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Abstract

Drought is one of the major natural hazards that bring about billions of dollars in loss to the farming community around theworld

each year. Drought is most often caused by a departure of precipitation from the normal amount, and agriculture is often the first

sector to be affected by the onset of drought due to its dependence on water resources and soil moisture reserves during various

stages of crop growth. Currently used drought indices like the Palmer Drought Severity Index (PDSI) and Standardized

Precipitation Index (SPI) have coarse spatial (7000–100,000 km2) and temporal resolution (monthly). Hence, the distributed

hydrologic model SWAT was used to simulate soil moisture and evapotranspiration from daily weather data at a high spatial

resolution (16 km2) using GIS. Using this simulated data the drought indices Soil Moisture Deficit Index (SMDI) and

Evapotranspiration Deficit Index (ETDI) were developed based on weekly soil moisture deficit and evapotranspiration deficit,

respectively. SMDI was computed at four different levels, using soil water available in the entire soil profile, then soil water

available at the top 2 ft. (SMDI-2), 4 ft. (SMDI-4), and 6 ft. (SMDI-6). This was done because the potential of the crop to extract

water from depths varies during different stages of the crop growth and also by crop type. ETDI and SMDI-2 had less auto-

correlation lag, indicating that they could be used as good indicators of short-term drought. The developed drought indices showed

high spatial variability (spatial standard deviation �1.00) in the study watersheds, primarily due to high spatial variability of

precipitation. The wheat and sorghum crop yields were highly correlated (r > 0.75) with the ETDI and SMDI’s during the weeks of

critical crop growth stages, indicating that the developed drought indices can be used for monitoring agricultural drought.
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1. Introduction

1.1. Drought

Drought is one of the major natural hazards that

bring about billions of dollars in loss to the farming
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community around the world every year. According to

the U.S. Federal Emergency Management Agency

(FEMA), droughts occur almost every year across a

portion of the nation, and the United States loses $6–8

billion annually on average due to drought (FEMA,

1995). During the 1998 drought, Texas alone lost a

staggering $5.8 billion (Chenault and Parsons, 1998),

which is about 39% of the $15 billion annual

agriculture revenue of the state (Sharp, 1996). In

spite of the economic and the social impact of

drought, it is the least understood of all natural

hazards due to the complex nature and varying effects
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of droughts on different economic and social sectors

(Wilhite, 2000).

Agriculture is often the first sector to be affected by

the onset of drought due to dependence on water

resources and soil moisture reserves during various

stages of crop growth. The droughts of the 1930s,

1950s, 1980s and 1990s emphasize the vulnerability of

the agricultural sector to drought and the need for more

research to understand and determine the impacts of

agricultural drought. Understanding and developing

tools to predict and monitor drought would help in

planning to mitigate the impacts of drought.

1.2. Drought indices

Federal and State government agencies use drought

indices to assess and respond to drought. A drought

index integrates various hydrological and meteorolo-

gical parameters like rainfall, evapotranspiration (ET),

runoff and other water supply indicators into a single

number and gives a comprehensive picture for decision-

making. Among various drought indices, the Palmer

Drought Severity Index (PDSI) (Palmer, 1965), Crop

Moisture Index (CMI) (Palmer, 1968), Standardized

Precipitation Index (SPI) (McKee et al., 1993), and

Surface Water Supply Index (SWSI) (Shafer and

Dezman, 1982) are used extensively for water resources

management, agricultural drought monitoring and

forecasting. Each of these drought indices, their

strengths and limitations are explained briefly in the

following section.

1.2.1. Palmer Drought Severity Index (PDSI) and

Crop Moisture Index (CMI)

One of the most widely used drought indices is the

PDSI (Palmer, 1965). PDSI is primarily a meteorolo-

gical drought index formulated to evaluate prolonged

periods of both abnormally wet and abnormally dry

weather conditions. Hence, PDSI responds slowly to

detect short-term dry spells which could be deteriorat-

ing during critical stages of crop growth. Hence, Palmer

(1968) developed the CMI as an index for short-term

agricultural drought from procedures within the

calculation of the PDSI. PDSI is calculated from

precipitation deficits for monitoring long-term drought

conditions, whereas CMI is calculated from evapo-

transpiration deficits for monitoring short-term agri-

cultural drought conditions that affect crop growth.

PDSI and CMI have similar limitations in that, the

model assumes that parameters like land use/land cover,

and soil properties are uniform over the entire climatic

zone (7000–100,000 km2). However, in reality, para-
meters like land use/land cover and soil properties vary

widely. In addition to the large spatial lumping of

physical parameters, several studies have highlighted

various limitations of PDSI and CMI (Akinremi and

McGinn, 1996; Alley, 1984; Guttman, 1998; Narasim-

han, 2004), which are outlined below:
� I
n PDSI, potential evapotranspiration (ET) is calcu-

lated using Thornthwaite’s method. Thornthwaite’s

equation for estimating ET is based on an empirical

relationship between evapotranspiration and tempera-

ture (Thornthwaite, 1948). Jensen et al. (1990)

evaluated and ranked different methods of estimating

ET under various climatic conditions and concluded

that the poorest performing method overall was the

Thornthwaite equation. Palmer (1965) also suggested

replacing Thornthwaite’s equation with a more

appropriate method. Thus, a physically-based method

like the FAO Penman-Monteith equation (Allen et al.,

1998) must be used for estimating ET.
� T
he water balance model used by Palmer (1965) is a

two-layer lumped parameter model. Palmer assumed

an average water holding capacity of the top two soil

layers for the entire region in a climatic division

(7000–100,000 km2). However, in reality, soil proper-

ties vary widely on a much smaller scale. The rainfall

is also highly variable spatially in arid and semi-arid

climatic zones. This often makes it difficult to

spatially delineate the areas affected by localized

drought events. Further, PDSI and CMI do not

account for the effect of land use/land cover on the

water balance.
� P
almer (1965) assumed runoff occurs when the top

two soil layers become completely saturated. In

reality, runoff depends on soil type, land use, and

management practices. However, Palmer (1965) does

not account for these factors while estimating runoff.
1.2.2. Standardized Precipitation Index (SPI)

SPI (McKee et al., 1993) is primarily a meteor-

ological drought index based on the precipitation

amount in a 3, 6, 9, 12, 24 or 48 month period. In

calculating the SPI, the observed rainfall values during

3, 6, 9, 12, 24 or 48 month period are first fitted to a

Gamma distribution. The Gamma distribution is then

transformed to a Gaussian distribution (standard normal

distribution with mean zero and variance of one), which

gives the value of the SPI for the time scale used.

