
Estimating regional forest cover in East Texas using

Enhanced Thematic Mapper (ETM+) data

Ramesh Sivanpillai a,*, Charles T. Smith a, R. Srinivasan a,
Michael G. Messina a, X. Ben Wu b

a Department of Forest Science, Texas A&M University, College Station, TX 77843, USA
b Department of Rangeland Ecology and Management, Texas A&M University, College Station, TX 77843, USA

Received 28 January 2005; received in revised form 5 August 2005; accepted 11 August 2005

Abstract

The USDA Forest Service, through its Forest Inventory and Analysis (FIA) program, periodically estimates forest/non-forest

area at the county level using aerial photographs. Satellite-based remotely sensed data and digital image processing techniques

could substantially reduce the time required to generate this information. Satellites collect data on a repeat basis and with higher

frequency than the aerial photos that are currently used for this purpose. In addition to the forest cover estimates, the USDA

could use satellite data to generate maps depicting the spatial distribution of forest cover. However, few studies have tested the

utility of medium-resolution satellite data for FIA purposes. We tested the potential for using LANDSAT satellite data to obtain

forest cover estimates for a six-county region in East Texas. Satellite data were processed using a combination of image

classification techniques that could be repeated in other regions of the USA. Results were compared with the results of traditional

photo-based estimation techniques and were comparable within a 95% confidence interval. Based on this study we recommend

that medium-resolution satellite data can be used for obtaining county-level forest cover estimates.
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1. Introduction

The US Department of Agriculture-Forest Service

(USFS) has periodically estimated and published the

extent of forest cover and timber resources in the
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United States as part of its Forest Inventory and

Analysis (FIA) program (USFS, 1992; Frayer and

Furnival, 1999; Reams and van Deusen, 1999). This

information, published since the 1930s, is used by

state forest agencies, private timber companies and

individual foresters for planning and decision making.

In addition to this, FIA results are used for assessing

sustainability of forest management practices and

predicting the effects of global change (USFS, 2004).

The FIA program uses a variation of the double
.
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sampling method for collecting data about forest

resources. In the first phase, points are placed on aerial

photographs and are classified as either forest or non-

forest. In the second phase, detailed information about

forests is collected by visiting a predefined number of

photo-points on the ground. The estimates obtained in

the first phase are refined based on the ground

information and standard errors are computed

(McWilliams and Bertelson, 1986; Kelly et al.,

1992; Hansen and Wendt, 1999; Reams and van

Deusen, 1999). This information is used for periodi-

cally publishing statistical estimates of forest cover at

the county level (Wynne et al., 2000; McRoberts et al.,

2002).

Wayman et al. (2001) and McRoberts et al. (2002)

summarize the limitations of aerial photographs for

FIA purposes. Interpretation of the photos is a labor-

intensive and time-consuming process. Photographs

are expensive and cumbersome to handle, store and

transfer. Also, obtaining current aerial photographs for

FIA purposes is often difficult. Reams and van Deusen

(1999) identified the inability to produce maps using

county-level estimates. County-level estimates cannot

be used to capture the spatial variability of forest cover

within each county. In addition, it takes approximately

8 years for the FIA program to update estimates for the

southern region (13 states, Puerto Rico and the Virgin

Islands) of the US.

Satellite-based remotely sensed data in combina-

tion with semi-automated digital processing could

reduce the time required to generate forest and non-

forest estimates (Lannom et al., 1995; Cooke, 1999;

Czaplewski, 1999; Wayman et al., 2001). Orbiting

satellites collect data more frequently and regularly on

a global basis than do aerial photography programs.

