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Abstract: Recent studies have shown that Bayesian Neural Networks (BNNs) are 

powerful tools for providing reliable hydrologic prediction and quantifying the prediction 

uncertainty. The reasonable estimation of the prediction uncertainty, a valuable for 

decision making to address water resources management and design problems, is 

influenced by the techniques used to deal with different uncertainty sources. In this study, 

four types of BNNs with different treatments of the uncertainties related to parameters 

(neural network’s weights) and model structures were applied for uncertainty estimation 

of streamflow simulation in two USDA ARS watersheds (Little River Experimental 

Watershed in GA and Reynolds Creek Experimental Watershed in ID). An advanced 

Markov Chain Monte Carlo (MCMC) algorithm - Evolutionary Monte Carlo (EMC) was 

used to train the BNNs and estimate uncertainty limits of streamflow simulation. The 

results obtained in these two case study watersheds show that the 95% uncertainty limits 

estimated by different types of BNNs are different from each other. The BNNs that only 

consider the parameter uncertainty with non-informative prior knowledge contain the 

least number of observed streamflow data in their 95% uncertainty bound. By 

considering variable model structure and informative prior knowledge, the BNNs can 

provide more reasonable quantification of the uncertainty of streamflow simulation. This 

study stresses the need for improving understanding and quantifying methods of different 

uncertainty sources for effective estimation of uncertainty of hydrologic simulation using 

BNNs. 

Keywords: Artificial Neural Networks, Bayesian Model Averaging, Bayesian Neural 

Networks, Evolutionary Monte Carlo, Hydrologic Simulation, Streamflow, Uncertainty  
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1 Introduction 

With the powerful capacity of capturing non-linear relationships between inputs and 

outputs data without requiring an in-depth understanding of the underlying physical 

processes [Kingston et al., 2005], artificial neural networks (ANNs) have been 

successfully applied in a wide range of hydrologic problems [ASCE task Committee on 

Application of artificial Neural Networks in Hydrology, 2000a, 2000b]. For example, 

ANNs have been used for predicting flash flood and attendant water qualities [Sahoo et 

al., 2006], runoff and sediment-yield modeling [Raghuwanshi et al., 2006], evaporation 

estimation [Keskin and Terzi, 2006], and ice growth [Seidou et al., 2006]. Many 

researchers have also modified ANNs to improve their ability to more accurately model 

hydrologic variables of interest [e.g. Jain and Srinivasulu, 2004; Chetan and Sudheer, 

2006; Parasuraman et al., 2006; Nayak et al., 2007]. Although ANNs have been widely 

used in hydrologic modeling, one major limitation of ANNs is that the neural networks 

are trained by maximizing a likelihood function of the parameters and hence the 

uncertainty of the predicted variables are seldom quantified [Maier and Dandy, 2000; 

Dawson and Wilby, 2001; Coulibaly et al., 2001; Kingston et al., 2005; and Khan and 

Coulibaly, 2006]. Not considering uncertainty of model parameters or the uncertainty 

about the relationship between input and output simulated by the networks leads to the 

failure to evaluate the predictive uncertainty and limits the usability of ANNs in real-

world hydrologic problem [Kingston et al., 2005; Khan and Coulibaly, 2006]. 

Bayesian analysis of the neural networks can yield predictive distribution of the 

variables of interest and make the computation of confident intervals possible [Lampinen 

and Vehtari, 2001]. Since the Bayesian evidence framework proposed by MackKay 
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[1992], Bayesian Neural Networks (BNNs) have been widely applied in training, model 

selection, and prediction [e.g., Neal, 1996; Bishop, 1995; Müller and Rios Insua, 1998; 

Holmes and Mallick, 1998; de Freitas et al., 2000; Liang, 2003; Liang and Kuk, 2004; 

Liang, 2005a]. Recently, the Bayesian methodology for quantifying predictive 

uncertainty of ANNs has been extended and applied for hydrologic modeling. For 

example, Kingston et al. [2005] attributed the prediction uncertainty of ANNs to the 

uncertainty in the weights (the connections and biases) of the neural networks. They 

combined the traditional ANNs with the adaptive Metropolis algorithm [Haario et al., 

2001] to sample a large number of sets of neural network weights observing the posterior 

distributions, which were used to determine predictive limits and calculate mean 

prediction. Khan and Coulibaly [2006] defined the posterior distribution of network 

weights through a Gaussian prior distribution and a Gaussian noise model, and obtained 

the predictive distribution of the network outputs by integrating over the posterior 

distribution with the assumption that posterior of network weights is approximated to 

Gaussian during prediction. In the above two case studies by Kingston et al. (2005) and 

Khan and Coulibaly [2006], it was shown that the BNNs outperformed the traditional 

deterministic ANNs in terms of prediction accuracy and that the BNNs can also estimate 

the predictive confidence intervals that indicate the quality of the prediction.  

The reasonable estimates of predictive uncertainty of hydrologic prediction are 

valuable to water resources and other relevant decision making processes [Liu and Gupta, 

2007]. Usually, water management projects are planned and designed using scenarios that 

fall at the conservative end of the range of plausible outcomes. Over estimation of 

uncertainty can result in over design of mitigation measures, while under estimation of 
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uncertainty can lead to inadequate preparation for potential situations. There is a variety 

of uncertainty analysis methods differing in philosophy, assumptions, and sampling 

strategies, and the understanding and quantification of different uncertainty sources can 

influence the estimation of the predictive uncertainty of hydrologic modeling [e.g. Beven 

and Binley, 1992; Beven and Freer, 2001; Wagner and Gupta, 2005; Beven, 2006; Vrugt 

and Robinson, 2007; Kavetski et al., 2006; Ajami et al., 2007]. Knowledge of the effect 

of the differences between various methods is still inadequate [Wagner and Gupta, 2005]. 

As a relatively new technique in hydrologic modeling, BNNs have not been widely 

applied to uncertainty estimation of hydrologic simulations. In the previous applications 

of BNNs in hydrologic modeling, the neural networks’ weights were usually taken as the 

major source of uncertainty of neural networks prediction. But the structural error 

inherent in any model cannot be avoided in ensemble strategies using multi-parameter 

sets [Georgakakos et al., 2004; Ajami et al., 2007; Duan et al., 2007; Vrugt et al., 2007]. 

Many studies in hydrologic modeling have shown that model structural error can be one 

significant component of the overall predictive uncertainty [Wagner and Gupta 2005]. 

Understanding or the prior knowledge about the error characteristics that describe the 

probability distribution of the different uncertainty sources is important for effective 

quantification of the predictive uncertainty [Liu and Gupta, 2007]. In the framework 

outlined by several studies [e.g. Wagner and Gupta, 2005; Pappenberger and Beven, 2007; 

Liu and Gupta, 2007] for uncertainty quantification of hydrologic modeling, the 

understanding or prior knowledge of the uncertainty sources were emphasized.  