Unlike PDSI and CMI, SPI takes into account the

stochastic nature of the drought and is therefore a good

measure of short- and long-term meteorological

drought. However, SPI does not account for the effect
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of soil, land use characteristic, crop growth, and

temperature anomalies that are critical for agricultural

drought monitoring.

1.2.3. Surface Water Supply Index (SWSI)

The SWSI (Shafer and Dezman, 1982) was primarily

developed as a hydrological drought index with an

intention to replace PDSI for areas where local

precipitation is not the sole or primary source of water.

The SWSI is calculated based on monthly non-

exceedance probability from available historical

records of reservoir storage, stream flow, snow pack,

and precipitation.

The purpose of SWSI is primarily to monitor the

abnormalities in surface water supply sources. Hence it

is a good measure to monitor the impact of hydrologic

drought on urban and industrial water supplies,

irrigation and hydroelectric power generation. How-

ever, there is a time lag before precipitation deficiencies

are detected in surface and subsurface water sources. As

a result, the hydrological drought is out of phase from

agricultural drought. Because of this phase difference,

SWSI is not a suitable indicator for agricultural drought.

Agricultural crops are sensitive to soil moisture. The

soil moisture deficit in the root zone during various

stages of the crop growth cycle will have a profound

impact on crop yield. For example, a 10% water deficit

during the tasseling, pollination stage of corn could

reduce the yield by as much as 25% (Hane and

Pumphrey, 1984). Hence, the development of a reliable

drought index for agriculture requires proper considera-

tion of vegetation type, crop growth and root develop-

ment, soil properties, antecedent soil moisture

condition, evapotranspiration, and temperature. The

existing drought indices currently used for drought

monitoring do not give proper consideration to the

aforementioned variables. Hence, a better tool for

agricultural drought monitoring is essential for the

farming community and the decision-makers.

Meyer et al. (1993a,b) developed a comprehensive

crop-specific drought index (CSDI) for corn by taking

into account the water use during specific periods of

crop growth, using a simple water balance model, at the

spatial scale of a crop reporting district. Wilhelmi et al.

(2002) developed a GIS based agricultural drought

vulnerability assessment method for the state of

Nebraska and found the seasonal crop moisture

deficiency to be a useful measure for spatial character-

ization of the state’s agroclimatology.

As precipitation and soil properties have high degree

of spatial variability, the current study aims to develop

drought indices, based on weekly soil moisture deficit –
SMDI and ET deficit – ETDI, at a much finer spatial

resolution using a comprehensive hydrologic model

coupled with a crop growth model and GIS. The

consideration of spatial variability of hydrological

parameters related to soil type and land cover and

meteorological parameters such as rainfall and tem-

perature is a better approximation of the hydrologic

system and will improve our ability to monitor soil

moisture deficit/drought at a much better spatial

resolution. For this study, a spatial resolution of

16 km2 was chosen to capture adequate spatial

variability of hydrological and meteorological para-

meters over a large watershed and for future integration

studies with WSR-88D radar precipitation that has a

similar spatial resolution. At present, drought indices

like PDSI or CMI are reported for the entire climatic

zone at a spatial resolution ranging from 7000 to

100,000 km2 on a monthly time scale. The increased

temporal resolution (weekly) and spatial resolution

(16 km2) may give the farming community, water

managers and policy makers a better tool for assessing,

forecasting and managing agricultural drought on a

much finer scale.

2. Methodology

2.1. Hydrologic modeling

A spatially distributed hydrologic model is essential

for developing the drought index. In this study, the

hydrologic model Soil and Water Assessment Tool

(SWAT) was used. SWAT is a physically based basin-

scale continuous time distributed parameter hydrologic

model that uses spatially distributed data on soil, land

cover, Digital Elevation Model (DEM), and weather

data for hydrologic modeling and operates on a daily

time step. Major model components include weather,

hydrology, soil temperature, plant growth, nutrients,

pesticides, and land management. A complete descrip-

tion of the SWAT model components (Version 2000) is

found in Arnold et al. (1998) and Neitsch et al. (2002).

A brief description of the SWAT hydrologic component

is given here.

For spatially explicit parameterization, SWAT sub-

divides watersheds into sub-basins based on topogra-

phy, which are further subdivided into hydrologic

response units (HRU) based on unique soil and land

cover characteristics. Four storage volumes represent

the water balance in each HRU in the watershed: snow,

soil profile (0–2 m), shallow aquifer (2–20 m), and deep

aquifer (>20 m). The soil profile can be subdivided into

multiple layers. Soil water processes include surface
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runoff, infiltration, evaporation, plant water uptake,

inter (lateral) flow, and percolation to shallow and deep

aquifers.

SWAT simulates surface runoff using the modified

SCS curve number (CN) method (USDA Soil Con-

servation Service, 1972) with daily precipitation data.

Based on the soil hydrologic group, vegetation type and

land management practice, initial CN values are

assigned from the SCS hydrology handbook (USDA

Soil Conservation Service, 1972). SWAT updates the

CN values daily based on changes in soil moisture.

The excess water available after accounting for

initial abstractions and surface runoff, using SCS curve

number method, infiltrates into the soil. A storage

routing technique is used to simulate the flow through

each soil layer. SWAT directly simulates saturated flow

only and assumes that water is uniformly distributed

within a given layer. Unsaturated flow between layers is

indirectly modeled using depth distribution functions

for plant water uptake and soil water evaporation.

Downward flow occurs when the soil water in the layer

exceeds field capacity and the layer below is not

saturated. The rate of downward flow is governed by the

saturated hydraulic conductivity.

The Penman-Monteith (Monteith, 1965) method was

used in this study for estimating reference crop ET

(Alfalfa). SWAT computes evaporation from soils and

plants separately as described in Ritchie (1972). Soil

water evaporation is estimated as an exponential
Fig. 1. Texas climatic divisions and
function of soil depth and water content based on

reference crop ETand a soil cover index based on above

ground biomass. Plant water evaporation is simulated as

a linear function of reference crop ET, leaf area index

(LAI), root depth (from crop growth model), and soil

water content.