Currently, satellites from the US (LANDSAT-http://

landsat.usgs.gov), France (SPOT-http://www.spotima-

ge.fr) and India (IRS-http://www.nrsa.gov.in, http://

www.antrix.org) provide medium-resolution multi-

spectral data. These satellites collect information in

the green, red and infrared regions of the electro-

magnetic spectrum that is useful for discriminating

vegetation. The current LANDSAT satellite (ETM+)

developed an anomaly (Scan Line Corrector malfunc-

tion) in May 2003 that reduces its utility, but data from

an earlier LANDSAT satellite (LANDSAT 5) are

nearly identical in character and are still available for

use. Plans are underway to include the next LAND-
SAT sensor in a NOAA satellite scheduled for launch

in 2009. Should LANDSAT TM5 fail before 2009,

data collected by the IRS and SPOT satellites could be

used for forest estimation using methods similar to

those described here.

In addition to forest and non-forest estimates,

information about forests could also be produced from

satellite data in a variety of formats including maps

(Dymond et al., 2002). Among other applications,

these maps could be produced at regular time intervals

and would improve the spatial accuracy and precision

of forest cover estimates, provide spatially explicit

estimates of changes in forest cover and condition,

fuel availability and wildlife habitat among others

(Beaubien, 1994; Wayman et al., 2001).

The 1998 Farm bill recommended that the USFS

and NASA work together to integrate satellite-based

remotely sensed data for the forest inventory program.

This bill also mandated that the USFS sample 20% of

the plots in a state every year, a substantial increase in

sampling density (Wayman et al., 2001). In addition,

the FIA was one of several federal government

programs reviewed by a study commissioned by the

Office of Science and Technology Program (OSTP).

One of the recommendations made by this study was

to incorporate satellite data in general and LANDSAT

Thematic Mapper data in particular into this process to

reduce the dependency on aerial photographs for FIA

purposes (Peterson et al., 1999).

In order for the USFS to incorporate satellite-based

estimates into its FIA program, additional research is

required to address the following issues: transfer-

ability of image processing and classification methods

for other regions, sources of misclassification related

to landscape pattern, and precision of the estimated

area for each thematic class that incorporates

uncertainty. Only comprehensive studies will enable

the USFS to evaluate the usefulness of satellite-based

estimates in comparison to traditional photo-based

estimates. This paper describes such a study where the

utility of LANDSAT data to map and estimate forest

resources was tested in East Texas.

Satellite image processing and classification of

forest resources involves assigning the pixels in the

image to predefined forest types. Methods such as

unsupervised or supervised classification or a combi-

nation of these two are available for grouping pixels

into forest or non-forest classes (Lillesand and Kiefer,

http://ncrs2.fs.fed.us/4801/FIADB/fim_tab/we_fim_tab.asp
http://ncrs2.fs.fed.us/4801/FIADB/fim_tab/we_fim_tab.asp
http://www.spotimage.fr/
http://www.spotimage.fr/
http://www.nrsa.gov.in/
http://www.antrix.org/
http://www.antrix.org/
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2000; Jensen, 2000). Numerous advances have

recently been made in image classification algorithms

such as fuzzy logic (Liu and Samal, 2002) and neural

networks to derive information from satellite images.

These advances coupled with developments in

computing, have significantly increased the amount

of data that can be processed in a given time and the

quality of the results.

After classifying a satellite image, an analyst

assesses how accurately the image was classified by

using verification data, which is usually collected in the

field or from high resolution aerial photographs.

Classification accuracy is typically reported in an error

matrix (Congalton, 1991) consisting of an equal number

of rows and columns representing the number of classes,

withmapped types on one axis of the table and reference

classes on the other. If most of the elements of this

matrix fall along the diagonal, there is relatively high

agreement betweenmapped types and ground reference

data. Deviations from the diagonal indicate mismatches

between the two.Thekappa agreement indexcanalsobe

computed for the error matrix and indicates the level of

agreement between the classified image and verification

data (Congalton, 1991).

