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Summary In a national effort, since 1972, the Swiss Government started the ‘‘National
Long-term Monitoring of Swiss Rivers’’ (NADUF) program aimed at evaluating the chemical
and physical states of major rivers leaving Swiss political boundaries. The established
monitoring network of 19 sampling stations included locations on all major rivers of Swit-
zerland. This study complements the monitoring program and aims to model one of the
program’s catchments – Thur River basin (area 1700 km2), which is located in the
north-east of Switzerland and is a direct tributary to the Rhine. The program SWAT (Soil
and Water Assessment Tool) was used to simulate all related processes affecting water
quantity, sediment, and nutrient loads in the catchment. The main objectives were to test
the performance of SWAT and the feasibility of using this model as a simulator of flow and
transport processes at a watershed scale. Model calibration and uncertainty analysis were
performed with SUFI-2 (Sequential Uncertainty FItting Ver. 2), which was interfaced with
SWAT using the generic iSWAT program. Two measures were used to assess the goodness
of calibration: (1) the percentage of data bracketed by the 95% prediction uncertainty cal-
culated at the 2.5 and 97.5 percentiles of the cumulative distribution of the simulated
variables, and (2) the d-factor, which is the ratio of the average distance between the
above percentiles and the standard deviation of the corresponding measured variable.
These statistics showed excellent results for discharge and nitrate and quite good results
for sediment and total phosphorous. We concluded that: in watersheds similar to Thur –
with good data quality and availability and relatively small model uncertainty – it is
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feasible to use SWAT as a flow and transport simulator. This is a precursor for watershed
management studies.
ª 2006 Elsevier B.V. All rights reserved.
Introduction

During the last three decades, in Switzerland, as well as in
other European countries, extensive and costly measures
have been taken to reduce pollution input by point sources.
The measures included installation of advanced waste water
treatment and regulations for restricted use of phosphorous
(phosphate ban in household detergents) and toxic sub-
stances. In 1972, the ‘‘National Long-term Monitoring of
Swiss Rivers’’ (NADUF) program was initiated as a coopera-
tive project between what is now the Swiss Federal Office
for the Environment (FOEN), and the Swiss Federal Institute
of Aquatic Science and Technology (Eawag) (Binderheim-
Bankay et al., 2000) (www.naduf.ch). The program moni-
tored the chemical and physical states of Swiss rivers to
evaluate the effectiveness of water protection measures
undertaken by Swiss national environmental protection
agencies. Several NADUF catchments and stations, including
the one investigated in this study – the pre-alpine/alpine
Thur River basin, which represents a low level of anthropo-
genic pollution – serve as reference stations for other inter-
national water monitoring programs, e.g., International
Commission for the Protection of the Rhine (IKSR), the Glo-
bal Environmental Monitoring System – United Nations Envi-
ronmental Program/World Health Organization (GEMS-
UNEP/WHO) (Jakob et al., 2002). After changing the water
protection law in the late 1980s to early 1990s, the positive
effects of these measures were reported at several monitor-
ing stations. In the Swiss part of the Rhine watershed, the
international target of 50% reduction in the total inputs into
surface waters of P and N was achieved for P (reduction of
51%) but not for N (reduction of 23%) (Prasuhn and Sieber,
2005). Also, lead concentration decreased by 80–90% during
the same time period. Furthermore, with the adoption of a
new ‘‘ecologically oriented’’ agricultural management in
1993, which included animal friendly farming, balanced
use of fertilizers, appropriate proportions of ecological
compensation areas, suitable crop rotation, soil erosion pro-
tection, and measured use of pesticides – decreasing trends
of nutrients in Swiss water bodies were reported as well (Ja-
kob et al., 2002; SAEFL, 2002). The total phosphorous and
nitrogen concentrations decreased significantly by 28% and
14%, respectively, from 1985 to 2001 (Prasuhn and Sieber,
2005). However, the problem of non-point source pollution
still exists and is associated primarily with the agricultural
applications of mineral (ammonium, nitrate) and organic (li-
quid and solid manure) fertilizers. It should be noted that
the landuse change during the period of 1980–1995 has
been quite insignificant in the Thur region as indicated by
the first (from 1979 to 1985) and the second (from 1992 to
1995) landuse maps complied by the Swiss Federal Statisti-
cal Office (www.bfs.admin.ch). The latest landuse map
shown in Fig. 1 indicates a predominantly agricultural
region.

Surface runoff, especially immediately after a storm, is
an important medium of transport for non-point source pol-
lution. Runoff from different landuses may be enriched with
different kinds of contaminants. For example, runoff from
agricultural lands is generally enriched with sediments,
nutrients and pesticides, whereas runoff from actively
developed urban areas contains heavy metals, hydrocar-
bons, chloride and other contaminants (Huber, 1993). Due
to the significant reduction in the loads from point sources
in the past years, the relative significance of diffuse sources
of pollution in Swiss waters has increased. Presently in Swit-
zerland, wash-out and runoff from agricultural lands con-
tributes to a greater extent to the impairment of natural
waters than it was a few decades ago (Prasuhn and Sieber,
2005).

Inverse modelling (IM) has in recent years become a very
popular method for calibration (e.g., Beven and Binley,
1992; Abbaspour et al., 1997; Simunek et al., 1999; Duan
et al., 2003; Gupta et al., 2003; Wang et al., 2003). IM is
concerned with the problem of making inferences about
physical systems from measured output variables of the
model (e.g., river discharge, sediment concentration). This
is attractive because direct measurement of parameters
describing the physical system is time consuming, costly, te-
dious, and often has limited applicability. Because nearly all
measurements are subject to some uncertainty, the infer-
ences are usually statistical in nature. Furthermore, be-
cause one can only measure a limited number of (noisy)
data and because physical systems are usually modelled by
continuum equations, no hydrological inverse problem is
really uniquely solvable. In other words, if there is a single
model that fits the measurements there will be many of
them. Our goal in inverse modelling is then to characterize
the set of models, mainly through assigning distributions
(uncertainties) to the parameters that fit the data and sat-
isfy our presumptions as well as other prior information.

To make the parameter inferences quantitative, one
must consider: (1) the error in the measured data (driving
variables such as rainfall and temperature), (2) the error
in the measured output variables (e.g., river discharges
and sediment concentrations used for calibration), and (3)
the error in the conceptual mode (inclusion of all the phys-
ics in the model that contributes significantly to the data).

