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ASSESSMENT OF MIROC3.2 HIRES

CLIMATE AND CLUE‐s LAND USE

CHANGE IMPACTS ON WATERSHED

HYDROLOGY USING SWAT

J.‐Y. Park,  M.‐J. Park,  H.‐K. Joh,  H.‐J. Shin,
H.‐J. Kwon,  R. Srinivasan,  S.‐J. Kim

ABSTRACT. The aim of this study was to evaluate hydrologic impacts of potential climate and land use changes in a
mountainous watershed in South Korea. The climatic data predicted by MIROC3.2 HiRes GCM A1B for three time periods
(2010‐2039, 2040‐2069, and 2070‐2099) were prepared using a change factor statistical downscaling method. The future land
uses were predicted using the Conservation of Land Use and its Effects at Small regional extent (CLUE‐s) model by
establishing logistic regression model for five land use types with 11 driving forces represented by spatial information. By
applying the climate and land use predictions to the Soil and Water Assessment Tool (SWAT), the watershed hydrologic
components (including evapotranspiration, surface runoff, groundwater recharge, and streamflow) were evaluated. For the
predicted 2070‐2099 temperature and precipitation changes (+4.8°C and +34.4%), and 6.2% decrease in forest areas and
1.7% increase in urban areas, the combined land use with climate change scenario resulted in more streamflow change
(+55.4%) than the single climate and single land use change scenario (+39.8% and +10.8%), respectively. The predicted
large increase in future precipitation and the corresponding decrease in forest land are predicted to have substantial impacts
on watershed hydrology, especially on surface runoff and streamflow. Therefore, to mitigate negative hydrologic impacts and
utilize positive impacts, both land use and climate changes should be considered in water resource planning for the Chungju
dam watershed.

Keywords. Climate change, CLUE, Hydrologic component, Land use change, SWAT, Watershed hydrology.

he Intergovernmental Panel on Climate Change
(IPCC) report reaffirms that the climate is changing
in ways that cannot be accounted for by natural
variability and that global warming is occurring

(IPCC, 2007). Climate changes can affect the hydrological
cycle, thus modifying the transformation and transport char‐
acteristics of nutrients (Bouraoui et al., 2002). The scientific
consensus is that future increases in temperature will result
in elevated global‐mean temperatures with subsequent ef‐
fects on regional precipitation, evapotranspiration (ET), and
soil moisture, as well as altered flow regimes in streams and
rivers (Wilby et al., 1994; Arnell, 2003, 2004). In addition to
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the possible changes in the total volume of flow in rivers and
streams, there may also be a significant change in the fre‐
quency and severity of floods and droughts (Dibike and Cou‐
libaly, 2007).

In general, the assessment of the impacts of climate
change on watershed hydrology will need to use watershed
models and general circulation models (GCMs). Recently,
several studies have been carried out on the impacts of cli‐
mate change on water quantity. Merritt et al. (2006) evaluated
the hydrologic response to scenarios of climate change in the
Okanagan basin, British Columbia, using three GCMs
(CGCM2, CSIROMk2, and HadCM3) and the University of
British Columbia (UBC) watershed model. Zhang et al.
(2007) estimated the effect of potential climate change on the
available streamflow volume in the Luohe River basin using
two GCMs (HadCM3 and CGCM3) and the Soil and Water
Assessment Tool (SWAT).

Land use change has attracted much scientific interest due
to the correlation between land use change and water re‐
sources management associated with climate change scenar‐
ios (e.g., Matthews et al., 1997; Fischer and Sun, 2001;
Verburg and Veldkamp, 2001). Land use changes directly af‐
fect evapotranspiration, infiltration, and soil water storage,
which change the dynamics of surface runoff, subsurface run‐
off, and groundwater recharge. The accompanying spatial
and temporal distributions of vegetation cover change the pa‐
rameters for calculating the evaporation from soil and tran‐
spiration from vegetation (Park et al., 2009). Thus, the
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prediction of future land use is an important consideration in
sustainable water resource management.