A review of several published studies by Holmgren

and Thuresson (1998) found that most studies used

randomly distributed verification sites to assess the

accuracy of classified images. The number of

verification sites used depends on the variance in

accuracy among the mapped sites and the statistical

precision required. This review also found that in

several studies the overall accuracy of the classified

image was inflated because the analyst included

relatively more verification data corresponding to

easily identifiable features in a satellite image. One of

the recommendations of this review is that future

studies should use some form of systematic sampling

to select verification data, and that the total number of

verification sites must be based on statistical

principles of sampling. Systematic sampling proce-

dures will minimize the bias in the number of data

points assigned to different classes.

Inadequate information about the precision of area

estimates derived frommaps limits the user’s ability to

understand the uncertainty associated with these

estimates. Classified images have errors that can be

expressed as overall or individual class accuracy.

However, area estimates obtained from any classified
image are often reported as a single number, such as

3600 ha of coniferous forests (Wynne et al., 2000).

Card (1982) developed a method for incorporating

classification errors into area estimates obtained from

satellite images. However, this method has been

incorporated in few studies (Wynne et al., 2000;

Wayman et al., 2001).

Several studies in the US assessed the utility of

satellite imagery such as from the LANDSAT multi-

spectral scanner (MSS) (Dodge and Bryant, 1976; Fox

et al., 1983; Moore and Bauer, 1990), Thematic

Mapper (Moore and Bauer, 1990; Bauer et al., 1994;

Wayman et al., 2001), and the AVHRR (Iverson et al.,

1989; Nelson, 1989; Teuber, 1990; Zhu and Evans,

1992, 1994) for mapping forest cover, and in certain

instances for obtaining FIA estimates (Teuber, 1990;

Zhu and Evans, 1992, 1994; Hansen andWendt, 1999;

Franco-Lopez et al., 2001). Attempts have been made

to use products developed from other projects such as

the Gap Analysis Program (Hansen and Wendt, 1999)

or the National Land Cover Dataset (McRoberts et al.,

2002), to estimate forest cover. However, most of these

studies have not addressed all of the issues related to

systematic sampling and precision.

The primary objective of this study was to develop

a methodology using LAND SAT ETM+ imagery to

obtain forest and non-forest estimates comparable to

those obtained from aerial photos for East Texas. A

secondary objective of this study was to generate maps

of forest and non-forest classes with sufficient

thematic accuracy to be useful for further stratification

and analyses. It is hypothesized that ‘‘error-corrected’’

area estimates obtained from satellite imagery would

not be different from the estimates obtained from

aerial photographs at the 95% confidence level and

that the sources of error in the classified images can be

attributed to a limited number of land cover or land use

classes. If this hypothesis is supported, LANDSAT

imagery may be a cost effective and robust alternative

to air photo-interpretation for making FIA estimates.
2. Methods

2.1. Study area

Angelina, Nacogdoches, Panola, Rusk, San Augus-

tine, and Shelby Counties in East Texas (318430N,
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Fig. 1. Location of the study area in East Texas and 1992—USDA Forest Service estimates of forest cover within each county expressed as

proportion of the total area. Notes: Sources for administrative boundary, Texas Natural Resources Information System (TNRIS) and 1992 forest

estimates, Southern Research Station, FIA, Knoxville, TN, http://ncrs2.fs.fed.us/4801/FIADB/fim_tab/we_fim_tab.asp.
948240W) were chosen for this study (Fig. 1). This

region receives an average of 119.2 cm of rainfall

every year but precipitation varies on an average

monthly basis from 5.5 cm in July and 11.64 cm in

May. Average annual minimum and maximum

temperature vary between 12.8 8C and 25.5 8C.
Average summer maximum can reach 35 8C.

The USFS estimated that about 8.4 million hectares

(67.5%) of the total area (12.44 million hectares) of

these six counties (Fig. 1), which include Angelina and

Davy Crockett National Forests, is forested. Twomajor

pine forest types found in this region are loblolly pine

(Pinus taeda L.)–shortleaf pine (P. echinata Mill.) and

longleaf pine (P. palustris Mill.)–slash pine (P. elliottii

L.). The rest of the timberland consists of oak (Quercus

spp.)–hickory (Carya spp.), oak–gum (Nyssa spp.)–

cypress (Taxodium spp.), and oak–pine mix (Murphy,

1976; McWilliams and Bertelson, 1986).

