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PREDICTING HYDROLOGIC RESPONSE TO CLIMATE CHANGE

IN THE LUOHE RIVER BASIN USING THE SWAT MODEL

X. Zhang,  R. Srinivasan,  F. Hao

ABSTRACT. This article assesses the effect of potential future climate change on streamflow in the Luohe River basin. The
predicted future climate change by two SRES (Special Report on Emissions Scenarios) climate change scenarios (A2 and B2)
and two general circulation models (HadCM3 and CGCM2) were applied. SWAT (Soil and Water Assessment Tool), a
physically based distributed hydrological model, was calibrated using daily streamflow records from 1992 to 1996 with a
powerful shuffled complex evolution optimization algorithm (SCE-UA) and validated using daily streamflow records from
1997 to 2000. The calibration and validation results showed that the SWAT model was able to simulate the daily streamflow
well, with a coefficient of determination and Nash-Sutcliffe efficiency greater than 0.7 and 0.5, respectively, for both the
calibration and validation periods. Using the average streamflow from 1992 to 2000 as a baseline, the simulated annual
average streamflow showed almost no change in the near future (around 2020) and increased by approximately 10% by 2050.
Predicted seasonal average streamflow showed changes within ±20%. Monthly average streamflow showed changes within
±20% for all months except May, which showed predicted monthly streamflow increases of as much as 60%. Based on model
results, the Luohe River basin will likely experience a small change in streamflow by the mid-21st century. However, the
uncertainty associated with climate change scenarios and general circulation model outputs need to be carefully evaluated
in regard to future water policies and strategies.
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limate variability and change are expected to alter
regional hydrologic conditions and result in a vari-
ety of impacts on water resource systems through-
out the world. Potential impacts may include

changes in hydrological processes such as evapotranspira-
tion, soil moisture, water temperature, streamflow volume,
timing and magnitude of runoff, and frequency and severity
of floods, all of which would cause changes in other environ-
mental variables such as plant growth and sediment and nutri-
ent fluxes into water bodies (Lettenmaier and Gan, 1990;
Curry et al., 1990; Burn, 1994; Hurd et al., 1999; Nijssen et
al., 2001; Ghosh et al., 1999; Bouraoui et al., 2003; Slobodan
and Li, 2004; Zierl and Bugmann, 2005; Zhang, 2005). Such
hydrologic changes will affect almost every aspect of human
well-being, from agricultural productivity and energy use to
flood control, municipal and industrial water supplies, and
fish and wildlife management (Xu, 1999, 2000). Studies of
global change on the hydrologic cycle play a growing role in
today’s hydrological research. Quantitative estimations of
the hydrological effects of climate change will be helpful in
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understanding potential water resource problems and making
better planning decisions.

Since hydrologic conditions vary from region to region,
the influences of climatic change on local hydrological pro-
cesses will likely differ between localities, even under the
same climate scenarios. Studies in recent years have shown
important regional water resource vulnerabilities to changes
in both temperature and precipitation patterns (Lahmer et al.,
2001). It is primarily at the local and regional scales that
policy and technical measures could be taken to avoid or re-
duce the negative effects of climate change on the natural en-
vironment and society. Consequently, the development of
region-specific  assessments of climate change impacts for
the sake of regional water resources planning has emerged as
a major area of active research (Brekke et al., 2004).

The Yellow River (YR) basin, known as the cradle of Chi-
na, has recently become known as “China’s Sorrow” (Li and
Finlayson, 1993). According to Liu (2004), this is because the
YR basin experienced severe drought in the 1980s and 1990s,
resulting in remarkable societal and environmental impacts,
such as drinking and irrigation water shortages and degrada-
tion of aquatic ecosystems. For example, in each year of the
1990s, there was no streamflow available for months in the
downstream portions of the Yellow River. Based on analysis
of the water cycle changes in the YR basin, Liu (2004) sug-
gested that measures should be employed to include climate
change influences in management decisions. Several studies
have been conducted to apply simple empirical models to
predict water yield change in the YR basin. For example, Bao
and Hu (2000) designed future climate scenarios by adding
the future monthly precipitation and temperature change
simulated by general circulation models (GCMs) to the base-
line precipitation and temperature data, and applied a simple
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Figure 1. Location and boundary of the downstream reaches of the Luohe River basin in the Yellow River, along with the inlet and outlet hydrologic
stations and water diversion points.

lumped monthly water balance model to simulate annual av-
erage water yield response to future climate change. Wang et
al. (2001) designed several “incremental scenarios” (Strze-
pek and Yates, 1996) for future climate change by applying
uniform changes of precipitation or temperature over the en-
tire year (e.g., a temperature increase of +2° or precipitation
decrease of 20 mm , and applied a simple lumped model to
simulate water yield response to climate change).