In this study, the major objective was to evaluate the effect of different treatments of 

uncertainties related to parameters (networks’ weights) and structures on the uncertainty 
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estimation of streamflow simulation using BNNs. To consider the uncertainties 

associated with neural networks’ structures, the neural networks’ connections were 

allowed to be variable. Non-informative and informative prior knowledge of neural 

networks’ weights and structures was also obtained based on previous studies and 

incorporated into the BNNs. The different BNNs (with variable or fixed model structure, 

informative or non-informative prior knowledge) were applied in two case study United 

States Department of Agriculture, Agricultural Research Service (USDA ARS) 

experimental watersheds (Little River, GA and Reynolds Creek, ID) for daily streamflow 

simulation to derive results for analysis and discussion. The remainder of this paper is 

organized as follows. Section two provides a brief description of the BNNs (including 

neural networks’ structure, the methods used to quantify the uncertainties associated with 

neural network weights and structures, an advanced Markov Chain Monte Carlo (MCMC) 

method - Evolutionary Monte Carlo (EMC)), and study area characteristics. Section three 

presents and discusses the application of BNNs with different considerations of 

uncertainties related to parameters and structures for streamflow simulation in the two 

case study watersheds. The generalization ability of BNNs is compared with 

deterministic ANNs, and the 95% uncertainty limits estimated by different BNNs are 

compared and discussed. Finally, a summary with conclusions is provided in section four.  
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2. Methods and Materials 

2.1 Bayesian Neural Networks (BNNs) 

2.1.1 Neural Networks Structure 

Neural networks are universal approximates that have been widely used to simulate 

complex and nonlinear relationships between input and output data. The input data vector 

 is mapped to the target variable  in the form of tx ty ε+= )( tt fy x , where  is 

neural network function, 

)( tf x

ε  is random noise term with zero mean and constant variance 

. Figure 1 shows a fully connected three layer feed-forward neural network with four 

inputs, four hidden units and one output. This network can be used to approximate the 

variable of interest using a function with the form 

2σ
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where  is the input data vector at time t,  is the dimension of ,  is the ith 

component of , 

tx p tx itx

tx M  is the number of hidden units, 0α  denotes the bias of the output 

unit, iα  denotes the weight that directly connects the ith input unit to the output unit, jβ  

is the weight that connects the jth hidden unit to the output unit, 0jγ  is the bias of the jth 

hidden unit, jiγ  denotes the weight on the connection from the ith input to the jth hidden 

unit, and )(⋅ψ  is the activation function of the hidden units. The biases and connections 

need to be optimized to infer an acceptable approximation of the relationship underlying 

a system that relates a set of input variables to the dependent variables of interest. Usually, 

the neural network structure is fixed, which means that the number of connections 
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between the neurons is fixed. A set of indication functions can be linked with each 

connection to represent the validity of a specific connection [Liang and Kuk, 2004]. Then, 

the above neural network model form can be transformed to: 
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where  is the indicator function associated with the connection ζI ζ . If =1, then the 

connection is in effect, otherwise, =0 and the connection is not effective. The 

activation function (

ζI

ζI

)(⋅ψ ) applied in this study is the hyperbolic tangent function. The 

 function ensures that the output of a hidden unit is 0 if all connections to the 

hidden unit from input units have been eliminated. Let Λ  be the vector consisting of all 

indicators in equation (2), which specifies the structure of the network. Let 

)tanh(⋅

),,,( 10 pαααα K= , ),,,,( 10 Mββββ K=  ),,,,( 10 jpjjj γ γγ K γ=  ),,,,( 21 Mγγγγ K=  and 

, where ),,,( 2σγβα ΛΛΛ=θ Λα , Λβ , and Λγ  denote the non-zero subsets of α , β , and 

γ , respectively. Thus the combination of (θ , ) completely defines equation (2). In the 

following, a neural network model is defined by (θ , ), and  is represented by 

. Equation (1) is a special case of equation (2) with all connection being 

effective. The major difference between equation (1) and equation (2) is that equation (2) 

is trained by sampling from the joint posterior of the neural network structures and 

weights while equation (1) is trained by sampling from the posterior of the weights.  

Λ

Λ )( tf x

), ,( Λθx tf

2.1.2 Bayesian training of neural networks 

In the traditional deterministic training of a neural network, a single set of optimal 

( , ) is identified that is most likely to reproduce the observed target data. From the θ Λ
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Bayesian viewpoint, the training of neural networks can be taken as a problem of 

inference. The key principle of Bayesian approach is to construct the posterior probability 

distribution of ( , ) given the observed input and target data sets. In the Bayesian 

training framework, the observed data and prior knowledge of parameters and model 

structure were applied to derive the posterior distribution of models (θ , ) for inference. 

Given the training data sets , the posterior distribution 

of the weights and model structure (θ , ) is defined as: 

θ Λ

Λ

)},(,),,(),,{( 2211 nnD yxyxyx K=

Λ

∫
=
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Where  is the posterior probability distribution of (θ ,Λ ) given observed data 

, 

)|,( Dp Λθ

D ),( Λθπ  is the prior probability distribution of (θ , ), Λ ∫ ),(),(|(Dp ), ΛθΛθΛθ dπ  is 

the normalizing constant, and  is the likelihood function of ( , ), which is 

denoted as  in the following. Through integrating the predictions of the model 

with respect to the posterior distribution of the model (θ , ), the posterior predictive 

distribution of output  for the new input , is [Lampinen and Vehtari, 2001], 

),|( ΛθDp θ Λ

),( ΛθL

Λ

newy newx

∫= ),()|,(),,|(),|( ΛθΛθΛθxyxy dDppDp newnewnewnew   (4) 

The expectation of the posterior prediction distribution in equation (4) is  

∫== ),()|,(),,(),|(ˆ ΛθΛθΛθxxyy dDpfDE newnewnewnew   (5) 

One major challenge in the Bayesian analysis of neural networks is evaluating 

integrals for posterior distribution and predictive distribution of network outputs [Khan 

and Coulibaly, 2006]. Usually, the posterior distribution of weights and model structures 

of neural networks is very complex and multimodal [Neal, 1996; Kingston et al., 2005; 
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Khan and Coulibaly, 2006; Liang, 2005a, 2005b], and it is difficult to sample from the 

complex posterior distribution and generate candidate weights and model structures. In 

this case, the MCMC methods are usually used as tools for sampling the posterior 

probability of model structures and parameters of BNNs. In MCMC, the complex 

integrals in the marginalization are approximated via drawing samples from the joint 

probability distribution of ( , ), and  can be approximated using a sample of the  

( , ) drawn from the posterior probability distribution of  ( , ) [Lampinen and 

Vehtari, 2001], 

θ Λ newŷ

θ Λ θ Λ
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where, K  denotes the number of all models  under consideration. )( Λθ,

2.1.3 Posterior probability distribution of neural networks 

In order to conduct Bayesian analysis of a neural network, the prior probability 

distribution ),( Λθπ  and likelihood function  in equation (3) needs to be specified. 