2.2. Image data

A cloud free, LANDSAT Enhanced Thematic

Mapper 7 (ETM+) scene (row 25, path 37 from the

Worldwide Reference System-2) acquired on 6

October 1999 was obtained from the Texas Natural

Resources Information System (TNRIS), Austin, TX.

The image was corrected by the USGS EROS Data

Center, Sioux Falls, SD for geometric and terrain

distortions. This image was used as a basis for

classification and methods development for this study.
2.3. Ground reference data

Ground reference data are examples of vegetation

types that are used to associate pixels in the satellite

image with features on the ground. For this study these

data were collected using field visits and heads-up

digitizing of the satellite image. Examples of forest

and non-forest classes were mapped using a Trimble

(Sunnyvale, CA, USA) Global Positioning System

(GPS) in winter and spring of 2001. For forest stands,

attributes pertaining to stand conditions including type

and density were recorded. Care was taken to avoid

narrow stands along roads to minimize confusion

during the image classification process caused by the

presence of multiple features in a pixel. Reference

data were also digitized directly on the satellite image

as points and polygons using the information provided

by Texas Forest Service (TFS) personnel, who visit

these stands regularly and are familiar with local stand

conditions. Hardcopy maps and high resolution

imagery such as aerial photographs were used as

additional references. In total, 173 points and

polygons were digitized for use as reference data

(Sivanpillai, 2002).

2.4. Verification data

USFS plot-level FIA data and TFS black and white

aerial photographs were used for assessing the

accuracy of the classified imagery. The USFS had

http://ncrs2.fs.fed.us/4801/FIADB/fim_tab/we_fim_tab.asp
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surveyed 204 FIA permanent plots within the six-

county region since 2001. The classified thematic

satellite image was sent to the USFS field office for

verification because FIA plot locations were not

disclosed to us due to issues related to security and

privacy. Becausewe did not have access to the location

of the USFS plot data, it was desirable for us to collect

another set of verification data using systematic

sampling as described by Fitzpatrick-Lins (1981) so

that we could characterize the spatial distribution of

map errors generated in our study.

Aerial photo-negatives (nominal scale 1:15,840)

archived at the forest pest management unit of the

TFS office at Lufkin, TX, were used to collect the

second set of verification information about land

cover/use. These photos are obtained periodically on

a county basis along predefined flight lines. Every

sixth photo from each flight line flown between

2000 and 2001 was chosen and approximately 600

verification data points were obtained at photo-

centers and assigned to one of the 10 land cover/use

classes by Texas Forest Service personnel (Table 1).

These alternative verification data were digitized as

a point data layer in ESRI (Redlands, CA, USA) Arc

view 3.2. Digital Ortho Quarter Quads (DOQQs)