The lumped hydrologic models in the studies described
above use spatially uniform input data, and usually are not
meant to represent physical watershed characteristics. To the
best of our knowledge, no studies have been conducted using
a complex, physically based, distributed hydrologic model to
predict future streamflow response to climate change at the
regional scale in the YR basin. The Luohe River basin (fig. 1)
is the largest tributary basin for the middle and lower reaches
of the YR below the Sanmenxia Dam, and the only branch
that could exert important influence on the river below the
Xiaolangdi Dam (Guo and Zheng, 1995; Li et al., 2001). The
flow volume at the outlet (the Baimasi hydrological station)
of the Luohe River basin has decreased dramatically in the
last 40 years of the 20th century. During 1961-1990, the aver-
age flow rate at the Baimasi hydrological station was about
55 m3 s−1, while in the 1990s, the average flow rate decreased
to approximately 30 m3 s−1. With economic development and
population increase in the Luohe River basin, the conflict be-
tween water use and water supply will become increasingly
more serious in the future. Understanding the possible im-
pacts of climate change on streamflow is of great importance
for the appropriate design and management of water re-
sources in this region.

The main objective of this study was to evaluate the cli-
mate change effect on the future streamflow volume at the
outlet of the Luohe River basin. In order to accomplish this
objective,  SWAT (Soil and Water Assessment Tool), a dis-
tributed hydrologic model, was calibrated using an automatic
calibration program to simulate the streamflow at the outlet
of the Luohe River basin. Next, the future precipitation and
temperature changes projected by different general circula-
tion models (GCMs) under various climate change scenarios
were input into SWAT to predict future streamflow changes.
The results obtained in this study are expected to provide
more insight into the availability of future streamflow, and to
provide local water management authorities with a planning
tool.

MATERIAL AND METHODS
STUDY AREA DESCRIPTION

The streamflow at the outlet (the Bamasi hydrologic sta-
tion) is mainly controlled by the inlet (the Changshui hydro-
logic station) streamflow and by water yield and water use in
the downstream reaches of the Luohe River (fig. 1). The input
flow volume at the Changshui hydrologic station is con-
trolled by the Guxian Reservoir, located upstream, where the
average flow rate ranged between 5 and 12 m3 s−1 over the
last four decades of the 20th century. This small variation of
inlet streamflow at the Changshui hydrologic station could
therefore not possibly cause the dramatic decrease in stream-
flow at the outlet of the Luohe River basin. The dramatic
streamflow decrease at the outlet must therefore be assumed
to be the result of climate change (precipitation and tempera-
ture), land use changes, and water use changes in the down-
stream reaches of the Luohe River. The downstream reaches
of the Luohe River basin, with an area of 5,239 km2, were
therefore selected as the study area. The study area river sys-
tem, inlet and outlet hydrologic stations, and water diversion
points are shown in figure 1. This study will examine the ef-
fect of potential climate change on available streamflow at
the outlet of Luohe River basin under the assumption that fu-
ture water diversions and land use changes will not dramati-
cally alter flow in the downstream reaches of the Luohe River
basin.

The study area is characterized by flat alluvial plains, ex-
cept in the western and southern portions of the area, which
are predominately foothill plains. Land use in this basin is
mostly cropland, forest, and pasture. Cropland accounts for
approximately  68% of the total area, among which paddy
fields account for 13% and dry land farming accounts for
55%. Forests cover 18% of the study area, while pasture ac-
counts for 10%. All other land use types (rural area, urban
area, water) make up only 8% of the study area. The soil types
in the area include cultivated drab soils (19%), clayed fluvo-
aquic soils (11%), typic burozems (16%), typic cinnamon
soils (25%), luvic cinnamon soils (9%), and calcic cinnamon
soils (20%). The downstream reaches of the Luohe River ba-
sin are characterized by a warm temperate climate. Using
data from 1990 to 2000, the average annual temperature of
the study area was 13.47°C, and the average annual precipi-
tation was 579.2 mm.
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Table 1. Input dataset for the SWAT model.
Data Type Source Scale Data Description/Properties

Topography National Geomatics Center of China 1:250,000 Elevation

Soil
Institute of Soil Science, Chinese Academy of
Sciences (CAS) 1:1,000,000

Soil classifications and physical properties such as bulk density,
texture, and saturated conductivity.