A popular method to specify the likelihood function is to assume the model residuals are 

normally and independently distributed with zero mean and constant variance . This 

leads to the following likelihood function:  
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Taking logarithm, we have 
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where  is the number of observed target data, and  is referred to as hyperparameter 

which is assumed to observe Inverse Gamma (IG) distribution ( ) with  

and  are the shape parameter and scale parameter, respectively. As far as the prior 

distribution of , a convenient way is to assume non-informative prior distribution to 

represent the vague prior knowledge, which allows the posterior distributions of  to 

be determined by the observed data [Neal, 1996; Lampinen and Vehtari, 2001; Kingston, 

2005]. A wide uniform prior, symmetric around zero, was used as the non-informative 

prior. With the assumption of non-informative prior distribution, the posterior probability 

of  can be formulated as equation (7) with the log form of equation (8). This form 

of posterior probability function can be applied for both fixed and variable neural 

network structures. 

n 2σ

),(~ 21
2 vvIGσ 1v

2v

),( Λθ

),( Λθ

),( Λθ

To some extent, the quantification of uncertainty is dependent on understanding 

prior knowledge of uncertainty. In practical application of neural networks, incorporating 

human prior knowledge in neural networks models was suggested to improve their 

performance [Wang, 1995; Müler and Insua, 1998; Liang, 2005b]. Usually, the large 

weights and bias values and complex model structures are penalized. In this paper, we 

follow Liang [2005b] to assume the following prior distributions for the weights: 

 for ,  for ),0(~ 2
ασα Ni pi ,,0 K= ),0(~ 2

βσβ Nj Mj ,,0 K= ,  for 

 and ,  where , , and  are hyper-parameters to be 

specified by users. By assuming that the components of θ  are a priori independent, we 

have 
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Where is the total number of effective 

connections,  is 1 if t >0 and 0 otherwise. For fixed model structure, all indicator 

functions are equal to 1 and  is a constant.  
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The prior knowledge of the structure of neural networks can also be taken into 

account. As in Müler and Insua [1998] and Liang [2005b], the neural network’s structure 

 is set to be subject to a prior probability that is proportional to a truncated Poisson:  Λ

⎪⎩
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where λ  is a hyper-parameter, MpMU +++= )1)(1(  is the number of connections of 

the full model in which all connections are valid, !/ mZ m∑ Ω∈Λ
= λ , and Ω  is a set of all 

possible model structures with Um ,,4,3 K= . The minimum number of m  is set to be 

three to limit the network size. Furthermore, we assume that the prior distributions of θ  

and  are independent. Then, the posterior distribution of (θ , ) can be formalized by 

multiplying the prior distributions of θ  and  and . The log form of this 

posterior probability can be written as: 

Λ Λ

Λ ),( ΛθL
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In order to effectively implement the BNNs, the data preparation and 

hyperparameter settings suggested by Liang [2005b] were adopted in this study. Firstly, 

the input and output data were normalized by qtt Sqqq /)(' −= , where q  and  denote 

the mean and standard deviation of the input and output data. This type of data processing 

tends to avoid that the neural networks are trained to accommodate different scales of the 

observed data. For the settings of the hyperparameters, moderate values were adopted to 

penalize a large weight variation and complex model structure: , , and  are 

set to 5, and a vague prior on  was chosen through setting 

qS

2
ασ

2
βσ

2
γσ

2σ 1ν  = 2ν  = 0.05.  

2.1.4 Evolutionary Monte Carlo 

Many MCMC methods have been shown to be effective for training BNNs, such as 

hybrid Monte Carlo [e.g., Neal, 1996], reversible jump MCMC [e.g., Green, 1995, 

Andrieu et al., 2001], sequential Monte Carlo [e.g., de Freitas et al., 2001, Higdon et al., 

2002], and evolutionary Monte Carlo [e.g., Liang, 2005b]. Also several other MCMC 

based algorithms have been successfully applied to generating variables observing some 

complex distributions in water resources modeling. For example, the Shuffled Complex 

Evolution Metropolis algorithm (SCEM) [Vrugt et al., 2003] and adaptive Metropolis 

samplers [Haario et al., 2001; Kingston et al, 2005; Marshall et al., 2004; Renard et al., 

2006] have been successfully applied in hydrologic modeling. All these MCMC 
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algorithms can serve as useful tools for training the BNNs. Although the comparison of 

efficiency and effectiveness of these MCMC methods is an interesting topic, it is beyond 

the scope of this paper. In this study, the Evolutionary Monte Carlo (EMC) algorithm was 

applied to train the BNNs. The EMC algorithm has been compared with several other 

famous MCMC methods, including the Gibbs [Chib, 1995], reversible jump MCMC 

[Green, 1995], and parallel tempering [Geyer, 1991], and was shown to be a promising 

MCMC method [Liang and Wong, 2001c].  

The EMC is a population-based method, developed based on the combination of three 

popular algorithms: parallel tempering, reversible jump MCMC, and the genetic 

algorithm [Holland 1975; Goldberg 1989]. EMC combines the strength of genetic 

algorithm for parameter optimization and the capacity of MCMC for generating samples 

observing target distribution [Liang and Wong, 2001]. EMC generates new samples using 

the basic mutation, crossover operators in genetic algorithm. The acceptance of new 

samples is guided by the Metropolis-Hastings rule [Metropolis et al., 1953; Hastings, 

1970]. In addition, EMC allows position exchanges between the candidates within the 

population. In the following sections, the basic EMC algorithm is introduced briefly. It is 

assumed that the researchers are interested in sampling from the distribution 

))(exp()( ξξ Hf −∝ , where  is called the energy function of )(⋅H ξ , which corresponds 

to the negative log-posterior of a posterior distribution. Here ξ  is referred to as an 

individual in the population, and represents the joint of one model structure and the 

corresponding set of parameters. The EMC is running multiple chains of different density 

distributions conditioned on the temperatures. A population of distributions ,…, 

are constructed as: , 

)( 1
1 ξf

)( N
Nf ξ )/)(exp()( i

ii
i tHf ξξ −∝ Ni ,,1K= , where  is called the it
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temperature of ,  is called the population size. )(⋅if N ),( 1 Ntt K=t  is a series of 

temperatures defined by the users with , and  denotes a sample from)( 1 Ntt >>L iξ )(⋅if . 

After randomly initializing a population of samples, the specific mutation, crossover, and 

exchange operators are implemented to update the position of samples. Although the 

mutation and crossover operators are similar to those applied in genetic algorithm, they 

have been modified such that they are reversible and usable as proposal functions for the 

Metropolis-Hastings algorithm [Liang and Wong, 2001a, 2001b, 2001c; Liang, 2005b]. A 

simple introduction of the three operators is referred in Appendix A. Figure 2 shows the 

schematic diagram of one iteration of the EMC algorithm. In one iteration of EMC, the 

individuals in the population are first updated using the mutation operator (with 

probability of η ) and the crossover operator (with probability of 1-η ). Then, the 

exchange operator is implemented to exchange the positions of 1−N  pairs of randomly 

sampled individuals ( , ). In the implementation of mutation and crossover operators, 

new samples are generated and the model needs to be evaluated, while no new samples 

are yielded and model evaluation is not needed during the exchange operation. The EMC 

algorithm has several attractive properties for effectively and efficiently generating 

samples from the model space [Liang and Wong, 2001a, 2001b, 2001c; Liang, 2005b]:  1) 

adopting a sequence of distributions along a temperature series can help the sampler 

overcome barriers of the energy function landscape; 2) the crossover operator enables 

EMC to have the learning ability of the genetic algorithm; 3) the exchange operator 

accelerates the mix of individuals in different sequences without additional evaluation of 

the energy function. 

iξ jξ
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In order to implement the EMC algorithm, the user needs to specify several 

parameters that control its effectiveness and efficiency. These parameters include: the 

population size N , mutation rate η , Metropolis step size κ , and temperature series t. 

Based on the recommendation in Liang and Wong [2001c] and Liang [2005b], we set 

, 20=N 6.0=η , 25.0=κ , the highest temperature 201 =t , the lowest temperature 

, and the intermediate temperatures equally spaced in between  and . At the 

high temperature, the transition of the system is relatively easier. This helps explore the 

sampling space. At the low temperature, the movement of sampler is relatively slow, 

which helps exploit the sampling space. The step size was calibrated such that the 

resulting acceptance rate ranged from 0.2 to 0.4 as suggested by Gelman et al., [1996]. 