The crop growth model used in SWAT is a

simplification of the EPIC crop model (Williams

et al., 1984). A single model is used for simulating

both annual and perennial plants. Phenological crop

growth from planting is based on daily-accumulated

heat units above a specified optimal base temperature

for each crop, and the crop biomass is accumulated each

day based on the intercepted solar radiation until

harvest. The canopy cover, or LAI, and the root

development are simulated as a function of heat units

and crop biomass.

The hydrology of six watersheds located in major

river basins across Texas (Fig. 1) was modeled using

SWAT by Narasimhan (2004) using historical weather

data (1901–2002). Each watershed was divided into

several sub-basins of 4 km � 4 km each. SWAT was

calibrated and validated using measured stream flow at

24 USGS stream gauging stations distributed across six

watersheds in Texas. Measured stream flow data from

24 USGS streamgage stations with combined station

years of about 125 and 490 years of stream flow data

were used for model calibration and validation,

respectively. The overall R2 and coefficient of efficiency
locations of six watersheds.
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(E) values for the calibration period was 0.75, and the

validation period was 0.70 (Narasimhan, 2004).

However, in the current study, soil moisture is the

hydrologic component of interest. DeLiberty and

Legates (2003) studied the seasonal and interannual

variability of soil moisture in Oklahoma and observed

that SWAT simulations compared well with observed

soil moisture data at the two sites in central Oklahoma.

Due to a lack of measured soil moisture data, the

simulated soil moisture data was analyzed using the

Normalized Difference Vegetation Index (NDVI),

measured from satellite during the active growing

season (April to September) from 1983 to 1998. The

soil moisture simulated by SWAT was positively

correlated with NDVI for agriculture and pasture land

cover types (r � 0.6), indicating that the model could

simulate the soil moisture changes with reasonable

accuracy. Off these six watersheds, Red River and

Colorado River watersheds were selected for this study

due to the high percentage of cropland in these

watersheds. The historical soil moisture and evapo-

transpiration simulated by Narasimhan et al. (2005) in

these two watersheds was used in this study for

developing the agricultural drought indices.

2.2. Characteristics of a Drought Index

Before elaborating on the development of the

drought index, it is essential to discuss the character-

istics of a drought index. They are:
1. T
he index must be able to reflect developing short-

term dry conditions, thus responding to agricultural

drought.
2. T
he index should not have any seasonality (i.e., the

index should be able to indicate a drought

irrespective of whether it is summer or winter).
3. T
he drought index should be spatially comparable,

irrespective of climatic zones (humid or arid).

These characteristics were taken into account in the

development of the two drought indices, the Soil

Moisture Deficit Index (SMDI) and the Evapotranspira-

tion Deficit Index (ETDI).

2.3. Soil Moisture Deficit Index (SMDI)

The daily model output of available soil water in the

root zone was averaged over a 7-day period to get

weekly soil water for each of the 52 weeks in a year for

each sub-basin. The long-term soil moisture for each

week in a year was obtained by taking the median of the
available soil water for that week during a 70-year

period (1911–1980). The median was chosen over the

mean as a measure of ‘‘normal’’ available soil water

because median is more stable and is not influenced by

few outliers. The maximum and minimum soil water for

each week was also obtained from the 70-year data.

Using this long-term median, maximum and minimum

soil water, weekly percentage soil moisture deficit or

excess for 98 years (1901–1998) was calculated as:

SDi; j ¼
SWi; j �MSW j

MSW j �minSWj
�100; if SWi; j ¼ MSW j

SDi; j ¼
SWi; j �MSW j

maxSWj �MSW j
�100; if SWi; j >MSW j

(1)

where SDi,j is the soil water deficit (%), SWi,j the mean

weekly soil water available in the soil profile (mm),

MSWj the long-term median available soil water in

the soil profile (mm), max.SWj the long-term maximum

available soil water in the soil profile (mm), andmin.SWj

is the long-term minimum available soil water in the soil

profile (mm) (i = 1901–1998 and j = 1–52 weeks).

By using Eq. (1) the seasonality inherent in soil water

was removed. Hence, the deficit values can be compared

across seasons. The SD values during a week range from

�100 to +100 indicating very dry to very wet condi-

tions. As the SD values for all the sub-basins were scaled

between �100 and +100 they are also spatially compar-

able across different climatic zones (humid or arid).

The SD value during any week gives the dryness

(wetness) during that week when compared to long-

term historical data. Drought occurs only when the

dryness continues for a prolonged period of time that

can affect crop growth. As the limits of SD values were

between �100 and +100, the worst drought can be

represented by a straight line with the equation:

Xj

t¼1

Zt ¼ �100t � 100 (2)

where t is the time in weeks. If this line defines theworst

drought (i.e.,�4 for the drought index to be comparable

with PDSI), then SMDI for any given week can be

calculated by:

SMDI j ¼
P j

t¼1 SDt

25t þ 25
(3)

Now we are faced with a complicated task of

choosing the time period (weeks) over which the
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dryness values need to be accumulated to determine

drought severity. In order to overcome this and take the

time period into account indirectly, the drought index

was calculated on an incremental basis as suggested by

Palmer (1965):

SMDI j ¼ SMDI j�1 þ DSMDI j (4)

In order to evaluate the contribution of each month to

drought severity, we can set i = 1 and t = 1 in Eq. (3) and

we have:

SMDI1 ¼
SD1

50
(5)

Since this is the initial month:

SMDI1 � SMDI0 ¼ DSMDI1 ¼
SD1

50
(6)

A drought will not continue in the extreme category

if subsequent months are normal or near normal.

Therefore, the rate at which SDmust increase in order to

maintain a constant value of SMDI depends on the value

of SMDI to be maintained. For this reason, an additional

term must be added to Eq. (6) for all months following

an initial dry month:

DSMDI j ¼
SD j

50
þ cSMDI j�1 (7)

where

DSMDI j ¼ SMDI j � SMDI j�1

Eq. (7) can now be solved for c. By assuming SMDI is

�4 during subsequent time steps, then SDi should be

�100:

DSMDI j ¼
�100

50
þ cð�4:0Þ; 0 ¼ �2� 4c;

c ¼ �0:5

Therefore, drought severity in any given week is

given by:

SMDI j ¼ SMDI j�1 þ
SD j

50
�0:5SMDI j�1

SMDI j ¼ 0:5SMDI j�1 þ
SD j

50

(8)

SMDI during any week will range from �4 to +4

representing dry to wet conditions. SMDI was

computed at four different levels, using soil water

available in the entire soil profile, then soil water

available at the top 2, 4, and 6 ft. that are represented as

SMDI, SMDI-2, SMDI-4, and SMDI-6, respectively.
This was done because the potential of the crop to

extract water from depths varies during different stages

of crop growth and by crop type.

