balance is based on 
the simulation result from 1978 to 2004. The estimated an-
nual precipitation falling on the lake is 1375 mm and the 
evaporation loss from the Lake is about 1248 mm. The Esti-
mation of the input and output water fluxes, in billion cubic 
meter and percentage with respect to the total water inputs to 
the lake, are indicated in Table 7. Components such as 
groundwater loss or recharge are difficult to estimate. The 
analysis of the Lake Tana water balance has shown that there 
is an annual surplus of 0.5 BM3 of water. Part of this excess 
water can be used for irrigation practices by the surrounding 
local farmers, groundwater and other unidentified abstrac-
tions. 

5. CONCLUSION 

The SWAT2005 model was successfully calibrated and 
validated in the Lake Tana Basin using different algorithm. It 
was applied to the Lake Tana Basin for the modeling of the 
hydrological water balance. The sensitivity analysis of the 
model to subbasin delineation and HRU definition thresholds 
showed that the flow is more sensitive to the HRU definition 
thresholds than subbasin discretization effect. SUFI-2, 
GLUE and ParaSol algorithms gave good results in minimiz-
ing the differences between observed and simulated flow in 
the Lake Tana Basin. The p-factor and r-factor computed 
using SUFI-2 and GLUE gave good result by bracketing 
more than 60% of the observed data. A SUFI-2 algorithm is 
an effective method but it requires additional iterations as 
well as the need for the adjustment of the parameter ranges. 
ParaSol method doesn’t consider all sources of uncertainty 
thus it gave lower p-factor and r-factor. The hydrological 
water balance analysis showed that baseflow (40% - 60%) is 
an important component of the total discharge within the 

study area that contributes more than the surface runoff. 
More than 60% of losses in the watershed are through 
evapotranspiration. Despite data uncertainity, the SWAT 
model produced good simulation results for daily and 
monthly time steps. The calibrated model can be used for 
further analysis of the effect of climate and land use change 
as well as other different management scenarios on stream 
flow and of soil erosion. 
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