See Liang and Wong [2001a, 2001b, 2001c] for more discussion on the settings of the 

parameters for EMC. 

1=Nt 1t Nt

In implementing a MCMC method, it is important to check whether the sampler has 

converged to the target distribution or not. As the EMC is running with multiple chains of 

different distributions conditioned on a series of temperatures, it is difficult to apply the 

scale-reduction score to diagnose whether the MCMC sampler converges or not. In this 

study, one commonly used diagnostic method through trace plots of MCMC samples 

versus iteration was applied to detect the convergence of the EMC sampler. It is assumed 

that the convergence has been reached when the trace plot flattens out [Kass et al., 1998]. 

With the multimodal nature of neural networks’ weights and structures, the convergence 

to the posterior weights distribution is usually very slow.  
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2.2 Study area description 

2.2.1 Reynolds Creek Watershed 

The 239 km2 Reynolds Creek Experimental Watershed (Figure 3) is located about 80 

km southwest of Boise, ID and exhibits a considerable degree of spatial heterogeneity. 

The topography of the watershed ranges from a broad, flat alluvial valley to steep, rugged 

mountain slopes, with a range in elevation from 1101 to 2241 m [Seyfried et al., 2000]. 

Because of orographic effects, the average annual precipitation ranges from about 250 

mm near the outlet to more than 1100 mm at the upper end of the watershed. Perennial 

streamflow is generated at the highest elevations in the southern part of Reynolds Creek 

where deep, late-lying snowpacks are the source for most water [Seyfried et al, 2000]. 

Although much of the watershed has steep, shallow, rocky soils, there are areas of deep, 

loamy soils that are rock-free. Land cover on Reynolds Creek consists of rangeland and 

forest communities of sagebrush, greasewood, aspen, and conifers (94%), and irrigated 

cropland (6%).  

2.2.2 Little River Watershed 

The 334 km2 Little River Experimental Watershed (Figure 3) has been the subject of 

long-term hydrologic and water quality research by USDA-ARS and cooperators 

[Sheridan, 1997]. The watershed is located in the Tifton Upland physiographic region, 

characterized by intensive agriculture in relatively small fields in upland areas and 

riparian forests along stream channels. The region has low topographic relief and is 

characterized by broad, flat alluvial floodplains, river terraces, and gently sloping uplands 

[Sheridan, 1997]. Climate in this region is characterized as humid subtropical with an 
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average annual precipitation of about 1167 mm based on data collected by USDA ARS 

from 1971 to 2000. Soils on the watershed are predominantly sands and sandy loams with 

high infiltration rates.  Since surface soils are underlain by shallow, relatively 

impermeable subsurface horizons, deep seepage and recharge to regional ground water 

systems are impeded (Sheridan, 1997).  Land use types include forest (65%), cropland 

(30%), rangeland and pasture (2%), wetland (2%), and miscellaneous (1%).  

2.3 Evaluation of the performance of BNNs 

In hydrologic modeling, different types of uncertainty limits can be recognized [e.g. 

Beven, 2006; Liu and Gupta, 2007]. In this study, we are concerned with the modeling 

uncertainty and predictive uncertainty [Liu and Gupta, 2007]. The modeling uncertainty 

limits, obtained through training BNNs to match observed streamflow data, were 

expected to include a specified proportion of the training data set. The predictive 

uncertainty limits, obtained through applying the trained models to another independent 

data set, were expected to contain a specified proportion of future observations. Ideally, 

the uncertainty interval should be consistent with observations and be as small as possible 

[Vrugt et al., 2007]. Two coefficients were used to compare the uncertainty intervals 

estimated by different BNNs: 1) the percentage of coverage (POC) of observations in the 

uncertainty interval, and 2) the average width (AW) of the uncertainty interval. The POC 

coefficient is firstly evaluated. The uncertainty interval with a POC coefficient close to 

the expected proportion is preferred. If the POC of two uncertainty intervals are very 

close to each other, then the uncertainty interval with narrower AW value is considered 

better.  
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In this investigation, we are interested in the modeling and predictive uncertainty 

limits of streamflow simulation using BNNs with different treatment of uncertainties 

associated with parameters and structures of neural networks. Four types of BNNs were 

applied in this study. The first type of BNNs, referred to as BNN-a, is with a fixed model 

structure and non-informative prior knowledge of parameters. The second one is BNN-b, 

which uses variable model structure and non-informative prior knowledge of parameters 

and model structures. The form of the posterior distribution used by BNN-a and BNN-b 

is defined by equation (8). The other two BNNs are referred to as BNN-c and BNN-d, 

respectively. BNN-c is with fixed model structure and informative prior knowledge of 

parameters. BNN-d uses variable model structure and informative prior knowledge of 

parameters and model structures. The form of the posterior distribution used by BNN-c is 

a simplification of equation (9) through setting all the indicator functions equal to 1. The 

form of the posterior distribution used by BNN-d is defined by equation (11). Several 

comparison scenarios were designed to show the effect of taking variable model structure 

and informative prior knowledge into account on the uncertainty limits estimation using 

BNNs: 1) comparing the uncertainty limits obtained by BNN-a and BNN-b can provide 

insight into the effect of considering model structure uncertainty under the non-

informative prior knowledge condition; 2) comparing BNN-c and BNN-d can show the 

effect of considering variable model structure under the informative prior knowledge 

condition; 3) comparing BNN-a and BNN-c can reveal the effect of considering prior 

knowledge under the fixed model structure condition; 4) comparing BNN-b and BNN-d 

can show the effect of considering prior knowledge under the variable model structure 

condition. These comparisons are expected to provide some insight into response of 
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uncertainty limits due to different considerations of uncertainties related to parameters 

and model structure.  

For reference purposes, the generalization ability of the BNNs was compared with the 

deterministic ANNs. Two types of ANNs described in section 2.1.1 were applied in this 

study. The first one is based on equation (1) and the second one is based on equation (2). 

The first type of ANNs, referred to as ANN-1, is with fixed model structure, and the 

second type of ANNs, referred to as ANN-2, is with variable structure. The 

generalization ability of BNNs and traditional ANNs was compared using two 

coefficients, including 2R  (coefficient of determination) and MSE (mean square error) 

with unit of square cms (cubic meter per second). 

3 Results and Discussions 

3.1 Evaluation of EMC for two illustrative examples 

Before running the EMC algorithm for training the BNNs, two illustrative test 

examples were used to show the effectiveness of EMC for generating samples from 

complex distributions.  

3.1.1 Evaluation of EMC for a bimodal distribution 

The first illustrative example is a mix of two multivariate normal distributions with 

mean vectors of  and )0,0,0,0,0(=0 )8,8,8,8,8(=8  respectively,  

),(5.0),(5.0)( 55 I8I0x NN ⋅+⋅=π    (12) 

where  is a five dimensional vector and  denotes the 

normal distribution with mean of u  and covariance matrix . This example was used by 

),,,,( 54321 xxxxx=x ),( ΣuN

Σ
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Renard et al. [2006] to test the effectiveness of three MCMC samplers. The initial 

population was generated within  for each dimension. 30,000 iterations of EMC 

were implemented to estimate the statistical properties of x . The EMC was implemented 

50 times. In order to save space, only the statistics of the first dimension and fifth 

dimension of x  were listed in Table 1 and Figure 4. The results show that the EMC 

algorithm can accurately generate samples that represent this bimodal distribution. 