2.4. Evapotranspiration Deficit Index (ETDI)

ETDI was calculated using a procedure similar to

the one explained above for SMDI, except that the

water stress ratio given by Eq. (9) was used instead of

using ET alone. The daily model output of actual

evapotranspiration and reference crop evapotranspira-

tion were cumulated over a 7-day period to get weekly

actual and reference crop evapotranspiration for each

of the 52 weeks in a year for each sub-basin. Water

stress ratio for the week is calculated as:

WS ¼ PET� AET

PET
(9)

where WS is the weekly water stress ratio, PET the

weekly reference crop evapotranspiration, AET the

weekly actual evapotranspiration.

WS values range from 1 to 0, with 1 indicating no

evapotranspiration and 0 indicating evapotranspira-

tion occurring at the same rate as reference crop ET.

The long-term water stress for each week in a year

was obtained by taking the median of the water stress

for that week during a 70-year period (1911–1980).

The maximum and minimum water stress ratio for

each week was also obtained from the 70-year data.

From the long-term median, maximum and minimum

water stress, percentage water stress anomaly during

any week for 98 years (1901–1998) is calculated

as:

WSAi; j¼
MWS j�WSi; j

MWS j�minWS j
�100; if WSi; j¼MWS j

WSAi; j¼
MWS j�WSi; j

maxWS j�MWS j
�100; if WSi; j>MWS j

(10)

where WSA is the weekly water stress anomaly, MWSj

the long-term median water stress of week j, max.WSj

the long-term maximum water stress of week j,

min.WSj the long-term minimum water stress of week

j, and WS is the weekly water stress ratio (i = 1901–

1998 and j = 1–52 weeks).

The water stress anomaly during any week ranges

from �100 to +100 indicating very dry to very

wet conditions with respect to evapotranspiration.

Adopting a similar cumulating procedure of SMDI,
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Fig. 2. Correlogram (a) soil moisture and (b) Soil Moisture Deficit

Index (SMDI).
drought severity due to evapotranspiration deficit is

given by:

ETDI j ¼ 0:5ETDI j�1 þ
WSA j

50
(11)

Using Eqs. (8) and (11), Soil Moisture Deficit Index

(SMDI) at 2, 4, and 6 ft. and Evapotranspiration Deficit

Index (ETDI) were calculated for 98 years of simulated

soil moisture and evapotranspiration data from 1901 to

1998.

3. Results and discussion

3.1. Time-series characteristics

An auto-correlation analysis was done to study the

characteristics of the drought index based on soil and

land cover characteristics. The correlogram of simu-

lated soil water available in the root zone for one of the

sub-basin is shown in Fig. 2a. From the correlogram, we

observed that soil water available in the root zone was

highly auto-correlated. This is because soil water in the

current time step depends on the soil water available

during previous time steps. The sinusoidal pattern of the

correlogram indicates that soil water was also highly

seasonal, fluctuating according to seasonal precipitation

and evapotranspiration. Hence, the soil water was

differenced with median long-term weekly soil water to

remove the seasonality. The correlogram of SMDI

(Fig. 2b) derived from the differenced soil water showed

that the seasonal differencing effectively removed the

seasonality, which is ideal for drought monitoring,

irrespective of season.

Incidentally, Eqs. (8) and (11), derived for calculat-

ing drought index from soil moisture and evapotran-

spiration deficits, respectively, are also analogous to the

first order auto-correlation process with white noise

represented by the SD and WSA terms (dryness or

wetness during the week compared to historical data).

The auto-correlation lags (i.e., the lag at which the

correlation is less than �2/HN, where N is the number

of data points) for individual sub-basins for different

drought indices are shown in Fig. 3. The auto-

correlation lag seems to closely depend on the available

water holding capacity of the soil with the lag

increasing with water holding capacity. This was

expected because if the water holding capacity of the

soil is high, then the current soil water and evapo-

transpiration will be affected by events (precipitation

and evapotranspiration) that happened in the distant past

rather than for the soils with low water holding capacity.
The lag also increases with depth due to increase in total

available water holding capacity. Lag does not seem to

depend much on the land cover type. However, among

different land cover types, agricultural lands have the

largest lag. This is because most of the agricultural

lands are primarily located on soils with high water

holding capacity.

Among different drought indicators, SMDI-2 ft had

the lowest auto-correlation lag (12 weeks; approxi-

mately 3 months). This is because the top 2 ft. of the soil

profile very actively participate in the evapotranspira-

tion of available soil water. Most of the pasture and

agriculture crops have shallow root systems that
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Fig. 3. Auto-correlation lags of drought indices based on available water holding capacity of soil and land cover type.
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primarily use the soil water available at the top 2 ft. of

the soil profile. For the same reason, the ETDI also have

smaller auto-correlation lags when compared to SMDI,

derived from an entire soil profile, which has a lag of

approximately 1.25 years. Hence, ETDI and SMDI-2

could be useful indicators of short-term drought

conditions, whereas SMDI derived from an entire soil

profile could be a good indicator of long-term drought

conditions.

3.2. Spatial variability

A spatial variability analysis was done to study the

effect of the spatially distributed model along with

distributed model parameters on soils, land cover and

topography, and weather variables like precipitation and

temperature on the drought index. Standard deviation of

the drought index, calculated in space from the drought

index of hundreds of subbasins within the watershed

during each time step, was used as a measure of spatial
Fig. 4. Distribution of spatial standard deviation of precipitation, evapotransp
variability of the drought index. The spatial standard

deviation was calculated for each week for 98 years

from 1901 to 1998. For both watersheds, irrespective of

the drought index, the spatial standard deviation was

above 1.0. Considering that the range of drought indices

is from �4 to +4, a standard deviation of 1.0 indicates

that the spatial variability of the drought index is high.