Recently, many studies have evaluated the hydrologic im‐
pacts of land use change on urbanized or wetland watersheds
(McClintock et al., 1995; Choi et al., 2003; Kim et al., 2005).
The impact assessments are usually conducted by spatially
preparing series of land use data classified by satellite images
for a hydrologic model. A future land use prediction model
should be able to match the statistical patterns of past growth
and provide an estimate that matches the present reality
(Clarke et al., 1997; Clarke and Gaydos, 1998). Lin et al.
(2007) assessed the impacts of different land use change sce‐
narios, which included various spatial and non‐spatial poli‐
cies on hydrology and land use patterns in the Wu‐Tu
watershed, northern Taiwan, using the Conservation of Land
Use and its Effects at Small regional extent (CLUE‐s) model
and the generalized watershed loading functions model
(Haith and Shoemaker, 1987).

The aim of this study was to evaluate the impacts of cli‐
mate and land use changes on watershed hydrology using the
SWAT model. The 2010‐2039, 2040‐2069, and 2070‐2099
MIROC3.2 HiRes A1B future climate data were prepared,
and the CLUE‐s (Dyna‐CLUE version 2.0) future land use
was predicted using six past Landsat satellite images from
1975, 1980, 1985, 1990, 1995, and 2000 for the study wa‐
tershed, a 6642 km2 typical mountainous watershed in South
Korea.

METHODS
STUDY AREA DESCRIPTION AND DATA FOR 
MODEL EVALUATION

Figure 1 shows the Chungju dam watershed study area,
which has a total area of 6642 km2 and is located in northeast
South Korea within the latitude and longitude range of
127.9° to 129.0° E and 36.8° to 37.8° N. The elevation
ranges from 112 m to 1562 m, with an average slope of 36.9%
and elevation of 609 m. The annual average precipitation was
1261 mm, and the mean temperature was 9.4°C over the last
30 years. At the watershed outlet is the Chungju multipurpose
dam, which is 97.5 m in height, 447 m in length, and has a
volume of 9.7 million m3. This important dam provides ener‐
gy (412 MW capacity) and water for Seoul (metropolitan city
of South Korea) and adjacent urban areas, supplies irrigation
for 22,000 ha, protects rural areas from floods, and outlets
334 million tons or water per year to maintain streamflow.
More than 82.3% (5469 km2) of the watershed area is for‐
ested, and 12.2% (811 km2) is cultivated. The cultivated area
is comprised of 728 km2 of paddy fields and 83 km2 of upland
crops. Table 1 shows the 2000 land use of three subwa‐
tersheds (YW #1, YW #2 located upstream, and CD at the wa‐
tershed outlet).

The spatial data for the watershed (i.e., elevation, land
use, and soils) were prepared for SWAT and CLUE‐s. The
elevation data were rasterized as a 100 m resolution digital
elevation model (DEM) from a 1:5000 vector map supplied
by the Korea National Geography Institute. The soil data with

(a) (b)

(c) (d)

Figure 1. The Chungju dam watershed: (a) subwatershed gauging stations (YW #1, YW #2, and CD), (b) land use in 2000, (c) elevation, and (d) soil
types.
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Table 1. Area in 2000 for each land use type corresponding to streamflow gauging stations YW #1, YW #2, and CD.