Land use
Institute of Geographical Sciences and Natural
Resources Research, CAS 1:1,000,000

Land-use classifications such as cropland, pasture, and forest.

Weather
Water Resources Conservancy Committee of the
Yellow River Basin --

Daily precipitation and air temperature.

SWAT MODEL DESCRIPTION
SWAT is a continuous, long-term, distributed-parameter

model designed to predict the impact of land management
practices on the hydrology and sediment and contaminant
transport in agricultural watersheds (Arnold et al., 1998).
SWAT subdivides a watershed into sub-basins connected by
a stream network, and further delineates HRUs (hydrologic
response units) consisting of unique combinations of land
cover and soils within each sub-basin. The model assumes
that there are no interactions among HRUs, and these HRUs
are virtually located within each sub-basin. HRUs delinea-
tion minimizes the computational costs of simulations by
lumping similar soil and land use areas into a single unit
(Neitsch et al., 2002).

SWAT is able to simulate surface and subsurface flow, sed-
iment generation and deposit, and nutrient fate and move-
ment through the landscape and river. In this article, only the
streamflow component of the SWAT simulation will be de-
scribed. The hydrologic routines within SWAT account for
snow accumulation and melt, vadose zone processes (i.e., in-
filtration,  evaporation, plant uptake, lateral flows, and per-
colation), and groundwater flows. Surface runoff volume is
estimated using a modified version of the USDA-SCS curve
number method (USDA-SCS, 1972). A kinematic storage
model (Sloan et al., 1983) is used to predict lateral flow,
whereas return flow is simulated by creating a shallow aqui-
fer (Arnold et al., 1998). Channel flood routing is estimated
using the Muskingum method. Outflow from a channel is also
adjusted for transmission losses, evaporation, diversions, and
return flow. The SWAT model has been extensively tested for
hydrologic modeling at different spatial scales. Srinivasan et
al. (1998) and Arnold et al. (1999) evaluated the SWAT mod-

el for hydrologic modeling at the conterminous scale of U.S.
Spruill et al. (2000) and Chu and Shirmohammadi (2004)
successfully simulated monthly flow in a 5.5 km2 watershed
in Kentucky and a 3.4 km2 watershed in the Piedmont physio-
graphic region of Maryland, respectively. Many studies have
also applied SWAT model in meso-scale watersheds. For ex-
ample, Santhi et al. (2001) successfully simulated monthly
flow in the Bosque River watershed with a drainage area of
4,277 km2; Kirsch et al. (2002) successfully simulated annual
runoff in the 9,708 km2 Rock River basin lying within the gla-
ciated portion of south central and eastern Wisconsin; Wang
and Melese (2005) evaluated the SWAT model’s snowmelt
hydrology in the meso-scale Wild Rice River watershed
(4,334 km2) in Minnesota; and White and Chauby (2005)
successfully applied SWAT to simulated multi-site monthly
flow in the 3000 km2 Beaver Reservoir watershed in north-
west Arkansas. As a physically based distributed model,
SWAT needs many input datasets (table 1) to support its ap-
plication.  Figure 2 shows the weather stations within or near
the study area that provided daily precipitation and air tem-
perature records.