]1,0[

3.1.2 Evaluation of EMC for a multimodal distribution 

A two dimensional multimodal mixture normal distribution was used to test the EMC 

algorithm to show its effectiveness for sampling candidates from a distribution with a 

complex landscape. The multimodal distribution applied here is 
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where σ =0.1, 201 ωω ==L =0.05. The mean vectors  are randomly drawn 

from within  for each dimension. This multimodal distribution is similar to that used 

in Liang and Wong [2001c]. The initial population was generated within . 50,000 

iterations of EMC were implemented to estimate the statistical properties of . The EMC 

was implemented 50 times. Figure 5 shows the scatter plot of 10,000 samples, which 

reveals that the EMC can effectively sample all the 20 local modes. The estimate of 

means, variances of the two components of x , and the standard deviation of the 

estimated values are shown in Table 2, which shows that the EMC algorithm can 

consistently obtain accurate estimates of the statistical properties of .  

2021 ,, uuu K
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3.2 Application of BNNs for Streamflow Simulation in two experimental 

watersheds 

3.2.1 Application of BNNs in the Reynolds Creek Experimental 

Watershed  

Streamflow during low temperature periods (late fall, winter, and early spring) in the 

Reynolds Creek Experimental Watershed (RCEW) is mainly driven by snowmelt. 

Because simulation of the snow-driven flow during these low temperature periods 

requires long term climate inputs, stremflow simulation during these periods was not 

included in the data sets for this study. Streamflow data from day 148 to 274 for water 

years (WY) 1968-1975 (a total of 1016 data values) were used in this study. These 1016 

data values were further subdivided into two groups. The first group included the 

streamflow data in WY 1973-1975, which were used for neural networks training. The 

second group included the streamflow data in WY 1968-1972, which were used to test 

the generalizing ability of trained networks. Model setup of the neural networks involves 

the selection of input variables and hidden units. The input variables for the first layer of 

a three-layer perceptron network were selected based on the knowledge of the hydrologic 

characteristics of the study area and the correlation between the input variables and 

streamflow data. A total of 13 input variables were selected: 1) total daily precipitation of 

the last four days starting from 1−t  to 4−t  was taken into account as four separate 

inputs; 2) moving average of the last 30 days’ precipitation as a single separate input; 3) 

mean daily temperature of the last four days starting from 1−t  to  were taken as 

four separate inputs; 4) moving average of last 30 days’ temperature as one input; 5) 

4−t
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daily streamflow values of the last three days from 1−t  to 3−t  were included according 

to the partial auto-correlation function (PACF). The selection of the number of hidden 

units was based on a trial and error procedure, and twenty hidden units were chosen for 

this case study. In the selection of hidden units, the traditional neutral networks with 

fixed model structure were applied. This number of hidden units was considered as 

adequate for the neural networks with variable structure. Further tests using larger 

number of hidden units did not show pronounced improvement for the network with 

variable structure. The EMC algorithm was implemented to train the ANNs and BNNs. 

For training the Bayesian neural networks, the EMC was run for 200,000 iterations each 

time. The trace of the mean log posterior density was inspected, and it was found that 

convergence was reached after about 100,000 iterations. For each run of EMC-based 

BNNs, the first 100,000 iterations were taken as a burn-in stage and were discarded, and 

10,000 sets of  separated with equal interval were sampled from the remaining 

100,000 iterations. A total of 50,000 samples was collected to derive the posterior 

distribution of , which were further used to run the neural network and calculate 

the network output  (

),( Λθ

),( Λθ

kf ),,( Λθx 50000,,2,1 K=k ). The mean of the simulations was 

used as the estimate of the streamflow value. All the 50,000  predictions were 

ranked in ascending order to determine the 95% prediction interval. The two types of 

ANNs were also calibrated using the EMC algorithms with long iterations (1,000,000 

iterations) to minimize the objective function (MSE). 

),,( Λθxf

The calibration and validation results of the ANNs and BNNs are listed in Table 3. 

For both calibration and validation periods, the ANN-2 performed better than ANN-1, 

which shows the advantage of variable structure over fixed structure neural networks. 
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Although the performance of deterministic ANNs is better than the four BNNs in the 

model training period, all four of the BNNs perform better than the ANNs during the 

validation period. The validation results provide valuable information regarding the 

model’s performance [Khan and Coulibaly, 2006]. In the application of a model for 

streamflow prediction, we are more interested in the generalization ability of the model 

for data sets independent from calibration. For the validation period, the MSEs of ANN-1 

and ANN-2 are 0.062 and 0.058 respectively, while the MSEs of BNN-a, BNN-b, BNN-c 

and BNN-d are 0.052, 0.05, 0.055 and 0.056, respectively. In terms of the MSE and R2 

coefficients for the validation period, the four BNNs show similar generalization 

performance with slight difference.  

For the four types of BNNs, we are particularly interested in the modeling and 

predictive uncertainty limits. For illustrative purposes, the modeling uncertainty intervals 

estimated by different BNNs for days from May 28, 1975 to July 12, 1975 during 

calibration period are shown in Figure 6. Similarly the predictive uncertainty intervals for 

days from May 28, 1972 to June 28, 1972 during validation period are shown in Figure 7. 

From Figures 6 and 7, it is evident that the different BNNs yield various 95% uncertainty 

intervals. For example, the 95% uncertainty interval estimated by BNN-a is very narrow 

compared with other BNNs for both calibration and validation periods. The two 

coefficients (POC and AW) obtained by the four BNNs are shown in Table 3. For the 

calibration period, BNN-a, BNN-b, BNN-c, and BNN-d produce POC coefficients of 

65.8%, 80%, 93.2%, and 93.7%, respectively. And for validation period, BNN-a, BNN-b, 

BNN-c, and BNN-d produce POC coefficients of 73.8%, 83.5%, 93.7%, and 94%, 

respectively. Using the comparison scenarios described in section 2.2, we evaluated the 
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95% uncertainty intervals estimated by the four BNNs to show the effect of different 

considerations of uncertainty sources: 1) BNN-b includes about 10% more observations 

than BNN-a for both modeling and predictive uncertainty limits, which shows that 

considering variable model structures can improve the estimation of uncertainty limits 

under the non-informative prior knowledge condition; 2) under the informative prior 

knowledge condition, BNN-d yields 95% modeling and predictive uncertainty intervals 

with slightly better POC coefficients than BNN-c, while the AWs of BNN-c are slightly 

smaller than BNN-d. In this case, variable model structures don not necessarily mean 

better uncertainty estimation of streamflow simulation 3) Under both fixed and variable 

model structure conditions, incorporating informative prior knowledge of uncertainty 

sources can improve the uncertainty interval estimation to include more observations. 

The BNN-c includes about 28% and 20% more observations than BNN-a for modeling 

and predictive uncertainty intervals, respectively. BNN-d includes 10% more 

observations than BNN-b for both calibration and validation periods. Through comparing 

the uncertainty intervals of the four BNNs, it is evident that the choice of posterior model 

probability with different considerations of the uncertainties associated with parameters 

and structures can exert appreciable effects on the estimated uncertainty interval. 