The distribution of standard deviation for 52 weeks

during the 98-year period for Red river and Colorado, is

shown in Figs. 4 and 5.

The mean and standard deviation of weekly

precipitation and reference crop ET for each watershed

were also analyzed to determine the reason for spatial

variability in the drought index. Analysis of 98 years of

precipitation data showed that the precipitation dis-

tribution in a year was bimodal. For both watersheds,

with high precipitation occurring during late spring and

mid fall seasons. Precipitation was the highly variable

component both spatially and temporally during

different years for the same season. Reference crop
iration and drought indices for 98 years during each week in Red River.
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Fig. 5. Distribution of spatial standard deviation of precipitation, evapotranspiration and drought indices for 98 years during each week in Colorado

River.
ET also showed some spatial variability with high

variability occurring during the summer season.

The spatial variability (standard deviation) of the

drought indices, especially ETDI, during different

seasons closely followed the variability in precipitation

and evapotranspiration across seasons. In order to get a

sense of how the standard deviation reflects the spatial

distribution of drought indices, SMDI derived during

46th week of 1988 and 24th week of 1990 with standard

deviations of 1.0 and 1.5, respectively, are shown in

Fig. 6a and b. As the standard deviation increased, the

spatial variability of the drought index also increased

considerably.

The spatial standard deviation of ETDI increased

from 0.75 during the spring season to as much as 1.5 at

the end of the summer season (Figs. 4 and 5). This was

because evapotranspiration was high during summer,

following a season of high precipitation during spring

that recharged the available soil water to varying

degrees of saturation depending on the spatial
distribution of precipitation and soil properties. The

precipitation amount also gradually decline during

summer and has high spatial and temporal variability.

This affects actual evapotranspiration that depends on

the amount of water already in the soil profile, soil

physical properties and land cover characteristics.

Hence, the spatial variability of ETDI increases during

the summer season.

The spatial variability of SMDI for all soil depths was

above 1.0 during most of the seasons, for both

watersheds. The SMDI-6 for Red River had the highest

standard deviation (�1.5) during most of the season and

had a different seasonal pattern than SMDI-2 and SMDI-

4. This is because Red River watershed covers a range of

precipitation zones from 488 mm in the west to 748 mm

in the east and soils with more than 6 ft depth are

scattered across these zones. The standard deviation of

SMDI-6 decreased during the summer because this part

of the seasonwas characterized by less precipitation (less

spatial variability) and high evapotranspiration (soils
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Fig. 6. Spatial distribution of Soil Moisture Deficit Index (SMDI). (a) 46th week of 1988 with standard deviation of 1.00 and (b) 24th week of 1990

with a standard deviation of 1.5.
become mostly dry), and thus, the spatial variability of

SMDI reduced during summer. The spatial analysis of

ETDI and SMDI indicate considerable spatial variability

in drought across the region depending on the weather,

soil and landuse characteristics.

3.3. Comparison with other drought indices

The drought indices SMDI and ETDI developed in

this study were compared with other drought indicators

currently in use, such as the PDSI (Palmer, 1965) and

the SPI (McKee et al., 1993). PDSI and SPI are reported

at the spatial scale of climatic divisions (Fig. 1) and at a

monthly temporal resolution. However, the drought

indices developed in this study have a spatial resolution

of 4 km � 4 km (Fig. 6) and a weekly temporal

resolution. Hence, the drought indices ETDI and SMDI
need to be aggregated at spatial and temporal scales for

comparison with PDSI and SPI.

Because ETDI and SMDI’s were integrated mea-

sures of past weather conditions, instead of averaging

the index temporally over the entire month, only the

drought index calculated during the last week of every

month was spatially averaged over the entire watershed

for comparison with monthly PDSI and SPI. The

spatially-averaged, monthly ETDI and SMDI’s for 98

years (1901–1998) were compared with PDSI and SPI

reported for climatic divisions in which major portions

of each of the study watersheds are located. The

correlation (r) matrix of the drought indices developed

in this study (ETDI and SMDI’s) with PDSI and SPI’s

published for 1, 3, 6, 9, and 12 month precipitation

amounts for the two watersheds, Red River and

Colorado, are presented in Tables 1 and 2. ETDI and
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Table 1

Correlation matrix of drought indices—Red River

ETDI SMDI SMDI-2 SMDI-4 SMDI-6 PDSI SPI-1 SPI-3 SPI-6 SPI-9 SPI-12

ETDI 1.00

SMDI 0.79 1.00

SMDI-2 0.94 0.86 1.00

SMDI-4 0.83 0.99 0.91 1.00

SMDI-6 0.73 0.99 0.81 0.97 1.00

PDSI 0.58 0.65 0.58 0.64 0.63 1.00

SPI-1 0.69 0.43 0.61 0.47 0.38 0.44 1.00

SPI-3 0.72 0.64 0.73 0.67 0.59 0.65 0.60 1.00

SPI-6 0.54 0.66 0.59 0.66 0.64 0.79 0.40 0.72 1.00

SPI-9 0.47 0.64 0.50 0.62 0.63 0.82 0.35 0.59 0.83 1.00

SPI-12 0.42 0.59 0.44 0.56 0.59 0.82 0.29 0.50 0.73 0.89 1.00
SMDI’s were positively correlated with PDSI and SPI’s

(r > 0.7) for both watersheds. This suggests that the dry

and wet periods indicated by the ETDI and SMDI’s

were in general agreement with PDSI and SPI.

However, the duration of the dryness or wetness and

the intensity of drought measured by each index are

different depending on the inherent characteristic of

each drought index. The maximum correlations of

ETDI and SMDI’s to PDSI and SPI’s for each watershed

are indicated in bold font in Tables 1 and 2.

The ETDI and SMDI-2 were well-correlated with

SPI-1 or SPI-3 (r � 0.75). This was expected because

ETDI andSMDI-2 had lesser auto-correlation lag (Fig. 3)

and thus depend on short-term weather conditions when

compared to SPI’s of higher duration or PDSI that are

indicators of medium to long-term drought conditions.

ETDI and SMDI-2 were also highly correlated with

themselves (r � 0.95) because most of the active

evapotranspiration takes place at the top 2 ft. of soil

profile and they both are complementary to each other.