Subwatershed
Gauging Station

Land Use Area, km2 (%)

Water Urban Bare field Grass Forest Agriculture Total

YW #1 8 (0.5) 12 (0.8) 24 (1.5) 43 (2.7) 1,327 (82.8) 188 (11.7) 1,602 (100.0)
YW #2 7 (0.3) 9 (0.4) 28 (1.3) 53 (2.3) 1,915 (84.7) 249 (11.0) 2,261 (100.0)

CD 50 (1.8) 33 (1.2) 19 (0.7) 76 (2.7) 2,227 (80.1) 374 (13.5) 2,779 (100.0)

All 65 (1.0) 54 (0.8) 71 (1.1) 172 (2.6) 5,469 (82.3) 811 (12.2) 6,642 (100.0)

respect to texture, depth, and drainage attributes were raster-
ized from a 1:25,000 vector map supplied by the Korea Rural
Development Administration. The six Landsat land use im‐
ages (1975, 1980, 1985, 1990, 1995, and 2000) for six classes
(forest, agriculture, grass, bare field, urban, and water) were
obtained from the Water Management Information System.
The road and stream networks were also prepared for CLUE‐
s. Monthly leaf area index (LAI) values from Terra MODer‐
ate resolution Imaging Spectroradiometer (MODIS) satellite
images (2000‐2006) were prepared to calculate Penman‐
Monteith evapotranspiration in SWAT (Monteith, 1965; Al‐
len, 1986; Allen et al., 1989). The crop parameters can be
found in the SWAT theoretical documentation (Neitsch et al.,
2002a). The MODIS LAI product (MOD15A2, Collection 3)
at 1 km spatial resolution and at an eight‐day interval were
downloaded from the Earth Observing System Data Gateway
(EOS, 2006).

For the climate data, the MIROC3.2 HiRes A1B monthly
data for 1977 to 2100 were adopted, and 30‐year (1977‐2006)
daily weather data from six ground meteorological stations
were collected from the Korea Meteorological Administra‐
tion for watershed‐scale downscaling. The MIROC3.2 mod‐
el, developed at the National Institute for Environmental
Studies of Japan, has two MIROC3.2 setups of different reso‐
lutions. The higher resolution (1.1° × 1.1°) setup is referred
to as HI (HiRes), and the lower resolution (2.8° × 2.8°) setup
is referred to as MID (medres). The IPCC tried to capture a
wide range of potential changes in greenhouse gas (GHG)
emissions in its Special Report on Emission Scenarios
(Nakićenović et al., 2000). The scenarios result in a wide
range of emissions and concentrations of GHGs. Since likeli‐
hoods are not given by the IPCC, we used three scenarios
from the IPCC that bracket the range of possible emissions
scenarios: low (B1), mid‐range (A1B), and high (A2) (Lazar
and Williams, 2008). Kwon et al. (2007) reported that the
A1B scenario would be appropriate considering the increas‐
ing tendency of CO2 emission in South Korea; therefore, the
mid‐range scenario (A1B) of MIROC3.2 HiRes was used for
the future in this study. For calibration and validation of the
SWAT model, six years (1998‐2003) of daily streamflow data
from three gauging stations (YW #1, YW #2, and CD in
fig.�1) were obtained from the Han River flood control office.

SWAT MODEL
The SWAT2005 version with the ArcSWAT2.0 interface

was used in this research. SWAT is a physically based contin‐
uous, long‐term, distributed‐parameter model designed to
predict the effects of land management practices on the
hydrology, sediment, and contaminant transport in agricul‐
tural watersheds under varying soils, land use, and manage‐
ment conditions (Arnold et al., 1998). It is a public domain
model supported by the USDA Agricultural Research Ser‐

vice (USDA‐ARS) at the Grassland, Soil, and Water Re‐
search Laboratory in Temple, Texas.

SWAT is based on the concept of hydrologic response
units (HRUs), which are portions of a subbasin that possess
unique land use, management, and soil attributes. The runoff,
sediment, and nutrient loadings from each HRU are calcu‐
lated separately based on weather, soil properties, topogra‐
phy, vegetation, and land management and then summed to
determine the total loading from the subbasin. The hydrolog‐
ic cycle, as simulated by SWAT (Neitsch et al., 2002a), is
based on the water balance equation:
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where SWt is the final soil water content (mm H2O), SW0 is
the initial soil water content on day i (mm H2O), t is the time
(days), Rday is the amount of precipitation on day i
(mm�H2O), Qsurf is the amount of surface runoff on day i
(mm�H2O), Ea is the amount of evapotranspiration on day i
(mm H2O), Wseep is the amount of water entering the vadose
zone from the soil profile on day i (mm H2O), and Qgw is the
amount of return flow on day i (mm H2O).