OPTIMIZATION OF THE SWAT MODEL

Determination of input parameter values for a hydrologic
model is a critical procedure for model application. The orig-
inal SWAT model’s design objective was to operate in large-
scale ungauged basins with little or no calibration effort
(Arnold et al., 1998). Therefore, most of the SWAT parame-
ters can be estimated automatically using the GIS interface
and meteorological information, combined with internal
model databases (Fontaine et al., 2002). Several studies have
demonstrated that the input parameter values for SWAT can

Figure 2. Map of the 41 weather stations within or around the study area.
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be successfully estimated without calibration in a wide vari-
ety of hydrologic systems and geographic locations using
readily available GIS databases that have been developed
based on prior knowledge (Arnold et al., 1999; Fontaine et
al., 2002). However, in actual practice, this can be difficult.
Some of the empirical model parameters, such as curve num-
ber and surface runoff lag coefficient, cannot be measured di-
rectly. Other parameters, such as soil hydraulic conductivity,
can be measured directly but suffer from experimental
constraints and scaling issues (measurement and model scale
are different) (Beven, 2000; Madsen, 2003). Under these cir-
cumstances, calibration of parameters is necessary for model
application when improved accuracy is required.

Many studies have been conducted to find effective and
efficient methods for hydrologic model calibration. There are
two main types of calibration methods: manual and automat-
ic. Traditional manual calibration is labor-intensive and sub-
ject to the modeler’s experience. Automatic methods are
becoming more popular because of their ability to take ad-
vantage of the power and speed of computers, while also be-
ing objective and relatively easy to implement. In this work,
a popular automatic optimization method, the shuffled com-
plex evolution (SCE-UA) algorithm developed by Duan et al.
(1992), was used to minimize the differences between model-
predicted and measured daily flow by modifying selected
SWAT model parameters. SCE-UA can efficiently and effec-
tively search the parameter space and find the parameter sets
that provide good simulation results (Sorooshian et al.,
1993), and it has been successfully used in hydrological mod-
eling (van Griensven and Bauwens, 2003).

The optimization objective functions used were Nash-
Sutcliffe efficiency (E) (Nash and Sutcliffe, 1970) and the co-
efficient of determination (R2). The formula to calculate E is
(Legates and McCabe, 1999):
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where P is the model simulated value, O is the observed data,
the over bar is the mean for the entire time period of the evalu-
ation, and i = 1, 2, ..., N, where N is the total number pairs of
simulated and observed data. E indicates how well the plot of
the observed value versus the simulated value fits the 1:1 line,
and ranges from −∞  to 1. The formula for R2 is (Legates and
McCabe, 1999):
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where the symbols are the same as described above. R2 is an
indicator of the strength of the relationship between the ob-
served and simulated values. R2 is the square of the Pearson’s
product-moment  correlation coefficient and describes the
proportion of the total variance in the observed data that can
be explained by the model (Legates and McCabe, 1999) and

ranges from 0 to 1. When the values for E and R2 are equal
to one, the model prediction is considered to be “perfect” Rel-
ative errors (Re) were also applied here as a supplementary
evaluation.

CLIMATE CHANGE SCENARIOS DESCRIPTION

The Intergovernmental Panel on Climate Change (IPCC)
published a new set of emission scenarios in the Special Re-
port on Emissions Scenarios (SRES) (Nakicenovic et al.,
2000) to serve as a basis for assessments of future climate
change (Van Vuuren and O’Nell, 2006). The SRES scenarios
include the range of emissions of all relevant species of
greenhouse gases (GHGs) and sulfur, and their driving forces
including demographic and socio-economic development
and technological change (Nakicenovic et al., 2000). Among
all the SRES scenarios, four marker scenarios (A1, A2, B1,
and B2) are by far used the most often (Van Vuuren and O’N-
ell, 2006). The A1 and B1 scenarios emphasize the ongoing
globalization  and project future worlds with less difference
between regions, while the A2 and B2 scenarios emphasize
the regional and local social, economic, and environmental
development and project more differential worlds. The re-
gionally oriented A2 and B2 scenarios were adopted in this
study. The A2 scenario projects high population growth and
slow economic and technological development, while the B2
scenario projects slower population growth, rapid economic
development, and more emphasis on environmental protec-
tion. Under the A2 and B2 scenarios, the GHGs and other
gases and driving forces were quantified in the IPCC’s Third
Assessment Report (IPCC, 2001) for use in climate simula-
tions by GCMs. For further descriptions of the future emis-
sions scenarios, refer to the SRES (Nakicenovic et al., 2000;
IPCC, 2001).