The objective of this research study was to evaluate the
application of a mechanistic modelling approach as a com-
plementary technique to the monitoring program in investi-
gating the relative impacts of different types of landuse and
agricultural managements on water quality and quantity of
the Thur River. A number of simulators such as SWAT (Soil
Water Assessment Tool) (Arnold et al., 1998), HSPF (Hydro-
logic Simulation Program Fortran) (Bicknell et al., 1996),
and SHETRAN (Ewen et al., 2000) could have been used in
this study. Several comparisons of these models indicated
similarly reasonable results in simulating discharge, phos-
phorous, and sediment (e.g., Singh et al., 2005; Borah and
Bera, 2004). We chose SWAT because of its availability
and user-friendliness in handling input data. SWAT was eval-
uated by performing calibration and uncertainty analysis
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Figure 1 Landuse map of the Thur watershed showing a predominantly agricultural region. Reproduced with the permission of
swisstopo (BA067983).
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using SUFI-2 (sequential uncertainty fitting ver. 2) algorithm
(Abbaspour et al., 2004), which is a semi-automated inverse
modelling procedure for a combined calibration-uncertainty
analysis. The available time series data on discharge, sedi-
ment, nitrate, and total phosphorus loads at the watershed
outlet as well as some constraints on sediment and nutrients
from different landuses were used to perform calibration
and validation studies.
Materials and methods

Description of the study site

The Thur watershed with an area of 1700 km2 is situated in
north-eastern Switzerland near the border with Germany
(Fig. 2). The main river (Thur) has a total length of
127 km. The major tributaries to this river are Murg, Glatt
and Sitter rivers. Mean elevation of the watershed is about
774 m above sea level and mean slope is around 7.5�. The
lowest point is located at Andelfingen gauging station at
356 m above sea level and the highest point is the Saentis
at 2500 m above sea level. Close to 75% of the watershed
area lies below 1000 m elevation and 0.6% above 2000 m.
The average daily discharge at Andelfingen is 48 m3 s�1 for
the period of 1991–2000, with a minimum value of
3 m3 s�1 and a maximum value of 912 m3 s�1.

The study area has a pre-alpine/alpine climate, which is
characterized by moderate winters in hilly dissected terrain
area, cold winters in mountainous areas and summer sea-
sons with relatively large annual temperature variations.
Topographic effect of the terrain plays a significant role in
moisture regime dynamics in the basin. The mountain cli-
mate is fairly cool and characterized by high precipitation
(about 2200–2500 mm year�1), most of which falls during
the summer months. The lower (sub-mountain) portion of
the watershed receives about 1000 mm year�1, and also,
mostly during summer months. The mean annual precipita-
tion for the watershed is 1460 mm year�1 and the mean po-
tential evapotranspiration estimated by Thornthwaite
(1948) method is 667 mm year�1. Mean actual evapotranspi-
ration is about 565 mm year�1, runoff 895 mm year�1. The
runoff coefficient is relatively high, 0.61, and index of dry-
ness (Budyko, 1974), i.e. the ratio of potential evapotrans-
piration to precipitation is relatively low, 0.46. Mean
monthly temperature ranges from about 10 �C to 25 �C in
the summer and from �15 �C to 7 �C during the winter.
Mean annual temperature ranges from 0.02 �C at Saentis
to 15.1 �C at Taenikon with an average of 7.5 �C for the
catchment.

Agriculture is the dominant landuse within the area of
study. Approximately 60% of the land within the basin is
used for agricultural activities; these are mostly meadows
for feeding cows, alpine pastures, and arable lands. Close
to 30% of the total area is covered by forests, about 3% un-
der orchards. The rest of the area is occupied by barren
land, surface waters, and urban areas. Hogs and cattle are
the main livestock raised in the study area.

Most of the Thur basin is underlain by conglomerates,
marl incrustations and sandstone with medium to low stor-
age capacity and rather high permeability. Groundwater is
mainly found in areas with fluvio-glacial deposits of gravel
and sands (Gurtz et al., 1999).

The upper (mountainous) part of the Thur River wa-
tershed is fairly uniform in terms of soil cover, i.e. covered
by shallow mountain soils (about 10 cm of rooting depth in
soil profile), whereas middle and lower part of the basin is
more diverse and covered by more developed soils (more
than 3 horizons with the rooting depth in the range of 90–
140 cm).



Figure 2 The Thur river basin with SWAT-delineated subbasins, digital elevation model, river network, and meteorological
stations. Reproduced with the permission of swisstopo (BA067983).
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SWAT development and interface

SWAT (Arnold et al., 1998) is a semi-distributed, time con-
tinuous watershed simulator operating on a daily time step.
It is developed for assessing the impact of management and
climate on water supplies, sediment, and agricultural chem-
ical yields in watersheds and larger river basins. The model
is semi-physically based, and allows simulation of a high le-
vel of spatial detail by dividing the watershed into a large
number of sub-watersheds. The major components of SWAT
include hydrology, weather, erosion, plant growth, nutri-
ents, pesticides, land management, and stream routing.

The program is provided with an interface in ArcView GIS
(AVSWAT2000, Di Luzio et al., 2002) for the definition of wa-
tershed hydrologic features and storage, as well as the orga-
nization and manipulation of the related spatial and tabular
data.

Theoretical description of SWAT

The large scale spatial heterogeneity of the study area is
represented by dividing the watershed into subbasins. Each
subbasin is further discretised into a series of hydrologic re-
sponse units (HRUs), which are unique soil-landuse combina-
tions. Soil water content, surface runoff, nutrient cycles,
sediment yield, crop growth and management practices
are simulated for each HRU and then aggregated for the
subbasin by a weighted average. Physical characteristics,
such as slope, reach dimensions, and climatic data are con-
sidered for each subbasin. For climate, SWAT uses the data
from the station nearest to the centroid of each subbasin.
Calculated flow, sediment yield, and nutrient loading ob-
tained for each subbasin are then routed through the river
system. Channel routing is simulated using the variable stor-
age or Muskingum method.
The water in each HRU in SWAT is stored in four storage
volumes: snow, soil profile (0–2 m), shallow aquifer (typi-
cally 2–20 m), and deep aquifer. Surface runoff from daily
rainfall is estimated using a modified SCS curve number
method, which estimates the amount of runoff based on lo-
cal landuse, soil type, and antecedent moisture condition.
Peak runoff predictions are based on a modification of the
Rational Formula (Chow et al., 1988). The watershed con-
centration time is estimated using Manning’s formula, con-
sidering both overland and channel flow.