The SWAT model was calibrated for three years
(1998‐2000) of daily streamflow data at three locations (YW
#1, YW #2, and CD) and validated with another three years
(2001‐2003) of data. Multisite calibration enhances the cal‐
ibration results from the viewpoint of spatial variation of the
hydrological response. The coefficient of determination
(R2), the Nash and Sutcliffe (1970) model efficiency (NSE),
and the root mean square error (RMSE) were used to quanti‐
tatively assess the ability of the SWAT model to replicate
temporal trends in the observed hydrologic data.

DOWNSCALING TECHNIQUE FOR GCM CLIMATE DATA

It is well known that precipitation and temperature outputs
from GCMs cannot be used to force hydrologic models with‐
out some form of prior bias correction if a realistic output is
sought (Feddersen and Andersen 2005; Hansen et al., 2006;
Sharma et al., 2007). Therefore, the required statistical bias
correction is calculated for precipitation and temperature us‐
ing historical observed data. The spatial resolution from the
output of GCMs cannot provide a good climate change sce‐
nario to a target watershed because GCMs are on a global
scale. To represent the impact of climate change on a wa‐
tershed, the output of GCMs needs downscaling to apply on
a regional scale.

The downscaling was performed in two steps. First, bias
corrections were carried out for each weather station by ap‐
plying the Alcamo et al. (1997) and Droogers and Aerts
(2005) method. The temperature and precipitation data of
MIROC3.2 HiRes were corrected by fitting the 20C3M (20th
century simulations, 1977‐2006) data with the observed data
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(1977‐2006, baseline period) to give similar statistical prop‐
erties. This method is generally accepted within the global
change research community (IPCC‐TGCIA, 1999). For the
temperature,  the absolute changes between historical and fu‐
ture GCM time slices were added to the measured values:

 ( )hisGCMfutGCMmeasfutGCM TTTT ,,,' −+=  (2)

where T'GCM,fut is the transformed future temperature, Tmeas
is the measured 30‐year (baseline period) average annual
temperature,  futGCMT ,  is the average future GCM tempera‐
ture, and hisGCMT ,  is the average historical GCM temperature.
For precipitation, the relative changes between the historical
data and the GCM output were applied to the measured his‐
torical values:

 ( )hisGCMfutGCMmeasfutGCM PPPP ,,, /×=′  (3)

where P′GCM,fut is the transformed future precipitation, Pmeas
is the measured 30‐year (baseline period) average annual pre‐
cipitation,  futGCMP ,  is the average future GCM precipitation,
and hisGCMP ,  is the average historical GCM precipitation.

Second, the MIROC3.2 HiRes data were downscaled us‐
ing the change factor (CF) method (Diaz‐Nieto and Wilby,
2005; Wilby and Harris, 2006; Park et al., 2009). The two key
assumptions of the CF method approach are (1) that the rela‐
tionship between macroclimates and microclimates is
constant over time and (2) that model bias is constant over
time. These are assumptions of stationarity, in which spatial
and temporal patterns from the observed 20th century data set
are projected to a future climate period despite the possibility
that climate patterns or proportion of model bias might other‐
wise have changed (Wilby et al., 2004; Diaz‐Nieto and
Wilby, 2005).

The CF method cannot be used to explore transient
changes in the local climate scenario, which means that the
data variability and the number of days with rain remain un‐
changed because the method is calculated for a specific year.
In addition, the spatial pattern of the present climate will re‐
main unchanged in the future. Therefore, the CF method can‐
not reflect future changes in precipitation patterns and
extreme meteorological years. However, key advantages of
the monthly CF approach are the ease and speed of applica‐
tion and the direct scaling of the scenario in line with changes
suggested by the GCM (Diaz‐Nieto and Wilby, 2005). The
CF method is a relatively straightforward procedure for
constructing regional climate change scenarios and has been
widely used for the rapid assessment of climate change im‐
pacts (Arnell, 2004; Diaz‐Nieto and Wilby, 2005).