With the A2 and B2 scenarios, the projected future tem-
perature and precipitation change by two GCMs (the
HadCM3 model developed by the U.K. Meteorological Of-
fice Hadley Centre for climate prediction and research, and
the CGCM2 model developed by the Canadian Centre for
Climate Modelling and Analysis) were obtained from the
IPCC Data Distribution Centre (www.mad.zmaw.de/
IPCC_DDC/html/SRES_TAR/index.html).  The spatial reso-
lutions of HadCM3 and CGCM2 are 3.75° longitude ×
2.5° latitude (417 km × 228 km) and 3.75° longitude ×
3.75° latitude (417 km × 342 km), respectively, which is too
coarse to assess the regional effects of climate change (Snell
et al., 2000). As GCMs are inherently unable to represent lo-
cal subgrid-scale features and dynamics, downscaling the
GCM output to finer resolution is necessary. A simple
downscaling method suggested by the IPCC Data Distribu-
tion Centre was applied, which is to interpolate GCM-scale
output to a finer resolution and then combine the observed
climate data with the interpolated variable changes (Zhang,
2005; IPCC, 2006). This approach is easy to apply and allows
obtaining climate change data at a resolution that would
otherwise be difficult or costly to obtain, but no new meteoro-
logical insight is added in the interpolation process that goes
beyond the GCM-based simulation results (IPCC, 2006). In
this study, a kriging statistical algorithm was used to interpo-
late the GCM-scale output into 4 km grid map, and the spa-
tially averaged variable changes over the study area were
calculated.  Because the climate variable changes projected
by the GCMs were provided as the difference in the average
monthly precipitation and temperature between the future
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and the period from 1961 to 1990, these climate variable
changes were transformed to the difference in the average
monthly precipitation and temperature between the future
and the baseline period (1992-2000). Then the differences in
precipitation  and temperature between the future (2020 and
2050) and the baseline period (1992-2000) were added to ob-
served precipitation and temperature data from the 41 weath-
er stations to represent future climate conditions.

RESULTS AND DISCUSSION
SWAT MODEL CALIBRATION AND VALIDATION

Two time periods were selected for this analysis: the cal-
ibration period (1992-1996), and the validation period
(1997-2000). In addition, the period from 1990-1991 was
used as a model warm-up period, which allows the model to
cycle multiple times in an attempt to minimize the effects of
the user’s estimates of initial state variables, such as soil wa-
ter content and surface residue. The SWAT model was cali-
brated using daily streamflow from 1992-1996. The
calibrated parameters are described in table 2. For surface
runoff, the runoff curve number (CN2) was adjusted to within
±8 from the tabulated curve numbers in order to reflect the
impact of conservation tillage practices and soil residue cov-
er conditions of the watershed. The surface runoff lag coeffi-
cient (SURLAG) was also adjusted for hydrograph timing,
which controls the fraction of the total available water al-
lowed to enter the reach on any given day (i.e., the delay of
the surface runoff). For baseflow, the adjusted parameters in-
clude: the baseflow recession constant (�gw), which is di-
rectly proportional to groundwater flow response to changes
in recharge; the re-evaporation coefficient (REVAPC) for
groundwater, which represents the water that moves from the
shallow aquifer back to the soil profile/root zone and plant
uptake from deep roots; the soil evaporation compensation
factor (ESCO); and the plant evaporation compensation fac-

tor (EPCO). Finally, in order to match the observed stream-
flow, the minimum (SMFMN) and maximum (SMFMX)
snowmelt factors were adjusted for the snowmelt periods.
The SCE-UA algorithm was run in order to search for the best
parameter sets with the objective functions, defined as the
sum of R2 and E. The chosen parameter values are shown in
table 2.

Figure 3 shows a scatter plot of the observed and simulated
mean daily streamflow for the calibration period
(1992-1996). The relative error for daily streamflow volume
was 5.1%. High R2 (0.82) and E (0.64) values suggest that
there was a good agreement between the measured and simu-
lated streamflow during this period. Figure 4 shows a scatter
plot of the simulated and observed daily runoff for the valida-
tion period (1997-2000). The relative error was −2.5%, with
an R2 of 0.74 and E of 0.54, all of which also show reasonably
good agreement. After calibration of several parameters, the
SWAT model captured the hydrologic characteristics in the
study area well and reproduced acceptable daily streamflow
simulations. Streamflow changes under future climate sce-
narios were analyzed on a monthly time step, so the monthly
hydrographs for the calibration and validation periods are
presented in figures 5 and 6. Evaluations of monthly simula-
tions were more accurate than daily simulations. Table 3
shows the summary statistics for the simulated water balance
for the calibration and validation periods in both daily and
monthly time steps.