3.2.2 Application of BNNs in the Little River Experimental Watershed 

Streamflow data of WY 1997-2002 in the Little River Experimental Watershed 

(LREW) were used to develop and validate the BNNs and ANNs. These five years of 

daily data values were subdivided into two groups. The first group includes the 

streamflow values in WY 1997-2000, which were used for neural networks training. The 

second group includes the streamflow values in WY 2001-2002, which were used to test 
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the generalizing ability of trained networks. The procedures for model setup of the neural 

network for the LREW are similar to those used in the RCEW. A total of 15 input 

variables were identified: 1) daily precipitation of the last five days starting from 1−t  to 

 was taken into account as five separate inputs; 2) moving average of the last 30 

days’ precipitation as a single separate input; 3) mean daily temperature of the last four 

days starting from  to  were taken as five separate inputs; 4) moving average of 

the last 30 days’ temperature as one input; 5) daily streamflow values of the last three 

days from  to  were included as three separate according to the partial auto-

correlation function (PACF). Thirty hidden units were used to determine the neural 

network structure of the ANNs and BNNs. The EMC algorithms were used to generate 

50,000 sets of , and estimate the 95% uncertainty intervals of the four types of 

BNNs.  

5−t

1−t 5−t

1−t 3−t

),( Λθ

The calibration and validation results of the ANNs and BNNs in the LREW are 

listed in Table 4. In terms of generalization capacity, the results obtained for the LREW 

are similar to those obtained for the RCEW. ANN-2 with variable structure performed 

better than ANN-1 with fixed structure. ANN-1 and ANN-2 performed better than the 

BNNs in the calibration period, while all four BNNs performed better than ANNs in the 

validation period. In addition, the generalization performance of the four BNNs is similar 

to each other. 

Further analysis of the modeling and predictive uncertainty intervals estimated by the 

four BNNs in the LREW was also conducted. For illustrative purposes, the 95% 

modeling uncertainty intervals for days from January 4, 1997 to March 31, 1997 are 

shown in Figure 8 (calibration period), and the 95% predictive uncertainty intervals for 
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days from January13, 2001 to April 24, 2001 are shown in Figure 9 (validation period). 

Visually, the difference between the uncertainty intervals estimated by the four BNNs in 

the LREW is not so appreciable compared with that obtained in the RCEW. The POCs 

and AWs of the 95% uncertainty intervals estimated by different BNNs are listed in 

Table 4. For the calibration period, the BNN-a, BNN-b, BNN-c and BNN-d include about 

79.7%, 82.3%, 85.1%, and 86% of the observed data into their 95% modeling uncertainty 

intervals respectively. For the validation period, the 95% predictive uncertainty intervals 

of the four BNNs tend to expand and include more observed data. BNN-a, BNN-b, BNN-

c, and BNN-d cover approximately 87.3%, 90.6 %, 90.9 %, and 92.1% of the observed 

streamflow data within their 95% predictive uncertainty intervals, respectively. The 

comparisons between the uncertainty intervals estimated by different BNNs in the LREW 

also show that incorporating variable model structures and informative prior knowledge 

can provide more reasonable estimation of the uncertainty of streamflow simulation: 1) 

under both variable and fixed model structure conditions, taking informative prior 

knowledge into account results in more robust modeling and predictive uncertainty 

intervals for BNN-d and BNN-c than BNN-b and BNN-a, respectively; 2) under both 

non-informative and informative prior knowledge conditions, BNN-b and BNN-d contain 

more observations in the modeling and predictive uncertainty limits than BNN-a and 

BNN-c respectively. Results obtained for the LREW are similar to those obtained for the 

RCEW, except that BNN-d produces not only larger POCs but also smaller AWs than 

BNN-c. This finding emphasizes the importance of considering multiple model structures. 
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3.2.3 Effect of prior settings and number of hidden units on the 

performance of BNNs 

For the BNNs, the choice of posterior model probability with different considerations 

of uncertainties associated with model structures and parameters can exert substantial 

impacts on both modeling and predictive uncertainty limits estimated by the BNNs. 

Based on the test results in the LREW and RCEW, BNN-a, which only considers 

parameter uncertainty with non-informative prior knowledge, performs the least among 

all the four BNNs. On the other hand, BNN-d, which considers both parameter and model 

structure uncertainties with informative prior knowledge, produces equivalent or better 

estimation of the 95% modeling and predictive uncertainty intervals compared to the 

other BNNs. In general, incorporating variable model structure and informative prior 

knowledge produces more reasonable uncertainty interval estimation. It is important to 

recognize that model structures and prior knowledge of neural networks’ parameters 

applied in this study is not selected arbitrarily, but based on expert knowledge and 

experimental testing [Wang, 1995, Müler and Insua, 1998, Liang, 2005b]. The effect of 

number of networks’ hidden units and prior variances of weights on uncertainty 

estimation of BNNs was examined. Table 5 shows the performance of BNNs with 

different number of hidden units. The performance of BNNs is relatively stable regarding 

the change of number of hidden units. The BNNs with 20, 30 and 50 hidden units 

exhibited very similar performance, while the models with 5 and 10 hidden units are 

slightly inferior to the others (Table 5). The effect of prior settings on the performance of 

BNNs was also examined (Table 6). For medium prior variances of 5 and 10, the 

performance of BNNs is similar to each other.  The performance of BNNs is deteriorated 
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when small and large prior variances (i.e. 1 and 100) of weights were used. With a prior 

variance of 100, the BNNs can only include less than 80% observations. These results are 

similar to those obtained by Liang (2005b). We also set the prior variance to IG (0.05, 0.5) 

distribution, which is similar to that used by Neal (1996). This hierarchical setting allows 

the variance to be determined from the data. The performance of hierarchical hyperprior 

is very similar to that of BNNs with fixed prior variances of 5 and 10 (Table 6). The 

above results indicate that inappropriate setting of model structure and prior knowledge 

may lead to worse estimation results. 

3.2.4 Discussion 

As shown in section 3.2.1 and 3.2.2, the Bayesian-based neural networks can produce 

more accurate prediction of daily streamflow than the deterministic ANNs in the 

validation period. Taking the uncertainty of model structures or parameters into account 

and applying the Bayesian model averaging scheme to estimate the network output can 

provide more reliable prediction than using a single model that is the best fit to the 

training data. This result is consistent with those obtained by Kingston et al. [2005] and 

Khan and Coulibaly [2006]. In addition to generalization ability, another advantage of the 

BNNs over the deterministic ANNs is that they can produce the uncertainty intervals that 

indicate the level of uncertainty in the forecasts.  

Through incorporating variable model structure and prior knowledge into account, 

BNN-d obtained better estimation of 95% uncertainty interval, but it is worth noting that 

the probabilistic predictions at other coverage levels are also of interest (Krzysztofowicz, 

2001; Montanari, 2005; Laio et al., 2007b). For example, Laio and Tamea (2007a) 

illustrated application of probabilistic prediction and cost-loss analysis in hydrologic 
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prediciton. In this study, the POC values obtained by BNN-d at different uncertainty 

intervals were calculated (Table 7). In both LREW and RCEW, the estimated uncertainty 

intervals do not include the corresponding expected percentage of observations. In the 