The soil profile is subdivided into multiple layers that
support soil water processes including infiltration, evapora-
tion, plant uptake, lateral flow, and percolation to lower
layers. The soil percolation component of SWAT uses a
water storage capacity technique to predict flow through
each soil layer in the root zone. Downward flow occurs when
field capacity of a soil layer is exceeded and the layer below
is not saturated. Percolation from the bottom of the soil
profile recharges the shallow aquifer. Daily average soil
temperature is simulated as a function of the maximum
and minimum air temperature. If the temperature in a par-
ticular layer reaches less than or equal 0 �C, no percolation
is allowed from that layer. Lateral sub-surface flow in the
soil profile is calculated simultaneously with percolation.
Groundwater flow contribution to total stream flow is simu-
lated by routing a shallow aquifer storage component to the
stream (Arnold and Allen, 1996). A provision for estimating
runoff from frozen soil is also included. Snow melts on days
when the maximum temperature exceeds a prescribed va-
lue. Melted snow is treated the same as rainfall for estimat-
ing runoff and percolation.

The model computes evaporation from soils and plants
separately. Potential evapotranspiration can be modelled
with the Penman–Monteith (Monteith, 1965), Priestley–
Taylor (Priestley and Taylor, 1972), or Hargreaves methods
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(Hargreaves and Samani, 1985), depending on data avail-
ability. Potential soil water evaporation is estimated as a
function of potential ET and leaf area index (area of plant
leaves relative to the soil surface area). Actual soil evapora-
tion is estimated by using exponential functions of soil
depth and water content. Plant water evaporation is simu-
lated as a linear function of potential ET, leaf area index,
and root depth, and can be limited by soil water content.
More detailed descriptions of the model can be found in Ar-
nold et al. (1998).

Sediment yield in SWAT is estimated with the modified
soil loss equation (MUSLE) developed by Williams and Berndt
(1977). The sediment routing model consists of two compo-
nents operating simultaneously: deposition and degrada-
tion. The deposition in the channel and floodplain from
the sub-watershed to the watershed outlet is based on the
sediment particle settling velocity. The settling velocity is
determined using Stoke’s law (Chow et al., 1988) and is cal-
culated as a function of particle diameter squared. The
depth of fall through a reach is the product of settling veloc-
ity and the reach travel time. The delivery ratio is estimated
for each particle size as a linear function of fall velocity,
travel time, and flow depth. Degradation in the channel is
based on Bagnold’s stream power concept (Bagnold, 1977;
Williams, 1980).

Nutrient cycles are similar to those of the EPIC model
(Williams et al., 1984). SWAT allows crop rotations and
management practice combinations. As nutrient inputs,
the model takes into consideration natural sources such
as organic matter mineralization, N-fixation, wet deposi-
tion of nitrate, and anthropogenic contributions such as
fertilizer applications (diffuse sources) and waste water
from treatment plants (point sources). The biochemical
transformations of nitrogen and phosphorus simulated by
SWAT are shown in Fig. 3. The in-stream water quality
modelling is based on QUAL2E (Brown and Barnwell,
1987). The QUAL2E model includes the major interactions
of the nutrient cycles, algae production, and benthic oxy-
gen demand.
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Figure 3 Schematic representations of nitrogen an
The interface program iSWAT

Discretization of the watershed into HRUs results in the gen-
eration of numerous SWAT input files in ASCII format. Each
subbasin requires four files to specify the subbasin, weather,
water use, and water quality parameters, while each HRU
requires six files to store information on chemistry, ground-
water, topography, management, routing, and soil proper-
ties. For the current project, the discretised watershed
properties were stored in 809 files. Because any calibration
procedure requires repeated changing of the parameter val-
ues followed by model run, the use of an interface to auto-
mate this procedure is essential. For this purpose a generic
interface (iSWAT) program was developed. This program
allows parameter aggregation on the basis of hydrologic
group, soil, landuse, and subbasin specifications formulated
as:

x hparnamei:hexti hhydrogrpi hsoltexti hlandusei hsubbsni

where x_ is a code to indicate the type of change to be ap-
plied to the parameter. If replaced by v_ it would mean
the existing parameter value is to be replaced by a given
value, while a_ would mean a given quantity should be
added to the existing parameter value, and r_ would mean
the existing parameter value should be multiplied by (1 + a
given value); hparnamei is the SWAT parameter name;
hexti is the SWAT file extension code for the file containing
the parameter; hhydrogrpi is the soil hydrological group
(‘A’, ‘B’, ‘C’ or ‘D’); hsoltexti is the soil texture; hlandusei
is the landuse category; and hsubbsni is the subbasin num-
ber, crop index, or fertilizer index. Any combination of the
above factors can be used to describe a parameter identi-
fier; hence, providing the opportunity for a detailed
parameterization of the system. Omitting the identifiers
hhydrogrpi, hsoltexti, hlandusei, and hsubbsni would allow
global assignment of parameters. The iSWAT interface
has a generic format that allows for easy coupling with
any optimization program.
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d phosphorus cycles (after Arnold et al., 1998).
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In the current project iSWAT was coupled with SUFI-2
optimization program (Abbaspour et al., 2004). A brief
description of SUFI-2 is presented below.

Conceptual basis of the SUFI-2 uncertainty analysis
routine
In SUFI-2, uncertainty of input parameters are depicted as
uniform distributions, while model output uncertainty is
quantified by the 95% prediction uncertainty (95PPU) calcu-
lated at the 2.5% and 97.5% levels of the cumulative distri-
bution of output variables obtained through Latin hypercube
sampling. The concept behind the uncertainty analysis of
the SUFI-2 algorithm is depicted graphically in Fig. 4. This
figure illustrates that a single parameter value (shown by
a point) leads to a single model response (Fig. 4a), while
propagation of the uncertainty in a parameter (shown by a
line) leads to the 95PPU illustrated by the shaded region
in Fig. 4b. As parameter uncertainty increases (Fig. 4c),
the output uncertainty also increases.

Plotting the measured data alongside the 95PPU can be
quite revealing with respect to the choice of the parameter
uncertainty ranges. For example, if the situation in Fig. 4d
a

b

c 

d

Figure 4 Illustration of the relationship between parameter
uncertainty and prediction uncertainty. A single-valued param-
eter results in a single response (a), whereas an uncertain
parameter leads to uncertainty in prediction depicted by the
95%PPU (b and c). The larger the parameter uncertainty, the
larger will be the 95PPU (c). If parameters are at their
maximum physical limits and the 95PPU does not bracket the
measured response, then model must be re-evaluated (d).
occurs, then parameter range must be shifted in an appropri-
ate direction, and if the range of the parameter uncertainty
already corresponds to the limits of physically meaningful
values, then the problem is not one of parameter calibration
and the conceptual model must be re-examined.