RESULTS FOR FUTURE CLIMATE CHANGE
The future climate conditions were determined using the

combination of climate change scenarios (A2 and B2) and
GCMs (CGCM2 and HADCM3). The future climate condi-
tions (tables 4 and 5) represent the difference between precip-
itation and temperature in the future and the baseline period
(1992-2000). For this analysis, C represents the CGCM2

Table 2. Calibrated parameter values for the SWAT model.
Variable Description Range Value/Change

CN2 Curve number ±8
Pasture: +2
Forest: -4

Cropland: +1

SURLAG Surface runoff lag coefficient (day) 0 to 10 5.7
REVAPC Groundwater reevaporation coefficient 0.00 to 1.00 0.10

ESCO Soil Evaporation compensation factor 0.00 to 1.00 0.4
EPCO Plant uptake compensation factor 0.00 to 1.00 0.2
αgw base flow recession constant 0.00 to 1.00 0.43

SMFMX Maximum snowmelt factor for June 21 (mm H2O °C-day-1) 0 to 10 8.3
SMFMN Minimum snowmelt factor for December 21 (mm H2O °C-day-1) 0 to 10 5.5
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Figure 3. Scatter plot of daily simulated and observed streamflow during
the calibration period (1992-1996).
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Figure 6. SWAT monthly streamflow validation results (1997-2000).

Table 3. Evaluation coefficients for SWAT calibration and validation.

Period

Mean (m3 s-1)

Re
Time
Step R2 EObs. Sim.

Calibration
(1992-1996) 33.22 31.62 5.1%

Daily 0.82 0.65

Monthly 0.82 0.64

Validation
(1997-2000) 28.52 29.24 -2.5%

Daily 0.735 0.542

Monthly 0.86 0.823

model, H represents the HADCM3 model, and A2 and B2
represent the climate change scenarios. For example,
C2020A2 indicates the climate condition in 2020 simulated
by the CGCM2 model under the A2 climate change scenario.

The analysis of temperature change (table 4) shows an ob-
vious increase in temperature in the future, while the temper-

ature change amplitude is uncertain due to various climate
change conditions. Annual average temperature increases
range from 1.2°C to 2.2°C in 2020 and from 2.4°C to 3.6°C
in 2050. Increases in temperature showed more variation at
the monthly time step, with a range from 0.4°C to 4.7°C in
2020 and from 1.3°C to 6.3°C in 2050. The predicted temper-
ature changes indicate that the overall climate will become
warmer as time passes for all climate scenarios and condi-
tions. Further analysis revealed that the B2 scenario pre-
dicted higher temperature increases than the A2 scenario in
2020, but less of a temperature increase in the 2050 time peri-
od. Under the same climate change scenario, CGCM2 pre-
dicted higher temperature increases than HADCM3 in both
2020 and 2050.

Table 4. Annual and monthly average temperature changes (°C) under various scenarios.
Month

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 Annual

C2020A2 2.2 1.9 2 2.3 3.8 2.9 1.6 1.4 0.9 0.4 1.6 3.2 2
H2020A2 0.9 0.8 0.8 1 1 1.7 1.1 1.5 1.9 1.4 1.2 1.3 1.2
C2020B2 2.2 1.4 2 2.5 4.7 3.1 1.5 1.7 1.4 1.1 1.4 3.4 2.2
H2020B2 1.9 1.3 1.3 0.9 1 1.4 2.1 3 1.9 1.4 2.3 1.5 1.7
C2050A2 4.1 3.8 4.2 3.6 6 4.1 2.6 2.2 2.2 1.7 2.9 6.3 3.6
H2050A2 3 3.3 2.8 1.3 1.9 2.8 3.4 4.8 3 2.4 2.7 2.2 2.8
C2050B2 3.2 2.5 3 2.8 4.1 3.4 2.2 1.7 1.7 1.6 2.4 4.5 2.8
H2050B2 2.3 1.2 1.9 1.3 2.2 2.5 3.4 4.5 2.9 2.5 2.8 1.1 2.4
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Table 5. Annual and monthly cumulative precipitation changes (mm) under various scenarios.
Month Annual