SMDI derived from the entire soil profile and SMDI-

6 were well-correlated with PDSI, SPI-3 and SPI-6. For
Table 2

Correlation matrix of drought indices—Colorado River

ETDI SMDI SMDI-2 SMDI-4 SMDI-6

ETDI 1.00

SMDI 0.96 1.00

SMDI-2 0.98 0.98 1.00

SMDI-4 0.81 0.90 0.84 1.00

SMDI-6 0.78 0.88 0.80 0.99 1.00

PDSI 0.54 0.58 0.52 0.66 0.66

SPI-1 0.73 0.68 0.70 0.52 0.50

SPI-3 0.66 0.67 0.66 0.68 0.65

SPI-6 0.52 0.58 0.52 0.68 0.67
SPI-9 0.44 0.52 0.44 0.64 0.66

SPI-12 0.38 0.46 0.37 0.58 0.61
Colorado River, only 40% of the watershed had soils

greater than 2 ft. deep. Hence, similar to SMDI-2,

SMDI of Colorado River watershed had high correla-

tion with SPI-1 (r � 0.68). However, for soils with

depth greater than 6 ft. in Colorado River Watershed,

SMDI-6 was well correlated with SPI-6 (r � 0.67).

Hence, SMDI and SMDI-6 are good measures of long-

term drought conditions. For both watersheds, SMDI-4

was well-correlated with SPI-3 (r � 0.7), suggesting

that SMDI-4 could be a good intermediate measure

between rapidly responding ETDI/SMDI-2 and slow

evolving SMDI/SMDI-6.

For both watersheds, PDSI was well-correlated with

SPI-9 and SPI-12 (r � 0.85), suggesting that PDSI is an

indicator of long-term weather conditions. This was

consistent with the observation made by Guttman

(1998) that PDSI and SPI are in phase only at a period of

about a year. The correlation of PDSI with SPI-9 and

SPI-12 was greater than 0.84 for most of the watersheds,

which was higher than the correlation of SPI’s with

ETDI and SMDI’s that varied between 0.71 and 0.78,

suggesting that precipitation is the dominant factor in
PDSI SPI-1 SPI-3 SPI-6 SPI-9 SPI-12

1.00

0.48 1.00

0.72 0.62 1.00

0.85 0.45 0.76 1.00

0.87 0.38 0.65 0.87 1.00

0.83 0.32 0.55 0.77 0.91 1.00
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PDSI. Precipitation was the dominant factor in ETDI

and SMDI’s as well; however, as the spatial variability

analysis showed, the spatial variability in precipitation,

ET, soil, and land cover characteristics not accounted

for by PDSI or SPI, were also critical in ETDI and

SMDI for identifying localized drought conditions.

3.4. Performance of the drought indices during

major drought events

The drought indices ETDI and SMDI were also

compared with existing drought indices during major

drought events of 1930s, 1950s, 1980s, and the 1990s.

ETDI was compared with SPI-1 to evaluate the short-

term drought events and SMDI-6 was compared with

SPI-6 and PDSI to evaluate the long-term drought

events. These drought indices were chosen for

comparison as they showed high correlation with each

other (Tables 1 and 2) as discussed in the previous

section. The time-series plots (Figs. 7–10) show that

ETDI and SMDI developed in this study agreed well

with SPI and PDSI most of the time during major
Fig. 7. Comparison of short-term drought indices E
drought events. It should be noted that ETDI and SMDI

range between�4 and +4, whereas SPI between�3 and

+3 and PDSI between �6 and +6.

All the drought indices showed that both Red River

and Colorado River watersheds were worst affected by

the drought of the 1950s than the other drought events.

The drought of the 1980s and 1990s was longer and

severe in Colorado River watershed than in Red River

watershed. The short-term drought indices ETDI and

SPI-1 compared well with each other. The difference

between these short-term drought indices is mainly due

to the difference in their formulation; ETDI based on a

complete water balance model and SPI based only on

rainfall. The long-term drought index SMDI-6 com-

pared well with SPI-6 than with PDSI. This is because

PDSI has a long-memory and is an indicator of drought

longer than 9 or 12 month period. For example, in the

Red River watershed (Fig. 7b) both SMDI-6 and SPI-6

showed short periods of wetness during 1954 and 1955.

However, PDSI being a long-term index showed severe

drought continuously from 1951 to 1957. Unlike SMDI-

6 for Red River watershed, SMDI-6 for Colorado River
TDI and SPI-1 for the Red River watershed.
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Fig. 8. Comparison of long-term drought indices SMDI-6, SPI-6 and PDSI for the Red River watershed.
watershed showed more fluctuation especially during

the drought of the 1950s. Analysis of the data showed

that the rainfall events during the 1950s drought where

not enough to fill the entire soil profile and only the top

2–4 ft. of soil had moisture storage. Hence, SMDI-6

fluctuated more and behaved like SMDI-2 or SMDI-4

during the drought of the 1950s.

3.5. Correlation with crop yield

A correlation analysis was done with the drought

indices and crop yield data to analyze if dryness during

the critical period of crop growth affected the crop

yield. Sorghum grown during summer (April to

September) and wheat grown during winter (October

to May) were selected for this analysis. The County

crop yield data of sorghum and wheat during the past 26

years (1973–1998) were collected for various counties

from the National Agricultural Statistical Service

(NASS). Only the crop yields obtained under non-

irrigated conditions were used for correlation analysis.

From the 26 years of crop yield data for both sorghum

and wheat, six years with best yield and six years with
worst yield (12 years total) were selected for correlation

analysis in each County for sorghum and wheat. The six

best and six worst yields were selected because there are

other factors like soil fertility, pests, diseases, water

logging, and frost, in addition to soil moisture stress that

can affect crop yield. By selecting these high and low

yield years, we assume that the yield was affected

primarily due to moisture stress experienced during

different stages of crop growth. With the drought

indices at a spatial resolution of 4 km � 4 km, the

weekly drought indices were spatially averaged across

the County, only for sub-basins with agricultural land

cover, during each week for comparison with County

crop yield data. The correlations of drought indices with

sorghum yield during each week are given in Tables 3

and 4 and winter wheat yield correlations are given in

Tables 5 and 6 for counties located in the study

watersheds.

3.5.1. Sorghum

In major parts of Texas sorghum is planted during

March to April and harvested in August to September.