LREW, for uncertainty intervals with coverage level larger than 50%, the difference 

between estimated POC and expected coverage percentage is less than or close to 10%, 

while this difference is usually larger than 20% for uncertainty intervals with expected 

coverage level less than 50%. The maximum difference reached 31% for the 20% 

uncertainty interval in the validation period. In the RCEW, for uncertainty intervals with 

coverage level larger than 70%, the difference between POC and expected coverage 

percentage is less than 10%, while this difference is larger than 20% for uncertainty 

intervals with coverage level less than 70%. The maximum difference reached 38% for 

the 10% uncertainty interval in the validation period. Overall, the BNNs produced better 

approximation of uncertainty intervals with high coverage level than those with low 

coverage level. Further analysis of the POCs of rising and peak components of 

hydrograph was conducted, since these two parts are often of major interest to water 

management managers. From Figures 6-9, it seems that the 95% uncertainty intervals did 

not perform well for the rising and peak components of the hydrograph. In the LREW, 

the POC values of the rising and peak components of the hydrograph are 66% and 69% 

for calibration and validation periods, respective. In the RCEW, the POC values are 90% 

and 91% for calibration and validation periods, respectively. This indicates that BNNs 

exhibited various performances for different components of the hydrograph. There are 

several potential reasons for the inadequate performances of BNNs to capture the 

uncertainty intervals at different coverage levels and for different flow components. The 
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major reason is because our understanding of hydrologic uncertainty is still far from 

complete. The inappropriate convergence to the true posterior [Kingston et al., 2005], the 

inadequate definition of the prior distribution of parameters and model structures, and the 

omission of uncertainties related to the observed input data and other forcing data can 

lead to inappropriate estimation of the uncertainties. Moreover, the complex and true 

joint distributions of the uncertainty sources (which result from high non-linearity of the 

hydrologic system and the complex interactions between different components of the 

system) make it very difficult to accurately represent the uncertainty of streamflow 

simulation [Liu and Gupta, 2007].  

For water resources investigations essential for relevant decision making processes, 

the predictive uncertainty estimation of hydrologic prediction is valuable. The predictive 

uncertainty limits are dependent on and different from modeling uncertainty. This is 

because when the trained BNNs are applied to another set of data independent of the 

training data, the hydrologic conditions may change and therefore impact the predictive 

interval estimation. From Figures 6-9 and Tables 3-4, it can be seen that the 95% 

modeling uncertainty limits are always narrower than the corresponding predictive 

uncertainty limits estimated by the same BNNs. The difference between modeling and 

predictive uncertainty limits can be impacted by the type of BNN and the characteristics 

of the hydrologic conditions. For example, in the RCEW, the BNN-a’s POC of predictive 

uncertainty interval (73.8%) is about 8% higher than its POC of modeling uncertainty 

interval (65.8%), while the BNN-d’s POC of predictive uncertainty interval (94%) is 

about the same its POC of modeling uncertainty interval (93.7%). Applying the BNN-d 

to the LREW, it is apparent that the BNN-d’s POC of predictive uncertainty interval 
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(92.1%) is 6% higher than its POC of modeling uncertainty interval (86%). Because of 

the future uncertainties due to natural and anthropogenic factors, the predictive 

uncertainty limits are also uncertain, which means that we are unable to estimate 

predictive uncertainty limits even if our estimation of modeling uncertainty limits are 

accurate. Hence in application of uncertainty analysis for hydrologic prediction, how to 

extend modeling uncertainty limits to predictive uncertainty limits remains a huge 

challenge for applying BNNs to water resources-related management and design 

problems. 

Although uncertainty estimation of hydrologic prediction faces many challenges, it 

is still broadly recognized that proper consideration of uncertainty in hydrologic 

predictions is essential for purposes of both research and operational modeling [Wagener 

and Gupta, 2005; Pappenberger and Beven, 2006; Liu and Gupta, 2007]. To improve the 

estimation of modeling uncertainty of hydrologic modeling, effective methods for 

considering the uncertainties associated with input hydrometeorolgic data [e.g. Kavetshi 

et al, 2006, Ajami et al., 2007, Srivastav et al., 2007] and observed outputs [e.g. Kuczera, 

1983; Bates and Campbell, 2001; Yang et al., 2007] must also be considered in the 

definition of posterior model probability  

4. Conclusions 

Application of Bayesian neural networks is relatively new in hydrologic modeling. 

One preferred advantage of BNNs over the traditional deterministic ANNs is that BNNs 

can estimate the uncertainty of hydrologic prediction. Reasonable estimates of the 

predictive uncertainty of hydrologic simulation are critical for decision making in 

problems related to resources management. In this study, the BNNs were applied to the 
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Reynolds Creek and Little River Experimental Watersheds for daily streamflow 

simulation to examine the effect of different considerations of variable model structures 

and prior knowledge on the uncertainty limits estimation of BNNs. A major challenge 

facing the application of the BNNs is the effectiveness of the MCMC sampling algorithm 

for generating models (defined by the neural network’s parameters and structures) 

observing the complex posterior distribution. An advanced MCMC sampler – EMC was 

tested for estimation of the statistical characteristics of variables observing complex 

multimodal distributions and then applied to train the BNNs.  

Four types of BNNs with different treatments of variable structures and prior 

knowledge have been applied in this study. All four BNNs exhibited superior 

generalization capacity to the deterministic ANNs, which emphasize the prospect of 

BNNs in future hydrologic modeling. Findings from this study show that the 95% 

uncertainty limits of neural network outputs estimated by different BNNs were evidently 

different from each other. In general, BNNs incorporating multiple model structures can 

provide equal or better estimation of the uncertainty limits than those with fixed network 

structures. Findings also show that taking informative prior knowledge of network 

parameters and structures can lead to more robust estimation of the uncertainty limits. For 

all the test cases, the 95% uncertainty intervals (including modeling and predictive 

uncertainty intervals) estimated by all four BNNs failed to include 95% or more of 

observed streamflow data. Examination of the uncertainty intervals at different coverage 

levels and for different flow components also shows the inadequate performance of the 

BNNs. This, to some extent, indicates the incomplete consideration of all uncertainty 

sources and inappropriate definition of error characteristics associated with different 
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uncertainty sources. In the future, improving understanding and quantifying methods of 

different uncertainty sources need to be exploited for effective estimation of the 

uncertainty of hydrologic prediction using BNNs. It should also be noted that the 

difference between predictive uncertainty and modeling uncertainty, which is raised by 

unknown future conditions, complicates the process to develop practical guides on how 

to extend modeling uncertainty estimation to reliable predictive uncertainty estimation.  
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Appendix A 

A.1. Mutation 

The mutation operator is used to generate  the variant of a chromosome (denoted as , 

where the superscript i  is the position of a chromosome in the current population).  is 

selected at random from the current population

iξ

iξ

{ }Niii ξξξξξ ,,,,,, 111 KK +−=z .  is 

modified to form a new chromosome  by one of the three types of operations: “birth,” 

“death,” and “Metropolis.” “Birth” is used to add effective connections to the neural 

network, while “death” is used to remove effective connections. “Metropolis” is the same 

operation defined by Metropolis et al. [1953] and Hasting [1970]. The newly generated 

population 
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where  is the ratio of the transition probabilities. For detailed 

information on the “birth” and “death” operations and calculation of the three types of 

transition probabilities, please refer to Liang and Wong [2001a, 2001b, 2001c] and Liang 

[2005b].  
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A.2. Crossover 

The crossover operator is similar to that used in the popular Genetic Algorithm. Through 

recombination of two chromosomes, which are randomly selected from the current 

population, offspring are produced. First of all, two chromosomes  and  (iξ jξ j  is the 

position of a chromosome in the current population with a different value from i ) are 
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selected as parental chromosomes. Next, an integer c is drawn randomly among 

, where { M,,2,1 K } M  is the number of hidden units. The hidden unit c  is called the 

crossover unit, and only one unit crossover operator is applied in this study. Finally, two 

new offspring  and  are constructed by swapping the weights connected with 

hidden unit c  between  and . A new population is constructed by replacing the 

parental chromosomes with the new offspring, and it is accepted with probability 
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where ,  is the 

selection probability of  from population , and  denotes the 

generating probability of  from the parental chromosomes . The 

crossover operator is symmetric, which means that  = . 

 for the crossover operator.  
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A.3. Exchange 

The exchange operator is useful for exchangimg information obtained by different series 

of chromosomes within the population. Given the current population z  and the attached 

temperature ladder t , an exchange is made between  and  without changing the 

temperature  associated with the specific position within the population. The initial 

population and temperature ladder (  are 

proposed to be changed to . In this paper, the 

exchange is only operated on two chromosomes neighboring each other (i.e., 

iξ jξ

t

),,,,

),,,,,,,,,,(),'( '''
1

'1
N

N
j

j
i

i tttt ξξξξ KKK=tz

1|| =− ji ). 