The downscaling procedure is as follows. First, the month‐
ly mean precipitation, temperature, wind speed, relative hu‐
midity, and solar radiation from 30 years (1977‐2006) of data
were calculated, and the values were adopted as a baseline
period for downscaling. Next, the monthly mean changes in
the equivalent variables from the climate change scenario of
MIROC3.2 HiRes were calculated. Finally, the percentage
changes in the monthly means of the weather variables were
applied to a selected base year.

Monthly mean changes in equivalent variables from the
30 years of observed data and the climate data for three future
time periods (2010‐2039, 2040‐2069, and 2070‐2099) were
calculated for the MIROC3.2 HiRes grid cell. The percentage

changes in the monthly means were applied to all weather
data in the year 2000 for each weather station. The 2000 data
were selected as a base year for future assessment because
2000 was a typical meteorological year with precipitation
and temperature values similar to the average values for the
30‐year period (1977‐2006) for the six weather stations.

CLUE‐S LAND USE CHANGE MODEL

The CLUE‐s model is comprised of two parts: a non‐
spatial demand module, and a spatially explicit allocation
procedure. The non‐spatial module calculates the area
change for all land uses at the aggregate level (Verburg et al.,
2002). In the spatially explicit allocation procedure, non‐
spatial demands are converted into land use changes at vari‐
ous locations in the study area. Yearly land use demands,
which have to be defined prior to the allocation procedure,
can be set using various approaches, such as economic mod‐
els (Lin et al., 2007). The allocation is based on a combina‐
tion of empirical and spatial analyses and dynamic modeling
(Verburg et al., 2002). In addition to land use, data were col‐
lected that represent the assumed factors driving the land use
changes (Turner et al., 1993; Kaimowitz and Angelsen, 1998;
Lambin et al., 2001). The relationships between land uses and
the driving factors were evaluated by following stepwise lo‐
gistic regression (Verburg et al., 2002):
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where Pi is the probability of a grid cell for the occurrence of
the considered land use type, X is the driving factor, and �i is
the coefficient of each driving factor in the logistical model.

The relative operating characteristic (ROC) curve (Swets,
1973; Mason, 1982; Harvey et al., 1992) was used to evaluate
the goodness of fit of the regression models. The ROC is
based on a curve relating the true‐positive proportion and the
false‐positive proportion for a range of cutoff values in classi‐
fying the probability. The ROC statistic measures the area be‐
neath this curve and varies between 0.5 (completely random)
and 1 (perfect discrimination) (Zhu et al., 2010). Validation
for this type of study typically includes calculation of the kap‐
pa (�) coefficient (Cohen, 1960). The kappa coefficient is one
of the most popular measures in addressing the difference be‐
tween actual and chance agreement; � values greater than 0.8
(i.e., >80%) represent strong agreement, and values between
0.6 to 0.8 represent high agreement between the classifica‐
tion map and the ground reference information.

Next, the spatial policy (such as the development‐
restricted area) and the decision rules for changing from one
land use to another were specified for the study watershed.
For each land use type, its specific conversion elasticity was
specified to account for the typical conversion conditions of
the different land uses. The model allocates a land use change
in an iterative procedure, using probability maps, decision
rules in combination with actual land use maps, and the de‐
mand for the different land uses (Verburg et al., 2002). For
each grid cell, the total probability is calculated for each land
use type based on the logistical model results, elasticity of the
land use change, and the iteration variable. Each cell is as‐
signed to the land use with the highest probability. For land
use types where the allocated area is smaller than the demand
area, the value of the iteration variable is increased. The itera‐
tion is continued until the aggregated cover of all grid cells
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equals the land use demand (Lin et al., 2007). The model pro‐
cedure has been described in detail by Verburg and Overmars
(2009).