CumulativeScenario 1 2 3 4 5 6 7 8 9 10 11 12

C2020A2 -3.4 -3.6 8.1 13.8 17.1 -12.6 -9.6 10.5 -11.7 -18.9 -12.3 -0.9 -23.7
H2020A2 -0.3 1.1 0.6 1.5 0.9 10.5 -6.8 6.8 4.8 0.9 3.0 0.3 23.4
C2020B2 -4.0 -3.1 3.4 -0.6 30.4 3.3 -11.5 2.5 2.4 0.3 -15.9 -4.0 3.2
H2020B2 1.6 1.1 2.2 2.7 -2.2 8.7 14.9 -3.7 6.6 1.2 3.9 2.2 39.1
C2050A2 -3.7 -1.7 9.3 6.6 42.8 -1.5 8.7 9.9 -6.3 -18.6 -11.4 0.3 34.4
H2050A2 2.5 3.4 4.0 2.4 4.0 9.9 8.4 2.2 16.5 5.0 1.2 2.5 61.9
C2050B2 -3.1 -2.0 14.3 12.3 30.7 -4.2 -5.0 8.1 -10.5 -9.6 -4.5 0.6 27.1
H2050B2 1.2 0.0 2.5 3.6 -0.3 3.9 20.2 10.2 9.6 3.4 4.2 -0.3 58.2

The monthly and annual accumulated precipitation change
values are listed in table 5. As with temperature changes, precip-
itation changes show much uncertainty due to various climate
change conditions. The annual accumulated precipitation
change ranged from −23.7 to 39.1 mm in 2020 and from 27.1
to 61.9 mm in 2050. All climate conditions project more precip-
itation in 2050 than in 2020. Concerning the change in direction
and amplitude at the monthly time step, there were different pat-
terns. In general, HADCM3 predicted relatively even monthly
precipitation change, while CGCM2 predicted a sudden change
in precipitation pattern. Under the same climate change scenar-
ios, CGCM2 predicted a lower precipitation increase than
HADCM3 in both 2020 and 2050.

Regarding both temperature and precipitation, the changes
are clear, and the change in amplitude for both variables is less
remarkable in 2020 than in 2050. However, there is much uncer-
tainty associated with the extent of change under various pos-
sible climate change conditions. This would indicate that future
streamflow response predictions are also uncertain.

STREAMFLOW RESPONSE TO CLIMATE CHANGE

Annual Streamflow Change
Figure 7 shows the effect of possible future climate change

on annual streamflow volume. In 2020, the predicted stream-
flow change is within ±3%. In 2050, possible annual stream-
flow changes are expected to range between +6% and +11%.
All climate change conditions (i.e., the combination of
different climate scenarios and GCMs) project the same
trend, i.e., that annual streamflow volume will remain nearly
unchanged in 2020 and will increase slightly in 2050.
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Figure 7. Possible annual streamflow change in (a) 2020 and (b) 2050 at
the basin outlet.

Seasonal Streamflow Change
Figure 8 shows the seasonal streamflow change resulting

from the predicted scenarios. Here, winter includes January,
February, and March; spring includes April, May, and June;
summer includes July, August, and September; and autumn
includes October, November, and December. In 2020, the
predicted streamflow changes ranged from −4% to +2% in
winter, from +1% to +20% in spring, from −2% to +12% in
summer, and from −9% to +6% in autumn. In 2050, predicted
streamflow changes ranged from −2% to +3% in winter, from
+2% to +20% in spring, from −1% to +12% in summer, and
from −12% to +8% in autumn.

In general, different seasons will exhibit different stream-
flow change patterns. The direction of change in winter, sum-
mer, and autumn varies, while in spring streamflow tends to
increase under all scenarios in both 2020 and 2050. In winter,
the simulated streamflow volume, with a maximum change
of −4% under the C2020B2 scenario, shows almost no
change. In spring, the simulated streamflow volume in-
creases, with a maximum change of approximately +20% un-
der the C2020A2, C2050A2, and C2050B2 scenarios. This
could be related to the snowmelt process driven by increasing
temperature.  Overall, the seasonal streamflow changes were
not dramatic (less than ±20%) in both 2020 and 2050.
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Figure 8. Possible seasonal streamflow volume change for (a) 2020 and (b)
2050.
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Figure 9. Possible monthly streamflow change in (a) 2020 and (b) 2050.