The new population is accepted with probability 
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Where ,  is the probability that  is chosen to 

exchange with the other chromosome,  denotes  the probability that  is chosen to 

exchange with , 

ijjji
i wpwpT ,, )()()|'( ξξ +=zz )( iP ξ iξ

jiw ,
jξ

iξ 5.01,1, == −+ iiii ww  for Ni <<1  for and 11,2,1 == −NNww . Thus 

 for the exchange operator.  1)|'(/)'|( =zzzz TT
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1 Table 1. Parameter estimation of the five-dimensional bimodal distribution 

Parameter True value Estimate SD 

1u  4 4.02 0.034 

5u  4 4.014 0.035 

11Σ  17 16.989 0.033 

55Σ  17 16.99 0.035 

15Σ  16 15.993 0.028 

NOTE: Here  and u  are the first and fifth component of the mean of x ; 1u 5 11Σ ,  and  are the 
variances and covariance of the first and second component of ; SD denotes the standard deviation of the 
corresponding estimate. 

55Σ 15Σ2 
3 
4 
5 

6 

7 

x

 

 

Table 2. Parameter estimation of the two-dimensional multimodal distribution 

Parameter True value Estimate SD 

1u  5.123 5.128 0.015 

2u  5.093 5.089 0.021 

11Σ  5.623 5.627 0.032 

22Σ  8.641 8.648 0.036 

12Σ  -1.579 -1.583 0.025 

NOTE: Here  and  are the first and second component of the mean of ; 1u 2u x 11Σ ,  and  are the 
variances and covariance of the first and second component of x ; SD denotes the standard deviation of the 
corresponding estimate. 
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18 

19 
20 

 

Table 3. Evaluation of the performance of the ANNs and BNNs for streamflow simulation in the 

Reynolds Creek Experimental Watershed 

Evaluation Coefficients 

 

Period/Model 

MSE R2 
Percentage 

of coverage 

Average  

interval 

width 

BNN-a 0.0055 0.98 65.8% 0.05 
BNN-b 0.0046 0.99 80% 0.08 
BNN-c 0.0058 0.98 93.2% 0.16 
BNN-d 0.0061 0.98 93.7% 0.17 
ANN-1 0.0051 0.98 - - 

Calibration 

ANN-2 0.0045 0.99 - - 
BNN-a 0.0052 0.98 73.8 % 0.06 
BNN-b 0.0050 0.98 83.5% 0.08 
BNN-c 0.0055 0.98 93.7% 0.14 
BNN-d 0.0056 0.98 94% 0.15 
ANN-1 0.0062 0.98 - - 

Validation 

ANN-2 0.0058 0.98 - - 
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31 
32 

Table 4. Evaluation of the performance of BNNs and ANNs for streamflow simulation in the 

Little River Experimental Watershed 

Evaluation Coefficients  

 

Period/Model 

MSE R2 
Percentage 

of coverage 

Average 

interval 

width 

BNN-a 11.25 0.94 79.7% 5.7 
BNN-b 11.17 0.94 82.3% 5.99 
BNN-c 12.16 0.93 85.1% 6.88 
BNN-d 13.14 0.93 86% 6.62 
ANN-1 11.18 0.94 - - 

Calibration 

ANN-2 9.96 0.95 - - 
BNN-a 6.16 0.89 87.4% 5.32 
BNN-b 5.78 0.90 90.6% 5.59 
BNN-c 5.92 0.89 90.9% 6.58 
BNN-d 5.96 0.89 92.1% 5.8 
ANN-1 7.71 0.87 - - 

Validation 

ANN-2 7.2 0.88 - - 
 33 

34 

35 

 

Table 5. Effect of number of hidden units on the performance of BNNs. 

LREW RCEW 
Calibration Validation Calibration Validation 

Number 
of hidden 

units MSE POC MSE POC MSE POC MSE POC 
5 14.1 81.7% 6.84 86.2% 0.0066 88.4% 0.0057 89.5% 

10 13.43 83% 6.47 90.6% 0.0065 91.3% 0.0058 92.4% 
20 13.2 85.6% 5.85 91.1% 0.0061 93.7% 0.0056 94% 
30 13.14 86% 5.96 92.1% 0.0058 93.5% 0.0057 94.1% 
50 12.94 85.6% 6.18 90.6% 0.0056 93.8% 0.0061 93.6% 
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 39 

40 Table 6. Effect of prior settings on the performance of BNNs. 

LREW RCEW 
Calibration Validation Calibration Validation 

 
Prior settings 

 MSE POC MSE POC MSE POC MSE POC 
1 15.86 84.2% 6.59 87.1% 0.0064 91.6% 0.0059 90.3% 
5 13.17 86% 6.12 91.7% 0.0061 93.7% 0.0056 94% 

10 13.42 84% 6.04 90.5% 0.0063 92.8% 0.0062 94.5% 
100 14.5 71.1% 6.46 76.1% 0.0068 76.5% 0.0062 75.9% 

Hierarchical 13.52 85.5% 6.22 90.8% 0.0066 92.2% 0.0061 94.4% 
41 

42 

43 

 

 

Table 7. Percentage of coverage values of uncertainty intervals at different coverage level. 

Uncertainty interval 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 

calibration 32% 38% 53% 58% 59% 63% 74% 83% 84% 86%
LREW  

validation 37% 51% 57% 64% 68% 75% 76% 84% 89% 92%

calibration 39% 45% 59% 66% 75% 83% 86% 88% 90% 94%
RCEW 

validation 48% 53% 64% 71% 77% 84% 87% 89% 91% 94%
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Figure 1. A fully connected one-hidden-layer feed-forward neural network with four 

input units, four hidden units, and one output unit. 

Figure 2. Schematic illustration of one iteration of EMC. 

Figure 3. The geographic locations of the Reynolds Creek watershed and Little River 

watershed. 

Figure 4. Simulated values of the first and fifth component from the two-modal 

distribution. The solid line is the true value, and the grey area is the density estimated 

by EMC. 

Figure 5. Scatter plot of the samples generated by EMC for the 20-modal distribution. 

Figure 6. 95% modeling uncertainty intervals of streamflow simulation using different BNNs for 

days from May 28, 1975 to July 12, 1975 for the Reynolds Creek Experimental Watershed. 

Figure 7. 95% predictive uncertainty intervals of streamflow simulation using different BNNs for 

days from May 28, 1972 to June 28, 1972  for the Reynolds Creek Experimental Watershed. 

Figure 8. 95% modeling uncertainty intervals of streamflow simulation using different BNNs for 

days from January 4, 1997 to March 31, 1997 for the Little River Experimental Watershed. 

Figure 9. 95% predictive uncertainty intervals of streamflow simulation using different BNNs for 

days from January13, 2001 to April 24, 2001 for the Little River Experimental Watershed. 
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