SUFI-2 starts by assuming a large parameter uncertainty,
so that the measured data initially falls within the 95PPU,
then decrease this uncertainty in steps until two rules are
satisfied: (1) the 95PPU band brackets ‘‘most of the obser-
vations’’ and (2) the average distance between the upper
(at 97.5% level) and the lower (at 2.5% level) parts of the
95PPU is ‘‘small’’. Quantification of the two rules is some-
what problem dependent. If measurements are of high qual-
ity, then 80–100% of the measured data should be
bracketed by the 95PPU, while a low quality data may con-
tain many outliers and it may be sufficient to account only
for 50% of the data in the 95PPU. For the second rule we re-
quire that the average distance between the upper and the
lower 95PPU be smaller than the standard deviation of the
measured data. This is a practical measure based on our
experience. A balance between the two rules ensures brac-
keting most of the data within the 95PPU, while seeking the
smallest possible uncertainty band. We use the above two
measures to quantify the strength of calibration and
accounting of the combined parameter, model, and input
uncertainties.

SUFI-2 as an optimization algorithm
A short step-by-step description of SUFI-2 algorithm is as
follows:

Step 1. In the first step an objective function is defined.
The literature shows many different ways of formulating an
objective function (e.g., Legates and McCabe, 1999; Gupta
et al., 1998). Each formulation may lead to a different re-
sult; hence, the final parameter ranges are always condi-
tioned on the form of the objective function. To
overcome this problem, some studies (e.g., Yapo et al.,
1998) combine different types of functions (e.g., based on
root mean square error, absolute difference, logarithm of
differences, R2, v2, etc.) to yield a ‘‘multi-criteria’’ formu-
lation. The use of a ‘‘multi-objective’’ formulation (Duan
et al., 2003; Gupta et al., 1998) where different variables
are included in the objective function is also important to
reduce the non-uniqueness problem. The objective function
used in this project is described later in model application.

Step 2. The second step establishes physically meaning-
ful absolute minimum and maximum ranges for the param-
eters being optimized. There in no theoretical basis for
excluding any one particular distribution. However, because
of the lack of information, we assume that all parameters
are uniformly distributed within a region bounded by mini-
mum and maximum values. Because the absolute parameter
ranges play a constraining role, they should be as large as
possible, yet physically meaningful:

bj : bj;abs min 6 bj 6 bj;abs max; j ¼ 1; . . . ;m; ð1Þ

where bj is the j-th parameter and m is the number of
parameters to be estimated.

Step 3. This step involves an optional, yet highly recom-
mended ‘‘absolute sensitivity analysis’’ for all parameters
in the early stages of calibration. We maintain that no auto-
mated optimization routine can replace the insight from
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physical understanding and knowledge of the effects of
parameters on the system response. The sensitivity analysis
is carried out by keeping all parameters constant to realistic
values, while varying each parameter within the range as-
signed in step one. For each parameter about five simula-
tions are performed by simply dividing the absolute ranges
in equal intervals and allowing the midpoint of each interval
to represent that interval. Plotting results of these simula-
tions along with the observations on the same graph gives
insight into the effects of the parameters on observed
signals.

Step 4. Initial uncertainty ranges are next assigned to
parameters for the first round of Latin Hypercube sampling,
i.e.

bj : ½bj;min 6 bj 6 bj;max�; j ¼ 1;m: ð2Þ

In general, the above ranges are smaller than the absolute
ranges, are subjective, and are dependent upon experience.
The sensitivity analysis in step 3 can provide a valuable
guide for selecting appropriate ranges. Although important,
these initial estimates are not crucial as they are updated
and allowed to change within the absolute ranges.

Step 5. A Latin Hypercube (McKay et al., 1979) sampling
is carried out next; leading to n parameter combinations,
where n is the number of desired simulations. This number
should be relatively large (approximately 500–1000). The
simulation program is then run n times and the simulated
output variable(s) of interest, corresponding to the mea-
surements, are saved.

Step 6. As a first step in assessing the simulations, the
objective function, g, is calculated.

Step 7: In this step a series of measures is calculated to
evaluate each sampling round. First, the sensitivity matrix,
J, of g(b) is computed using:

Jij ¼
Dgi
Dbj

; i ¼ 1; . . . ;Cn
2; j ¼ 1; . . . ;m; ð3Þ

where Cn
2 is the number of rows in the sensitivity matrix

(equal to all possible combinations of two simulations),
and j is the number of columns (number of parameters).
Next, equivalent of a Hessian matrix, H, is calculated by fol-
lowing the Gauss–Newton method and neglecting the high-
er-order derivatives as:

H ¼ JTJ: ð4Þ

Based on the Cramer–Rao theorem (Press et al., 1992) an
estimate of the lower bound of the parameter covariance
matrix, C, is calculated from:

C ¼ s2gðJ
TJÞ�1; ð5Þ

where s2g is the variance of the objective function values
resulting from the n runs. The estimated standard deviation
and 95% confidence interval of a parameter bj is calculated
from the diagonal elements of C (Press et al., 1992) from:

sj ¼
ffiffiffiffiffiffi
Cjj

p
ð6Þ

bj;lower ¼ b�j � tm;0:025sj; ð7Þ
bj;upper ¼ b�j þ tm;0:025sj; ð8Þ

where b�j is the parameter b for one of the best solutions
(i.e. parameters which produce the smallest value of the
objective function), and m is the degrees of freedom
(n �m). Parameter correlations can then be assessed using
the diagonal and off-diagonal terms of the covariance ma-
trix as follows:

rij ¼
Cijffiffiffiffiffiffi

Cii

p ffiffiffiffiffiffi
Cjj

p : ð9Þ

It is important to note that the correlation matrix r quan-
tifies the change in the objective function as a result of a
change in parameter i, relative to changes in the other
parameters j. As all parameters are allowed to change,
the correlation between any two parameters is quite
small.

Parameter sensitivities were calculated by calculating
the following multiple regression system, which regresses
the Latin hypercube generated parameters against the
objective function values:

g ¼ aþ
Xm
i¼1

bibi: ð10Þ

A t-test is then used to identify the relative significance of
each parameter bi. We emphasize that the measures of sen-
sitivity given by [10] are different from the sensitivities cal-
culated in step 3. The sensitivities given by [10] are
estimates of the average changes in the objective function
resulting from changes in each parameter, while all other
parameters are changing. Therefore, [10] gives relative sen-
sitivities based on linear approximations and, hence, only
provides partial information about the sensitivity of the
objective function to model parameters. Furthermore, the
relative sensitivities of different parameters, as indicated
by the t-test, depend on the ranges of the parameters.
Therefore, the ranking of sensitive parameters may change
in every iteration.