RESULTS AND DISCUSSIONS
SWAT CALIBRATION AND VALIDATION

In this study, twelve parameters were selected for calibra‐
tion of three subwatersheds (table 2). Among these parame‐
ters, five are associated with snow processes (SFTMP,
SMTMP, SMFMX, SMFMN, and TIMP). The other parame‐
ters are related to runoff (CN2), groundwater (ALPHA_BF
and GW_DELAY), soil (SOL_AWC), channel (CH_N and
CH_K2), and evaporation (ESCO) processes. Most of the pa‐
rameters were adjusted on a trial‐and‐error basis within rea‐
sonable limits after due consideration of physical
characteristics,  and final values were selected by statistical
results (table 3).

The observed and simulated daily streamflow at the three
locations matched reasonably well (fig. 2). NSE values were
typically greater than 0.50, which indicates satisfactory sim‐
ulation according to Moriasi et al. (2007) (table 3). However,
it can be seen that the flows during the winter period
(December‐February) were consistently underestimated by
the model, especially for YW #2, and that the peak flows
were also overestimated for some years (fig. 2).

Errors in low flow predictions are attributed to uncertain‐
ties in quantifying the storage function of forest soils and in
estimating soil and groundwater parameters. The peak runoff
errors may be caused by poor simulation of anthropogenic ef‐
fects on runoff mechanisms in paddy fields (728 km2). Unlike
typical runoff mechanisms, rice paddy hydrology is managed
with irrigation scheduling and levee height adjustment,
which increase the difficulty of simulating water budgets. For

Table 2. Calibrated model parameters at three subwatersheds.

Parameters[a] Description
Calibration

Range

Adjusted Value

YW
#1

YW
#2 CD

ALPHA_BF Baseflow alpha 
factor (days)

0 to 1 0.35 0.50 0.30

CH_N Manning coefficient 
for channel

0.01 to 0.3 0.01 0.01 0.01

CH_K2 Effective hydraulic 
cond. of main channel

‐0.01 to 150 50 70 70

CN2 Curve number 
adjustment ratio

±20% 9 2 9

ESCO Soil evaporation 
compensation

0 to 1 0.8 0.8 0.4

GW_DELAY Groundwater 
delay time (days)

0 to 500 120 110 110

SOL_AWC Available 
water capacity

±20% 5 ‐‐ ‐‐

SFTMP Snowfall 
temperature (°C)

0 to 5 0.5 0.5 0.5

SMTMP Snowmelt base 
temperature (°C)

0 to 5 1 1 1

SMFMX Max. snowmelt 
factor (mm °C‐1 d‐1)

0 to 10 7 7 7

SMFMN Min. snowmelt 
factor (mm °C‐1 d‐1)

0 ‐ 10 4.5 4.5 4.5

TIMP Snowpack temp. 
lag factor

0.01 ‐ 1 0.5 0.5 0.5

[a] Source: Neitsch et al. (2002b).

example, irrigating before rainfall and draining after rainfall
can significantly affect streamflow; however, irrigation op‐
tions were not input and factored into the simulation in this
study because of limited data.

Table 3. Statistical summary of the model calibration and validation results.

Gauging
Station                 Statistic

Calibration Validation

1998 1999 2000 2001 2002 2003

YW #1 Rainfall (mm year‐1) 1421.1 1294.4 1016.6 766.0 1307.0 1432.6

Streamflow (mm year‐1) Obs. 705.5 882.8 726.8 332.2 777.0 1166.4
Sim. 1122.4 930.2 712.4 280.4 791.5 1266.3

Runoff ratio (%) 49.6 68.2 71.5 43.4 59.5 81.4

Evaluation criteria (mm d‐1) RMSE 2.91 3.95 1.54 1.34 3.18 2.61
R2 0.84 0.56 0.89 0.50 0.82 0.80
NSE 0.72 0.56 0.91 0.46 0.80 0.79