were used as image backdrop to locate the photo-

center to the real world coordinates (Sivanpillai,

2002). These verification points were used to obtain

an estimate of percent forest cover and error

measurements similar to the FIA estimates (Lund

and Thomas, 1989).
Table 1

Land cover/use of the study area identified from the Texas Forest

Service black and white aerial photographs

Code Land cover/use class

1 Pine

2 Pine–hardwood

3 Hardwood–pine

4 Hardwood-predominantly upland

5 Hardwood bottomland

6 Urban–commercial–mines

7 Agriculture

8 Pasture with no trees

9 Pasture with trees

10 Water

Note: Classes 1 through 5 are forest classes, whereas 6 through 10

are non-forest classes.
2.5. Image data processing

Six bands (three visible and three infrared) of the

ETM+ image were imported and a sub-scene of the

study area was extracted using a vector data layer

obtained fromTNRIS. Imageprocessingwas performed

using ERDAS (Atlanta, GA, USA) IMAGINE software

(PC version 8.4). The sub-scene was classified using an

unsupervised classification approach—the Iterative

Self-Organizing Data Analysis (ISODATA) algorithm

(ERDAS, 1996) and pixels were grouped into spectrally

homogeneous clusters. Labeling of the clusters was

accomplished using a combination of techniques

described by Stenback and Congalton (1990) and

Thenkabail et al. (2000). Spectral patterns, reference

data, and the spatial pattern of the clusters were used to

assign the clusters to land cover/use classes (Thenkabail

et al., 2000). First, clusters representing water were

identified and labeled by comparing them to existing

hydrology data obtained from the TNRIS website.

Clusters representing urban areas were identified and

labeled using a city, county, and transportation network

data layer also obtained from TNRIS website. Clusters

representing forest classes had relatively higher

reflectance values in green and infrared bands than

other cover types and this allowed them to be

distinguished from other types. DOQQs, field data

and polygons digitized on the imagery and DOQQs,

were used in conjunction with the characteristics

described above to assign the clusters either to a forest

or non-forest class (Zhu and Evans, 1992). This process

was repeated until all clusters were labeled. To generate

the final forest and non-forestmap, clusters representing

water, urban, and other non-forest classes were

combined to a single non-forest class and remaining

clusters were combined into a single forest class.

Pixels in the classified image were aggregated to

the minimum mapping unit of four pixels, which is

approximately equal to 1 acre. For inventory purposes,

the USFS defines forestland as patches that are at least

one acre in size (Hansen and Wendt, 1999). This step

removed isolated groups of pixels that were less than

an acre in size.

2.6. Accuracy assessment

The classified image was compared with the two

sets of verification data (described above) obtained
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Table 2

Overall accuracy, kappa agreement values (K-hat) and its variance

obtained for the classified image (by county) when compared with

photo-data

County Overall

accuracy (%)

K-hat Variance

Angelina 91.43 0.774 0.005119

Nacogdoches 84.62 0.599 0.007225

Panola 84.54 0.648 0.006830

Rusk 78.38 0.572 0.006015

San Augustine 95.71 0.844 0.007567

Shelby 81.82 0.610 0.006824

Photo-total 85.48 0.666 0.001073

FIA-total 78.40 0.547 0.003647
fromTFS photo-data and theUSFS plot-level FIA data.

The latter comparison was conducted by USFS

personnel at the Forest Research Laboratory at

Mississippi State University, USA to maintain con-

fidentiality of site locations. Five hundred and ninety-

nine data points obtained from photos (our second

verification data set) and 204 points obtained from FIA

plots were used to construct two error matrices

(Congalton, 1991; Jensen, 2000). Overall accuracy

andomission and commission errorswere computed for

both matrices. The kappa value and its variance were

computed using methods described by Story and

Congalton (1986) and Hudson and Ramm (1987).

Accuracy statistics for the two assessment matrices

were compared to determine if the two sets of

verification data yielded similar results. Similar

accuracy results from the two data sets would suggest

that our spatial error estimates reflect those that could

be determined using FIA data alone if those site

locations were available. Using the kappa values from

the two error matrices, a Z value was computed for an

overall comparison (Congalton and Mead, 1983). A Z

value greater than 1.96 indicates that at the 95%

confidence level the two matrices were significantly

different (Congalton et al., 1983; Rosenfield and

Fitzpatrick-Lins, 1986).

2.7. Forest area estimates

Estimates of forest cover were obtained using the

photo-center points and the USFS plot-level data using

the method described by Lund and Thomas (1989, p.

33). Estimates included forest area, standard error of the

mean, and sampling error of the mean for each county.

Forest and non-forest area estimates from the satellite

imagery were obtained within the image processing

software for each county. Using the method developed

by Card (1982) and described byWynne et al. (2000), a

95% confidence interval for the area estimates from the

satellite classification was estimated.