The critical growth stages of sorghum are tasseling,
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Fig. 9. Comparison of short-term drought indices ETDI and SPI-1 for the Colorado River watershed.

Table 3

Correlation of drought indices with sorghum yield during the crop growing season—Floyd County, Red River basin

Week Month ETDI SMDI SMDI-2 SMDI-4 SMDI-6

(a) ETDI and SMDI’s
14 4 0.17 0.72 0.69 0.66 0.68
15 4 0.40 0.75 0.72 0.68 0.71
16 4 0.66 0.79 0.83 0.75 0.75
17 4 0.41 0.79 0.81 0.78 0.76
18 5 0.10 0.78 0.72 0.77 0.74
19 5 �0.12 0.74 0.46 0.73 0.71
20 5 �0.16 0.66 0.20 0.63 0.65
21 5 0.30 0.71 0.26 0.67 0.70
22 6 0.35 0.72 0.27 0.64 0.69
23 6 0.46 0.79 0.34 0.67 0.75
24 6 0.36 0.74 0.22 0.60 0.72
25 6 0.47 0.72 0.24 0.59 0.70
26 6 0.59 0.71 0.35 0.59 0.69
27 7 0.71 0.70 0.37 0.58 0.69
28 7 0.88 0.74 0.45 0.65 0.71
29 7 0.93 0.76 0.55 0.69 0.73
30 7 0.91 0.75 0.52 0.69 0.72

Month PDSI SPI-1 SPI-3 SPI-6 SPI-9

(b) PDSI and SPI’s
4 0.65 0.23 0.43 0.44 0.67
5 0.54 0.15 0.31 0.32 0.65
6 0.64 0.50 0.52 0.49 0.54
7 0.72 0.43 0.45 0.56 0.57
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Fig. 10. Comparison of long-term drought indices SMDI-6, SPI-6 and PDSI for the Colorado River watershed.

Table 4

Correlation of drought indices with sorghum yield during the crop growing season—Tom Green County, Colorado River basin

Week Month ETDI SMDI SMDI-2 SMDI-4 SMDI-6

(a) ETDI and SMDI’s
14 4 0.56 0.81 0.64 0.83 0.81
15 4 0.54 0.82 0.65 0.84 0.82
16 4 0.68 0.85 0.71 0.87 0.85
17 4 0.74 0.85 0.74 0.87 0.85
18 5 0.73 0.86 0.75 0.88 0.86
19 5 0.69 0.86 0.75 0.88 0.86
20 5 0.72 0.88 0.79 0.89 0.88
21 5 0.78 0.88 0.81 0.90 0.88
22 6 0.82 0.87 0.80 0.89 0.87
23 6 0.79 0.81 0.61 0.83 0.81
24 6 0.70 0.74 0.49 0.76 0.74
25 6 0.75 0.72 0.56 0.74 0.72
26 6 0.76 0.74 0.68 0.77 0.74
27 7 0.77 0.76 0.70 0.79 0.76
28 7 0.74 0.77 0.63 0.81 0.77
29 7 0.74 0.78 0.73 0.86 0.79
30 7 0.73 0.79 0.70 0.83 0.80

Month PDSI SPI-1 SPI-3 SPI-6 SPI-9

(b) PDSI and SPI’s
4 0.68 0.68 0.63 0.55 0.77
5 0.70 0.46 0.75 0.74 0.85
6 0.72 0.66 0.78 0.76 0.83
7 0.71 0.04 0.63 0.74 0.69
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Table 5

Correlation of drought indices with wheat yield during the crop growing season—Floyd County, Red River basin

Week Month ETDI SMDI SMDI-2 SMDI-4 SMDI-6

(a) ETDI and SMDI’s

1 1 0.72 0.76 0.61 0.77 0.77

2 1 0.71 0.77 0.65 0.78 0.77

3 1 0.72 0.79 0.68 0.79 0.78

4 1 0.73 0.79 0.71 0.79 0.78

5 2 0.56 0.77 0.68 0.77 0.77

6 2 0.62 0.77 0.66 0.76 0.77

7 2 0.62 0.75 0.64 0.75 0.76

8 2 0.57 0.74 0.66 0.74 0.75

9 3 0.57 0.74 0.67 0.75 0.76

10 3 0.61 0.77 0.71 0.76 0.79

11 3 0.59 0.81 0.75 0.79 0.83

12 3 0.58 0.82 0.74 0.81 0.84

13 3 0.59 0.81 0.69 0.80 0.84

14 4 0.70 0.82 0.70 0.81 0.84

15 4 0.74 0.83 0.74 0.83 0.86

16 4 0.81 0.85 0.80 0.86 0.89

17 4 0.71 0.89 0.80 0.89 0.92

18 5 0.45 0.93 0.72 0.88 0.95
19 5 0.20 0.91 0.49 0.83 0.92

20 5 �0.01 0.88 0.28 0.77 0.87

21 5 0.03 0.84 0.25 0.73 0.84

Month PDSI SPI-1 SPI-3 SPI-6 SPI-9

(b) PDSI and SPI’s

1 0.83 0.77 0.80 0.66 0.81

2 0.87 0.57 0.79 0.65 0.85
3 0.88 0.44 0.71 0.81 0.71

4 0.90 0.52 0.64 0.84 0.74

5 0.75 �0.25 0.34 0.61 0.58
pollination and yield formation (June to July), during

which a water stress at the root zone can have a

significant impact on the crop yield (Hane and

Pumphrey, 1984). The correlation of weekly ETDI

and SMDI’s with the six best and six worst years of

Sorghum yield also showed maximum correlation

during the weeks in June and July (Tables 3a and

4a). For Floyd County in Red River basin, ETDI during

the 29th week (July) had the highest correlation with

crop yield (r � 0.93). However, for Tom Green County

in Colorado River basin, high correlations of ETDI and

crop yield were observed during the weeks of June.

Because of differences in planting dates among various

counties, this critical period of high correlation shifts

between June and July. In Floyd County, the SMDI’s

were highly correlated with sorghum yield (r > 0.75)

during the plant emergence and tillering phase as well

(weeks 16 and 17). Tom Green County also showed

high correlations of ETDI and SMDI’s with sorghum

yield (r > 0.8) during the plant emergence and tillering

phase. This indicates that an adequate amount of soil
moisture is needed during the sorghum crop establish-

ment stage, as well as the tasseling and pollination

stage, to have a better crop stand and increased crop

yield.