Step 8. In this step measures assessing the uncertainties
are calculated. Because SUFI-2 is a stochastic procedure,
statistics such as percent error, R2, and Nash–Sutcliffe,
which compare two signals, are not applicable. Instead,
we calculate the 95% prediction uncertainties (95PPU) for
all the variable(s) in the objective function. As previously
mentioned, this is calculated by the 2.5th (XL) and
97.5th (XU) percentiles of the cumulative distribution of
every simulated point. The goodness of fit is, therefore,
assessed by the uncertainty measures calculated from
the percentage of measured data bracketed by the
95PPU band, and the average distance �d between the
upper and the lower 95PPU (or the degree of uncertainty)
determined from:

�dX ¼
1

k

Xk
l¼1
ðXU � XLÞl; ð11Þ

where k is the number of observed data points. The best
outcome is that 100% of the measurements are bracketed
by the 95PPU, and �d is close to zero. However, because of
measurement errors and model uncertainties, the ideal val-
ues will generally not be achieved. A reasonable measure
for �d, based on our experience, is calculated by the d-factor
expressed as:

d-factor ¼
�dX

r
; ð12Þ
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where rX is the standard deviation of the measured variable
X. A value of less than 1 is a desirable measure for the
d-factor.

Step 9. Because parameter uncertainties are initially
large, the value of �d tends to be quite large during the first
sampling round. Hence, further sampling rounds are needed
with updated parameter ranges calculated from:

b0j;min ¼ bj;lower �max
ðbj;lower � bj;minÞ

2
;
ðbj;max � bj;upperÞ

2

� �
;

b0j;max ¼ bj;upper þ Max
ðbj;lower � bj;minÞ

2
;
ðbj;max � bj;upperÞ

2

� �
;

ð13Þ

where b 0 indicate updated values. The top p solutions are
used to calculate bj,lower and bj,upper, and the largest
ðb0j;max � b0j;minÞ is used for the updated parameter range.
The above criteria, while producing narrower parameter
ranges for each subsequent iteration, ensure that the up-
dated parameter ranges are always centered on the top p
current best estimates, where p is a user defined value. In
the final step, parameters are ranked according to their sen-
sitivities, and highly correlated parameters are also identi-
fied. Of the highly correlated parameters, those with the
smaller sensitivities should be fixed to their best estimates
and removed from additional sampling rounds.

Model parameterisation

In this study, the Thur watershed was subdivided into 16
subbasins and 149 HRUs. The watershed parameterisation
and the model input were derived using the SWAT ArcView
Interface (Di Luzio et al., 2002), which provides a graphical
support to the disaggregation scheme and allows the con-
struction of the model input from digital maps. The basic
data sets required to develop the model input are: topogra-
phy, soil, landuse and climatic data. The data used in mod-
elling are as follows:

(i) Digital elevation model (DEM), produced by the
swisstopo (grid cell: 25 m · 25 m) (DHM25@2004swiss-
topo) (http://www.swisstopo.ch/en/products/digital/
height/dhm25).

(ii) Digital stream network, produced by the swisstopo at
a scale of 1:25,000 (Vector25@2004 swisstopo) (http://
www.swisstopo.ch/en/products/digital/landscape/
vec25/vec25gwn).

(iii) Soil map, produced by the Swiss Federal Statistical
Office at a scale of 1:200,000 (BEK200, BFS Geostat,
CH) (http://www.bfs.admin.ch/bfs/portal/en/index.
html), and soil data from the Kanton Zürich Office
of Planning and Measurement (Bodenkarte 1:5000,
ARV Kanton Zurich) (http://www.arv.zh.ch/).

(iv) Landuse map, produced by the Swiss Federal Statisti-
cal Office (grid cell: 100 m · 100 m) (Arealstatistik
1992/1997 BFS Geostat) (www.bfs.admin.ch).

(v) Agricultural census data, produced by Swiss Federal
Statistical Office at a municipality level (www.bfs.
admin.ch).

(vi) Climate data, records from 17 precipitation, eight air
temperature, five solar radiation, five relative humid-
ity, and five wind speed gages over a period of 20
years (1980–2000) were used in the model, data were
obtained from the Swiss Federal Office of Meteorology
and Climatology (http://www.meteoschweiz.ch/
web/en/weather.html).

(vii) Point source emissions include monthly organic nitro-
gen, nitrates, nitrites and nitrogen ammonia dis-
charges obtained from available records at several
cantonal stations for a period of 10 years (1991–
2000) (Kanton Zurich, St. Gallen, Thurgau). All above
websites are active and have been last accessed on
June 2006.

The soil map includes 17 types of soils. Soil texture,
available water content, hydraulic conductivity, bulk den-
sity, and organic carbon content information were available
for different layers (between two and five layers) for each
soil type. A generalization of land management was thus
established, considering five main classes: agriculture,
range, forest-deciduous, forest-evergreen, urban, and
water. In the Thur watershed wheat occupied about 40%
of crop areas, corn 20–25%, sugar beat 10–13% and potato
about 5%. Representative crops for each subbasin/HRU were
selected according to the available cantonal agricultural
management data. Wheat was chosen as a representative
crop in the lower portion of the Thur watershed, whereas
the middle and small fragments of the upper parts were
delineated as meadows.

In our simulation, the following management scheme was
adopted. Winter wheat was planted in mid-November, after
a tillage operation, followed by a fertilizer application of
150 kg N ha�1 and 90 kg P ha�1. Winter wheat was harvested
in late August to early September and the soil was tilled
again, to incorporate plant residues. An average value of
9 kg N ha�1 and 1 kg P ha�1 were applied on range grasses
during spring.

Available point source discharge records consisted of
monthly values for the period of 1991–2000 on the subbasin
level. Calculated average annual loads from available re-
ported point sources were: 210 t year�1 for nitrates,
360 t year�1 for total nitrogen and about 20 t year�1 for to-
tal phosphorus.

An initial concentration of 1 ppm nitrogen was assumed
in precipitation, but later this was calibrated to 1.3 ppm.
Considering that the mean annual precipitation in the Thur
basin is 1460 mm, this corresponds to an average input of
about 19 kg N ha�1 per year. This value is in agreement with
data given in the literature. The typical range of the total
nitrogen wet deposition for Switzerland is between 10 and
20 kg N ha�1 per year (EAWAG News Information Bulletin,
2000).