3. Results

3.1. Overall accuracy and class agreement

assessment

The overall accuracy for all the counties, when the

image was compared to photo-point data, was 85% for
the study area and varied from 78% for Rusk County

to 96% for San Augustine County (Table 2). Kappa

values (Table 2) for the study area (0.67 or 67%) were

lower than the overall accuracy, because they

incorporated off-diagonal elements of the error

matrix, thus providing a more comprehensive view

of agreement than the overall accuracy measure. San

Augustine County had the highest kappa agreement

value (0.84), whereas Rusk County had the lowest

(0.54). The overall accuracy for the total area, when

the image was compared to the FIA plot-level data,

was 78%, and the kappa value was also lower.

However, the Z value computed from the kappa values

of the two error matrices was 1.7364 indicating that

the errors in these two matrices were not significantly

different at the 95% confidence level.

Omission error in the satellite-based classification

for the forest class captures the number of forest

verification points misclassified as non-forest, leading

to under-prediction of forest area. Only 6% of the

forest verification data were not classified as forest,

whereas 31% of the non-forest verification data were

not classified as non-forest (Table 3). At the county

level, San Augustine County had the lowest (0%) and

Rusk County had the highest (12%) omission error for

the forest class (Fig. 2). Commission error for the

forest class is a measure of the number of non-forest

verification points misclassified as forest, leading to

over-prediction of forest area. Fourteen percent of the

forest verification data were misclassified as non-

forest whereas 15% of the non-forest verification data

were misclassified as forest (Table 3). At the county

level, San Augustine County had the lowest (5%) and

Rusk County had the highest (29%) commission error
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Table 3

Error matrices, omission and commission errors for the classified

images when compared to photo and FIA plot-level data (reference

data are in rows)

Forest Non-forest Omission

error (%)

Commission

error (%)

Photo (n = 599)

Forest 366 23 5.9 14.9

Non-forest 64 146 30.5 13.6

FIA plot data (n = 204)

Forest 105 11 9.5 24.0

Non-forest 33 55 38.0 17.0

Fig. 3. Percentage of non-forest verification points that were mis-

classified as forest (commission error) in the classified image listed

by county.
for the forest class (Fig. 3). Results obtained from this

study indicate that the commission error for the forest

class (15%) was higher than the corresponding

omission error (6%) for all six counties. In summary,

more non-forest verification points were misclassified

as forest than forest misclassified as non-forest,

resulting in a net over-estimation of forest area.

3.2. Sources of classification error

To explore the nature of classification error in the

map derived from satellite imagery, sixty-four non-

forest photo-verification points that were misclassified

as forest (Table 3) were assigned to their original more

detailed land cover/use listed in Table 1. Most (60 out

of 64 points or 94%) of the commission errors in the

forest class involved three non-forest classes: pasture

with trees, urban, and water (Table 4). The individual
Fig. 2. Percentage of forest verification points that were misclassi-

fied as non-forest (omission error) in the classified image listed by

county.
contribution by these three classes was 72% (46

points), 13% (8 points), and 9% (6 points), respec-

tively. Similarly, 23 forest sites that were misclassified

as non-forest in the satellite image (Table 3) were

assigned to their detailed land cover/use listed in

Table 1. Most of the omission errors (Table 5) in the

forest class (18 out of 23 or 79%) were due to pine

(class 1). The rest of the photo-verification points

corresponding to other forested classes had fewer

omission errors.