The correlation with sorghum yield was also done on

the monthly drought indices PDSI and SPI’s reported

for the climatic division (Tables 3b and 4b). Although

PDSI and SPI’s also showed good correlations with

sorghum yield, ETDI and SMDI’s have shown higher

correlations (r > 0.75) than PDSI and SPI’s during the

critical growth stages. Hence, ETDI and SMDI could be

useful indicators for monitoring soil moisture stress

during critical growth stages of sorghum.

3.5.2. Winter wheat

In Texas, wheat is planted from mid September to

October and harvested from mid May to June. The

critical growth stages of wheat are head emergence,

flowering and grain filling (March to April), during

which a water stress at the root zone can have a

significant impact on the crop yield (Hane and
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Table 6

Correlation of drought indices with wheat yield during the crop growing season—Concho County, Colorado River basin

Week Month ETDI SMDI SMDI-2 SMDI-4 SMDI-6

(a) ETDI and SMDI’s

1 1 0.74 0.69 0.66 0.59 0.68

2 1 0.74 0.68 0.66 0.58 0.67

3 1 0.72 0.68 0.66 0.59 0.66

4 1 0.65 0.66 0.65 0.57 0.66

5 2 0.64 0.67 0.66 0.58 0.66

6 2 0.67 0.72 0.71 0.62 0.71

7 2 0.62 0.75 0.70 0.64 0.73

8 2 0.44 0.71 0.61 0.59 0.69

9 3 0.63 0.74 0.65 0.64 0.73

10 3 0.58 0.74 0.64 0.64 0.73

11 3 0.61 0.75 0.65 0.65 0.74

12 3 0.71 0.80 0.71 0.70 0.80

13 3 0.64 0.79 0.67 0.69 0.81
14 4 0.67 0.79 0.67 0.69 0.81
15 4 0.68 0.78 0.68 0.69 0.80

16 4 0.58 0.74 0.64 0.66 0.77

17 4 0.43 0.73 0.60 0.64 0.75

18 5 0.36 0.68 0.57 0.60 0.71

19 5 0.26 0.67 0.44 0.58 0.70

20 5 0.21 0.65 0.28 0.53 0.68

21 5 0.31 0.67 0.29 0.53 0.70

Month PDSI SPI-1 SPI-3 SPI-6 SPI-9

(b) PDSI and SPI’s

1 0.61 0.21 0.79 0.42 0.47

2 0.61 0.46 0.65 0.43 0.42

3 0.66 0.66 0.55 0.63 0.47

4 0.65 0.47 0.60 0.78 0.53
5 0.62 0.16 0.53 0.66 0.51
Pumphrey, 1984). For Floyd and Concho counties,

ETDI and SMDI’s showed high correlations (r > 0.8)

with wheat yield during flowering and grain filling

stages (March to April) (Tables 5a and 6a). Even though

the correlations between wheat yield and drought

indices were the highest during the critical period, the

correlations were generally high (r � 0.7) during most

of the wheat growing season. Analysis of the data

showed that during the two best yields in record the soil

was dry during the planting phase and during the two

worst yields the soil was wet during the planting phase.

This suggests that probably Wheat prefer somewhat dry

soil during the planting phase for a good crop yield.

However, further analysis with field level yield data is

needed to confirm these observations.

In contrast to sorghum, where high correlations

occurred mainly during the critical growth periods, the

high correlations of drought indices with wheat yield

were widely spread during the growing season. This

indicates that a reasonable amount of soil moisture

during most of the growing season will be favorable for
wheat production. Compared to the summer crop

sorghum, PDSI and SPI’s were well-correlated with

winter wheat. Similar to ETDI and SMDI’s, PDSI and

SPI also showed markedly high correlations during

plant establishment – tillering stage and flowering –

grain filling stage. However, ETDI and SMDI’s have

shown higher correlations with wheat yield with

r > 0.8. Hence, ETDI and SMDI could be useful

indicators for monitoring soil moisture stress during

critical stages of wheat crop.

4. Summary and conclusions

Weekly soil moisture and evapotranspiration simu-

lated by the calibrated hydrologic model SWAT was

used to develop a set of drought indices – SMDI and

ETDI, respectively. The drought indices were derived

from soil moisture deficit and evapotranspiration

deficit and scaled between �4 and 4 for spatial

comparison of drought index, irrespective of climatic

conditions.
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� T
he auto-correlation lag of the drought indices, ETDI

and SMDI, were closely related to the available water

holding capacity of the soil, with lag increasing as a

result of increased water holding capacity.
� E
TDI and SMDI-2 had the lowest auto-correlation lag

because the top 2 ft. of the soil profile very actively

participate in the evapotranspiration of available soil

water. Hence, ETDI and SMDI-2 could be good

indicators of short-term agricultural droughts.
� T
he spatial variability of the drought indices was high

with a standard deviation greater than 1.0 during most

of weeks in a year, which was not apparent in the

existing drought indices due to large scale spatial

lumping.
� T
he high spatial variability in the drought indices was

mainly due to high spatial variability in rainfall

distribution.
� T
he spatial variability (standard deviation) of the

drought indices especially ETDI during different

seasons closely followed the variability in precipita-

tion and evapotranspiration across seasons.
� E
TDI and SMDI’s were positively correlated with

PDSI and SPI’s for both watersheds. This suggests

that the dry and wet period indicated by the ETDI and

SMDI’s were in general agreement with PDSI and

SPI.
� F
or both watersheds ETDI and SMDI-2 were well-

correlated with SPI-1 month (r � 0.7), indicating that

ETDI and SMDI-2 are good indicators of short-term

drought conditions suitable for agricultural drought

monitoring.
� P
DSI was highly correlated with SPI-9 and SPI-12

months (r > 0.8), suggesting that precipitation was

the dominant factor in PDSI, and PDSI is an indicator

of long-term weather conditions.
� T
he wheat and sorghum crop yields were highly

correlated with the drought indices (r > 0.75) during

the weeks of critical crop growth stages, indicating

that ETDI and SMDI’s can be used for agricultural

drought monitoring.

The fine spatial resolution of ETDI and SMDI’s

combined with high temporal resolution will help in

developing a better understanding of agricultural

drought and would help in monitoring and planning

to mitigate the impacts of drought.
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