Model application

SWAT was calibrated based on the biweekly measured dis-
charge, sediment, nitrate, and total phosphorous loads at
the watershed outlet at Andelfingen station (Fig. 2). Water
discharge was measured continuously. Concentrations of
sediments (suspended solids), nitrate, and total phospho-
rous in the river water were determined in biweekly com-
posite flow proportional samples. Corresponding biweekly
loads were calculated as the product of biweekly average
water discharge times concentration.

http://www.swisstopo.ch/en/products/digital/height/dhm25
http://www.swisstopo.ch/en/products/digital/height/dhm25
http://www.swisstopo.ch/en/products/digital/landscape/vec25/vec25gwn
http://www.swisstopo.ch/en/products/digital/landscape/vec25/vec25gwn
http://www.swisstopo.ch/en/products/digital/landscape/vec25/vec25gwn
http://www.bfs.admin.ch/bfs/portal/en/index.html
http://www.bfs.admin.ch/bfs/portal/en/index.html
http://www.arv.zh.ch/
http://www.bfs.admin.ch
http://www.bfs.admin.ch
http://www.bfs.admin.ch
http://www.meteoschweiz.ch/web/en/weather.html
http://www.meteoschweiz.ch/web/en/weather.html
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A constrained objective function was used to ensure cor-
rect loads were being simulated for different landuses. The
objective function, g, and the constraints were formulated
as follows:

Minimize :

g ¼ 1

r2
Qm

X130
i¼1
ðQm � Q sÞ2i þ

1

r2
Sm

X130
i¼1
ðSm � SsÞ2i

þ 1

r2
Nm

X130
i¼1
ðNm � NsÞ2i þ

1

r2
Pm

X130
i¼1
ðPm � PsÞ2i
Table 1 List of SWAT’s parameters that were fitted and their fin

Variable Sensitive parameter

Parameters sensitive to all four variables – snowfall tempera
– Melt factor for sn
– Melt factor for sn
– Snowmelt base te
– Snowmelt temper
– Baseflow alpha fa
– Groundwater dela
– Curve number, r_
– Manning’s n value
– Effective hyd. con
– Soil available wat
– Soil hydraulic con
– Soil bulk density,
– Maximum canopy
– Maximum canopy
– Maximum canopy

Parameters sensitive to sediment only – Sediment routing
– Channel re-entrai
– Channel re-entrai
– Channel erodabili
– Channel cover fac

Parameters sensitive to total
phosphorus only

– Phosphorus availa
– P enrichment rati
– Rate constant for
– Organic P settling

Parameters sensitive to nitrate only – Nitrogen in rain, R
– Nitrogen uptake d
– Concentration of
– Organic N enrichm
– Nitrate percolatio

Parameters sensitive to sediment
and total phosphorus

– support practice f
– water erosion fac
– water erosion fac
– water erosion fac
– soil erodability fa

a The extension (.bsn) refers to the SWAT file type where the param
b The fixed values indicate that a parameter was fitted and then fixe
c The qualifier (v__) refers to the substitution of a parameter by a va

the parameter were the current values is multiplied by 1 plus a facto
d AGRR = agricultural, PAST = pasture, ORCD = orchard, FRST = forest
Subject to : 0:1 6 SForest 6 0:3 1:5 6 SAgricultural

6 6 ðt ha�1Þ 2:2 6 NForest 6 16 19

6 NAgricultural 6 47 15 6 NPasture

6 25 ðkg N ha�1Þ 0:02 6 PForest

6 0:1 0:5 6 PAgricultural 6 2:4 0:3

6 PPasture 6 1:2 ðkg P ha�1Þ ð14Þ
where Q is the average biweekly discharge (m3 s�1), S is the
total biweekly sediment load in the river (t), N is the total
biweekly nitrate (NO3-N) load in the river (kg), P is the total
al calibrated values

s Final parameter
value

ture, SFTMP.bsna �1.1b
ow on December 21, SMFMN.bsn 0.36
ow on June 21, SMFMX.bsn 2.84
mperature, SMTMP.bsn 2.8
ature lag factor, TIMP.bsn 0.29
ctor, v__ALPHA_BF.gwc [0.17,0.34]
y time, v__GW_DELAY.gw 0.74
_CN2.mgt [0.085,0.045]
for the main channel, v__CH_N2.rte [0.0,0.3]
d. in the main channel, v__CH_K2.rte [4,14]
er storage capacity, r__SOL_AWC.sol [�0.17,0.3]
ductivity, r__SOL_K.sol [�0.19,0.5]
r__SOL_BD.sol [�0.02.7,0.3]
storage, v__CANMX.hru__AGRRd 2.8
storage, v__CANMX.hru__FRST 4.8
storage, v__CANMX.hru__PAST 4.1

factor in main channels, v__PRF.bsn [0.2,0.25]
ned exponent parameter v__SPEXP.bsn [1.35,1.47]
ned linear parameter v__SPCON.bsn [0.001,0.002]
ty factor, v__CH_EROD.rte [0.12,0.14]
tor, v__CH_COV.rte [0.2,0.25]

bility index, v__PSP.bsn [0.5,0.7]
o with sediment loading, ERORGP.hru [2.0,4.0]
mineralization of organic P, BC4.swq [0.3,0.5]
rate, RS5.swq [0.08,0.1]

CN.bsn 1.3
istribution parameter, UBN.bsn 9.4
NO3 in groundwater, r__GWNO3.gw [�0.3,0.5]
ent for sediment, ERORGN.hru 2.75
n coefficient, NPERCO.bsn 0.223

actor r__USLE_P.mgt [�0.6,�0.1]
tor v__USLE_C.crp____AGRR [0.03,0.3]
tor v__USLE_C.crp____PAST,ORCD [0.07,0.2]
tor v__USLE_C.crp____FRST [0.0,0.1]
ctor, r__USLE_K.sol [�0.19,0.5]
eter occurs.
d.
lue from the given range, while (r__) refers to a relative change in
r in the given range.
.
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biweekly total phosphorus load (kg), r2 is the variance, and
‘m’ and ‘s’ subscripts stand for measured and simulated,
respectively. In the constraints, SLanduse is the average an-
nual sediment load of the landuse in the watershed (t ha�1),
NLanduse is the average annual nitrate load of the landuse
(kg N ha�1), and PLanduse is the average annual total phos-
phorus load of the landuse (kg P ha�1) all in the period of
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Figure 5 Simulated and observed daily discharges at the watershe
discharge validation (1996–2000).
1991–1995. Values of the constraints were obtained from
Prasuhn et al. (1996), Prasuhn (1999), and Zobrist and Reic-
hert (2006).