3.3. Forest cover estimates

The 95% confidence interval associated with the

forest cover estimates obtained from ETM+ data

overlapped with the corresponding 95% confidence
Table 4

Non-forest photo-p

image, categorized

County

Angelina

Nacogdoches

Panola

Rusk

San Augustine

Shelby

Total

Notes: U: urban, A:

pasture with trees a
oints misclassified as forest in the classified

by five subclasses

Non-forest classes

U A PNT PWT W Total

3 1 0 2 1 7

1 1 0 11 0 13

1 0 1 6 2 10

3 0 0 14 1 18

0 0 1 2 0 3

0 0 0 11 2 13

8 2 2 46 6 64

agriculture, PNT: pasture with no trees, PWT:

nd W: water.
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Table 5

Forest photo-points misclassified as non-forest in the classified

image, categorized by five subclasses

County Forest classes

P PH HP HU HB Total

Angelina 2 0 0 0 0 2

Nacogdoches 2 1 2 0 0 5

Panola 4 0 1 0 0 5

Rusk 6 0 0 0 0 6

San Augustine 0 0 0 0 0 0

Shelby 4 1 3 1 0 5

Total 18 1 3 1 0 23

Notes: P: pine, PH: pine–hardwood, HP: hardwood–pine, HU:

hardwood upland, HB: hardwood bottomland.
interval associated with the traditional photo-based

estimates (Fig. 4). Overlap of the confidence intervals

associated with each technique is further evidence of

the similarity between them. San Augustine County

had the lowest omission (0%) and commission (5%)

errors, thus the 95% confidence interval estimate for

this county was very narrow, indicating higher

precision. The true value (95% confidence) of the

forest cover for this county ranged between 69 and

78%. Rusk County had the lowest precision since it

had higher omission (12%) and commission (29%)

errors. Thus, the true value (95% confidence) for the

percent forest cover in Rusk County ranged between

45 and 60%. The 95% confidence interval estimate

obtained for Nacogdoches and Panola Counties were
Fig. 4. Proportion of forest cover estimates along with the 95%

confidence interval obtained from satellite image and aerial photos

listed by county.
closer to their corresponding standard errors obtained

from the photo-estimates.
4. Discussion

4.1. Image classification

This study used satellite-based unsupervised classi-

fication techniques and successfully matched forest

area estimates obtained from more labor intensive

traditional photo-interpretation. This suggests that

satellite data may be an economical alternative for

the USFS FIA process. Other researchers have obtained

comparable results, but with more complex iterative

classification methodologies (Holmgren and Thures-

son, 1998;Wayman et al., 2001). Themethod described

in this paper is simple, robust andpotentially extendable

to other regions of the US.

4.2. Sources of classification errors

One of the major sources of classification error in

this study was the confusion between tree and non-tree

classes resulting from landuse definitions. For example,

for Forest Service purposes, pastures should not be

classified as forest even when trees dominate a pasture

area. Photo-interpreters often use non-spectral keys,

such as presence of roads and feeding areas, to classify

air photos as non-forest, where the satellite image

classification relies primarily on the spectral response

of the dominant feature, causing wooded pasture to be

classified as forest. When the misclassified reference

points were analyzed it was evident that this type of

confusion contributed tomost of the errors in our study.

Classified satellite imagery had more non-forest

misclassified as forest (forest commission) than forest

misclassified as non-forest (forest omission). This

pattern was the same for all six counties. Errors were

lower in San Augustine County and the southeast

portion of Angelina County where state and national

forests are present and where forest fragmentation and

pasture with trees are relatively low. However, errors

were higher in Rusk County where several ‘pastures

with trees’ were misclassified as forest. Pastures in

San Augustine and Angelina had fewer trees than

pastures in Rusk and Panola, suggesting that the

distinction between ‘pasture with trees’ and ‘forest’
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classes was not as clear in Rusk and Panola Counties,

leading to higher error there.

Confusion between the forest class and vegetated

urban areas was another common source of error in the

satellite classification (Table 4). Together, forested

pastures and urban areas contributed about 85% of the

total commission error. In general, ambiguity between

wooded non-forest land use types and true forest

contributed disproportionately to classification error.

A solution might be to use percent tree cover more

directly to estimate forest cover, rather than relying on

land use classes. Quantitative measurements of the

percent forest could be obtained and these values

could be compared to the classified ETM+ imagery.