Monthly Streamflow Change
Figure 9 shows the predicted monthly streamflow changes

in the future. In 2020, the possible streamflow change in Jan-
uary, February, March, July, August, September, and October
is within ±10%. In the other months, the maximum possible
streamflow change was predicted to be within ±20%, except
for May, which showed a maximum possible streamflow
change reaching +35%. In 2050, the possible streamflow
change amplitude in January, February, and March was with-
in ±10%. In other months, this change was within ±20%,
again except for May, which had predicted streamflow
changes reaching +60%.

The model simulations for the different climate scenarios
predicted varying streamflow volumes. For example, the
C2050A2 scenario predicted a +60% increase in streamflow,
while the H2050B2 scenario predicted almost no change in
May. Furthermore, based on analysis of the shape of the simu-
lated monthly flow change curve in figure 8, the curves simu-
lated using the same GCMs are more similar than those
simulated with the same climate scenarios. The curves simu-
lated with CGCM2 change suddenly between months, while
those simulated with HadCM3 change more gradually. For
example, in 2050, the simulated curves from the C2050A2
and C2050B2 scenarios both peak in May (+60% and +50%
for C2050A2 and C2050B2, respectively) and reach a mini-
mum in November (about +23% for both conditions), but the
simulated curves for the H2050A2 and H2050B2 scenarios
change between −1% and +20% for all months.

Based on the results of this analysis, future monthly
streamflow changes should be within ±20% for most
months, except for a potentially substantial streamflow in-
crease in May. However, the results obtained in this study also
show that simulated streamflow could be uncertain given the
different climate change conditions, which can be attributed
to both the uncertainties in the future emissions scenarios and
to uncertainties in GCMs projections (Maurer and Duffy,
2005; Zierl and Bugmann, 2005). In this case, simulated

streamflow changes can only provide a rough indication of
potential changes in streamflow patterns.

SUMMARY
In this study, the effects of potential climate change on

available streamflow volume in the downstream reaches of
the Luohe River basin were analyzed based on projected cli-
mate change conditions developed using two IPCC future cli-
mate scenarios combined with two GCMs , and a complex
physically based distributed hydrologic model (SWAT).

The SWAT model was successfully applied in the down-
stream reaches of the Luohe River through detailed data
collection and the use of an advanced automatic calibration
algorithm (SCE-UA). The evaluation criteria showed that the
SWAT model was able to simulate the daily and monthly
streamflow well. For example, the R2 and E values were
greater than 0.7 and 0.5, respectively, for both the calibration
(1992-1996) and validation (1997-2000) periods.

Two SRES scenarios (A2 and B2) and two GCMs
(HadCM3 and CGCM2) were used to project climate change
conditions in 2020 and 2050. The projected annual tempera-
ture and precipitation changes showed that the climate in the
study area will generally become warmer and wetter under
most scenarios. The possible range of climate change condi-
tions were translated into a possible range of streamflows us-
ing the SWAT model. At an annual temporal scale, flow
change in 2020 was predicted to be small (within ±3%) for
all possible combinations of conditions, where as in 2050,
streamflow volume was projected to increase slightly (+7%
to +11%). Seasonally, the streamflow change is predicted to
be within ±20% for all seasons, based on the results of this
simulation. At a monthly time step, streamflow change was
projected to be within ±20% for most months, except for a
potentially substantial increase in May of +35% and +60% in
2020 and 2050, respectively. However, irrigation water sup-
plies are projected to remain scarce on an annual basis. Fur-
ther analysis showed that the potential flow increase in spring
and summer would benefit the irrigation of corn and rice,
while a flow decrease in autumn would negatively impact
winter wheat irrigation.

In general, streamflow volume in the study area should not
experience dramatic changes in the future, based on this anal-
ysis. It also should be noted that future flow conditions cannot
be projected exactly due to the uncertainty in climate change
scenarios and GCMs outputs. However, the general results of
this analysis should be identified and incorporated into water
resources management plans in order to promote more sus-
tainable water use in the study area.
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