A split sample procedure was used for calibration and
validation. Data from the period of 1991–1995 were used
for calibration, and data from 1996–2000 were used to val-
idate the model. It should be noted that we use the term
alibration
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‘‘validation’’ to comply with the traditional literature syn-
tax. We are well aware that a watershed model can never
be fully validated.
Results and discussion

Calibration of models at a watershed scale is a challenging
task because of the possible uncertainties that may exist in
the form of process simplification, processes not accounted
for by the model, and processes in the watershed that are
unknown to the modeller. Some examples of the above
mentioned model uncertainties are: effects of wetlands
and reservoirs on hydrology and chemical transport; inter-
action between surface and groundwater; occurrences of
landslides, and large constructions (e.g., roads, dams, tun-
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Figure 6 Breakdown of simulated daily dis
nels, bridges) that could produce large amounts of sedi-
ments for a number of years affecting water quantity and
quality; unknown wastewater discharges into water streams
from factories and water treatment plants; and unac-
counted for fertilization, irrigation and water diversions,
and other activities in the river flood planes such as agricul-
tural activities and dumping of construction materials. In a
separate project in the Chaohe Basin in North China, we
experienced insurmountable difficulties with simulation of
sediment load in the river because of activities such as con-
struction, material dumping, etc. The Thur watershed,
however, during the period of study was relatively free of
such activities; hence, model uncertainties were limited
to the errors in the process simplifications alone, e.g.,
the simplification in the universal soil loss equation used
in SWAT.
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Further sources of uncertainties in distributed models
are due to inputs such as rainfall and temperature. Rainfall
and temperature data are measured at local stations and
regionalization of these data may introduce large errors,
especially in mountainous regions. If an anomalous site is
used, then runoff results may be skewed high or low. In
SWAT, climate data for every subbasin is furnished by the
station nearest to the centroid of the subbasin. Direct
accounting of rainfall or temperature distribution error is
quite difficult as information from many stations would be
required. But the ‘‘elevation band’’ option in SWAT could
to some extent alleviate this error by adjusting the temper-
ature and rainfall to account for orographic effects of a
subbasin.

Given the above possible errors, calibration and valida-
tion results of the Thur watershed could be qualified as
‘‘excellent’’ in this study. This indicates a good quality of
the input data as well as small conceptual model errors in
the dominant processes in the watershed.

We began the calibration process by initially including
some 50 parameters in the SUFI-2 algorithm, but in the fifth
and last iteration only 30 were found to be sensitive to dis-
charge, sediment, nitrate, and total phosphorus. In each
iteration, 1000 model calls were performed, for a total of
5000 simulations, attesting the efficiency of SUFI-2. An
‘‘absolute sensitivity analysis’’ (changing the parameters
one at a time while keeping other parameters constant)
was performed for all 50 parameters after the second itera-
tion. The response of all four variables to changes in each
parameter was plotted. This helped to identify the insensi-
tive parameters (causing no or very small changes to vari-
ables), the sensitive parameters to all four variables, and
the parameters that were sensitive to sediment only, total
phosphorus only, and nitrate only (Table 1). This information
proved to be quite useful in operating SUFI-2, which is a par-
tially automated procedure requiring the analyst’s attention
in parameter updating at the end of each iteration.

It is worth mentioning that the results of the absolute
and relative sensitivity analysis conducted for the Thur wa-
Table 2 Break down of water fluxes and sediment and nutrient l
wet, and an average year

Landuse Year Raina

(mm)
ET
(mm)

SURQ
(mm)

LATQ
(mm)

GWQ
(mm)

FRST Dry 1225 627 257 331 98
Wet 1844 600 693 351 209
Average 1521 678 436 394 176

AGRR Dry 1077 648 181 211 86
Wet 1656 636 520 247 226
Average 1355 716 287 264 166

PAST Dry 1457 580 472 452 79
Wet 2174 552 1095 449 117
Average 1806 621 785 513 113

FRST = forest, AGRR = agricultural, PAST = summer pasture, ET = eva
stream, GWQ = groundwater contribution to stream flow, WYLD = SURQ
root zone (groundwater recharge), SYLD = sediment yield, TN = total n
a All entries are averages for landuses occurring in different subbasi
tershed may not be directly applicable to other sites. In the
first procedure all parameters except one are kept constant;
hence, the sensitivity of the varying parameter is condi-
tional upon the values of all others. While in the later case,
the sensitivity of parameters depends on the ranges that are
assigned to the parameters. As the values of the fixed
parameters or the ranges change, the sensitivity of the
parameters may also change. Hence, such analysis must
be performed for each site locally.

Other important considerations in the calibration of the
pre-alpine/alpine Thur watershed were the corrections ap-
plied through the use of ‘‘elevation band’’ option in SWAT.
We assigned four elevation bands with centers at 612, 115,
1691, and 2230 m for the subbasins 2, 5, 8, 9, 11, and 15 lo-
cated at higher elevations (Fig. 2). The lapse rates of
1 mm km�1 and �6 �C km�1 were applied to rainfall and
temperature, respectively. The use of elevation band was
necessary to correct a shift in the discharge data and the
overall dynamics of flow. The calibrated snow-related
parameters are given in Table 1.

The results of the daily discharge simulation are shown in
Fig. 5. These simulations are based on a calibration that
used biweekly discharge, sediment, nitrate, and total phos-
phorus in the objective function. The calibration and valida-
tion statistics are also given in the figures for ease of
referencing. The shaded region (95PPU), which is the simu-
lation result, quantifies all uncertainties because it brackets
a large amount of the measured data, which contains all
uncertainties. The parameter ranges leading to the 95PPU
are also given in Table 1. In SUFI-2, parameter uncertainty
accounts for all sources of uncertainty, e.g., input uncer-
tainty, conceptual model uncertainty, and parameter
uncertainty, because disaggregation of the error into its
source components is difficult, particularly in cases common
to hydrology where the model is nonlinear and different
sources of error may interact to produce the measured devi-
ation (Gupta et al., 2005).

In discharge calibration, 91% of the measured data were
bracketed by the 95PPU while the d-factor had a desired va-
oads into different components for major landuses for a dry, a

WYLD
(mm)

SW
(mm)

PERC
(mm)

SYLD
(t ha�1)

TN
(kg ha�1)

TP
(kg ha�1)