Recently harvested forest stands and young pine

plantations were omitted from the forested class in the

satellite classification more than any other ground

types (Table 5). One of the reasons for this may be that

the satellite image used in this study was obtained in

1999 whereas TFS black and white aerial photos were

obtained in 2001. Recently harvested stands identified

in 2001 could have been identified as forests in 1999.

In total, 79% of the omission errors in the satellite

classification corresponded to points identified on the

ground as either young pine plantations or recently

harvested stands. The reflectance of recently harvested

stands in the satellite image was similar to that of

barren soils and, in several instances, caused these

areas to be grouped with barren soils. Under these

circumstances, multi-temporal data sets may be

required to detect clear-cut areas (Wilson and Sader,

2002). Another method for minimizing this error

would be to obtain timber harvest records and

reclassify clear-cut and regeneration areas as forests.

4.3. Comparison with FIA plot data

The classification error observed when the satellite

map was compared with the FIA plot data was similar

to that from comparison with the photo-center points

allowing us to compare the validity of our satellite-

derivedmap to maps produced using traditional photo-

interpretation and assessed using FIA plots. However,

since the FIA plot locations were confidential, further

interpretation was hampered in several ways: (1)

distribution of the plots within the study area could not

be assessed; (2) knowledge of classes contributing to

the omission and commission errors could not be used;
and (3) the spatial pattern of the omission and

commission errors could not be determined. Knowl-

edge of these errors determined by our independent

photo-based validation provided further insights about

the utility of ETM+ for estimating forest cover in East

Texas and elsewhere.

4.4. Forest cover estimates

Overlap in the 95% confidence intervals for both

techniques indicates the similarities of the estimates

derived from ETM+ imagery and traditional photo-

estimates (Fig. 4). Estimates for San Augustine County

had the highest precision suggesting that the utility of

LANDSAT data for mapping forest cover is high for

areas with distinct forest and non-forest landscapes. In

other areaswhere thedistinctionbetween forest andnon-

forest ismore ambiguous (e.g.,RuskCounty) therewere

higher differences in estimates (lower precision from

satellite data). Such error estimates with confidence

intervals allow the analyst to better convey the precision

of the classification, rather than reporting estimates as a

single number, which is was done in several published

studies (Holmgren and Thuresson, 1998; Wynne et al.,

2000).Countieswithhigher classification accuracyhave

more precise estimates and this information would

enable the map user to obtain insights about the

usefulness of these data at the county level.

Results obtained from this study were encouraging

since the overall accuracy of the classified ETM+

images was high and most of the commission and

omission errors were due to classification confusion

among a few land cover/use classes. Obtaining GIS

data about urban areas and vegetated lots within

suburban areas would minimize the areas misclassi-

fied as forest. The results from the current study

demonstrate the utility of ETM+ data for obtaining

forest and non-forest estimates.
5. Conclusions

Satellite data can provide FIA phase I estimates of

forest area which are comparable in precision to those

obtained using the traditional photo-estimationmethod.

The method described in this paper allows routine

classification of satellite images with minimal training

required for USFS personnel. As a result, the USFS can
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obtain and publish area estimates faster than is possible

using traditional photo-interpretation because the time

required for classifying a LANDSATor similar satellite

image is much less. The time needed for generating

forest cover estimates is also reduced since the photos

currently used by the USFS are obtained approximately

once in 10 years, whereas LANDSAT images are

acquired approximately twice a month for the entire

US. In addition to LANDSAT, several satellites such as

SPOT and Indian Remote Sensing (IRS) satellites,

collect data with similar characteristics.

This study demonstrated that most of the errors in

East Texas satellite image classification were caused

by confusion among only a few land cover and land

use classes. Defining an area as non-forest based on

land use (e.g., pasture with trees) versus land cover

(e.g., sparse trees) also introduced some errors in the

classified image that might be solved using a land

cover based classification. In addition to cover

estimates described here, maps depicting forest cover

map created from ETM+ data could provide a better

spatial context for forest management.
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