678 100 105 0.1 9 0.08
1238 118 220 0.3 21 0.15
994 116 189 0.2 13 0.1

471 112 93 1.9 16 0.9
980 132 241 4.6 42 2.7
708 127 177 3.7 24 1.3

990 69 84 1.5 19 0.8
1640 82 121 2.5 27 2.5
1392 81 120 1.6 19 1

potranspiration, SURQ = surface runoff, LATQ = lateral flow into
+ LATQ + GWQ-LOSSES, SW = soil water, PERC = percolation below
itrogen, TP = total phosphorus.
ns.
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Figure 7 Simulated and observed biweekly sediment loads carried by the river at the watershed outlet. Top, sediment calibration
(1991–1995); and bottom, sediment validation (1996–2000).
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lue of 1. The validation results were also quite excellent
with 89% of the data bracketed with a d-factor equal to
0.95. To understand the flow processes during different sea-
sons, we plotted the discharges for a wet (1999), a dry
(1997), and an average (2000) year for the validation period
(Fig. 6). For these years, various water flux components are
also given in Table 2. In all three years, over 90% of the
observations were bracketed by the 95PPU, which is an
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excellent statistic. The dry and average years, however,
have slightly larger prediction uncertainties associated with
them. It should be noticed that the use of the term ‘‘dry’’ is
relative as the rainfall is still greater than 1077 mm. The
fluxes in Table 2 reveal that in an average or a wet year sur-
face runoff dominates water yield. In a dry year, however,
lateral flow contribution makes up a larger part of the water
yield from the landuses. Perhaps one important reason for
the favourable discharge simulation of the Thur watershed
is the fact that most of the rainfall in the region translates
into runoff and lateral flow, and parameters dealing with
the lesser understood processes such as groundwater re-
charge, and groundwater–river interaction were not as
important as they would have been if surface runoff and lat-
eral flow did not dominate the flow processes.

The results for biweekly sediment are shown in Fig. 7.
About 80% of the data were bracketed by the 95PPU and
the d-factor had a value of 1.5. Most of the data missing
the 95PPU band were from the very small sediment loads,
while all of the peaks were accounted for. The calibration
and validation statistics show larger uncertainties than dis-
charge. In the validation, 85% of the data were bracketed by
the 95PPU, although the d-factor is small – primarily due to
one large observation resulting in a large standard devia-
tion. Removing this observation gives a larger value of 1.4
for the d-factor. A common problem in the prediction of
particulates such as sediment and organic phosphorus is that
of the ‘‘second-storm’’ effect. After a storm, there is less
sediment to be moved, and the remaining surface layer is
much more difficult to mobilize. Hence, a similar size
storm, or even a bigger size second or third storm could
sediment "s

0

5000

10000

15000

20000

25000

30000

35000

13.09.92 03.10.92 23.10.92 12.11.92

Dat

S
ed

im
en

t (
tn

)

Obs. sediment Sim. sediment

Obs. discharge

storm 1

storm 2

Figure 8 Illustration of the ‘‘second-storm’’ effect on sediment.
does not account for this phenomenon, hence, overestimating the
actually result in smaller sediment loads. The model, how-
ever, does not account for this effect as illustrated in
Fig. 8. The model produces a good simulation of sediment
load for the first storm, while in the second and the third
storms it overestimated the load.

Five parameters were found to be sensitive to sediment
only. These included sediment routing factor in the main
channels (PRF.bsn), channel re-entrained exponent parame-
ter (SPEXP.bsn), channel re-entrained linear parameter
(SPCON.bsn), channel erodability factor (CH_EROD.rte),
and channel cover factor (CH_COV.rte). Three other param-
eters were found to be sensitive to both sediment and total
phosphorus. These included support practice factor (US-
LE_P.mgt), water erosion factor (USLE_C.crp), and soil ero-
dability factor (USLE_K.sol). Fourteen other discharge
related parameters listed in Table 1 were also sensitive to
sediment.

Results of the total phosphorus (TP) simulation in the riv-
er discharge are shown in Fig. 9. As a large part of TP is the
organic component transported by sediment, the ‘‘second-
storm’’ effect as described for the sediment also applies
to TP. For this reason the uncertainty in TP is also large as
indicated by a d-factor of 1.35 for calibration while bracket-
ing only 78% of the data. As in the sediment, the validation
d-factor would also have been quite large without the large
observation occurring in the June of 1999 where a large TP
load of 478,054 kg was reported.

Four parameters were found to be sensitive to TP only
(Table 1). These included phosphorus availability index
(PSP.bsn), P enrichment ratio with sediment loading (ERO-
RGP.hru), rate constant for mineralization of organic P
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Figure 9 Simulated and observed biweekly total phosphorus loads carried by the river at the watershed outlet. Top, total
phosphorus calibration (1991–1995); and bottom, total phosphorus validation (1996–2000).
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(BC4.swq), and organic P settling rate (RS5.swq). The last
two of these parameters are related to in-stream
processes.
Results of the nitrate simulation are given in Fig. 10. Similar
to the discharge, the nitrate simulation is also very good with
small uncertainties, d-factor = 1, while bracketing 82% of the
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data for calibration and 84% for validation. Five parameters
were found to be sensitive to nitrate only. These included
nitrogen in rain (RCN.bsn), nitrogen uptake distribution
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Figure 10 Simulated and observed biweekly nitrate loads carried
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RGN.hru), and nitrate percolation coefficient (NPERCO.bsn).
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In Table 2, sediment and nutrient loads released form
the major landuses into the river is also reported for a
wet, a dry, and an average year. As expected, the largest
loads are produced in the wet year from the agricultural
landuse followed by the summer pasture.

Two points are worth mentioning here. First, the objec-
tive function contained four variables, calibrating the mod-
el for any one variable would produce much better results
for that variable but would not give as good a simulation re-
sult for other variables (the conditionality problem, Abbas-
pour et al., 1999). Second, ignoring the constraints would
also produce better calibration and validation results at
the watershed outlet, but the simulated loads from various
landuses would not comply with our previous knowledge.
Both these points indicate the importance of adding more
variables in and constraining the objective function. This
produces parameters reflecting more of the local processes,
hence, providing more reasonable simulations. The down
side is that more data are required for a reliable model cal-
ibration at the watershed scale. This also raises the impor-
tant questions: when is a watershed model calibrated? And
for what purpose can it be used for?

Conclusions

Given the complexities of a watershed and the large number
of interactive processes taking place simultaneously and
consecutively at different times and places within a wa-
tershed, it is quite remarkable that the simulated results
comply with the measurements to the degree that they
do. Based on the results obtained in this study, SWAT is as-
sessed to be a reasonable model to use for water quality and
water quantity studies in the Thur watershed. On that posi-
tive note, however, a careful calibration and uncertainty
analysis and proper application of modelling results should
be exercised. The following conclusions could be drawn
from the present study:

1. A watershed model calibrated based on measured data at
the outlet of the watershed may produce erroneous
results for various landuses and subbasins within the
watershed, unless the objective function was con-
strained to produce correct results. This means that a
large amount of measured data are necessary for a
proper model calibration.

2. Simulation of particulates such as sediment and phospho-
rus are subject to large model uncertainties because of
the ‘‘second-storm’’ effect, among others.

3. Large-scale watershed models could be effective for sim-
ulating watershed processes and therefore watershed
management studies. The simulation of hydrology, sedi-
ment, and nutrient loads were of reasonable accuracy,
allowing such integrated models to be used in scenario
analysis.
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