YW #2 Rainfall (mm year‐1) 1398.0 1497.0 1253.0 946.0 1645.0 1780.5

Streamflow (mm year‐1) Obs. 932.5 966.7 704.7 437.1 1072.6 1371.7
Sim. 1040.3 913.1 620.4 402.2 925.9 1325.8

Runoff ratio (%) 66.7 64.6 56.2 46.2 65.2 77.0

Evaluation criteria (mm d‐1) RMSE 2.97 4.56 1.40 0.67 4.31 3.04
R2 0.68 0.67 0.92 0.76 0.77 0.54
NSE 0.54 0.56 0.90 0.73 0.69 0.32

CD Rainfall (mm year‐1) 1503.6 1427.0 1155.1 820.9 1441.7 1703.9

Streamflow (mm year‐1) Obs. 871.5 804.1 608.5 310.7 840.8 1051.1
Sim. 1044.8 897.9 691.2 385.2 889.5 1235.2

Runoff ratio (%) 58.0 56.3 52.7 37.8 58.3 61.7

Evaluation criteria (mm d‐1) RMSE 2.08 2.67 1.29 0.76 2.03 1.94
R2 0.87 0.84 0.95 0.81 0.95 0.84
NSE 0.78 0.75 0.89 0.64 0.92 0.79
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(a)

(b)

(c)

Figure 2. Comparison of the observed and simulated streamflows at three locations: (a) YW #1, (b) YW #2, and (c) CD.

MIROC3.2 HIRES A1B FUTURE CLIMATE DATA 
As described above, the bias of the MIROC3.2 HiRes A1B

data was initially corrected using 30 years (1977‐2006) of ob‐
served data. Figure 3 shows the corrected MIROC3.2 HiRes
annual precipitation and temperature. Secondly, the bias‐
corrected data were downscaled by applying the CF statisti‐
cal downscaling method. The mean annual precipitation
values of the observed and MIROC3.2 HiRes (20C3M) data
during the last 30 years were 1261 and 1371 mm, respective‐
ly. Precipitation in 1982, 1994, 1996, and 2001 was below av‐
erage, while 1980, 1990, and 2006 were wet years with more
than 1500 mm of precipitation. However, as seen in figure 3,
the MIROC3.2 HiRes simulated data exceeded actual precip‐
itation for most years from 1977 to 2006, which is attributed
to the difference in spatial scale between the MIROC3.2
HiRes grid data and the ground observed point data. Figure
4 shows the monthly changes in the 2010‐2039, 2040‐2069,
and 2070‐2099 downscaled precipitation and temperature
based on the 2000 data. The average bias of the MIROC3.2
HiRes temperature was +2.20°C. Regarding the relatively
high elevation of the watershed within the MIROC3.2 HiRes
grid cell, it seems that the correction was performed in an ac‐
ceptable direction. The future 2070‐2099 temperature increased

by 6.1°C in winter, 5.3°C in autumn, 4.3°C in summer, and
3.6°C in spring. The future precipitation increased 12.9% for
2010‐2039, 23.1% for 2040‐2069, and 34.4% for 2070‐2099,
with the exception of August and September. The seemingly
large increase in future precipitation likely resulted from the in‐
creasing trend observed from 1977 to 2006.

FUTURE PREDICTED LAND USE BY CLUE‐S

Probability maps of each land use type were prepared from
the logistic regression results. The forward stepwise logistic
regression and ROC analyses between five land use types and
11 driving factors were conducted using SPSS (SPSS, 2005).
Table 4 summarizes the logistic regression model results. The
ROC values in the model ranged from 0.602 to 0.778, show‐
ing correlation for the spatial variation of land use patterns.
Looking at the derived coefficients of each land use, forest
land use was dependent on all 11 driving factors, and urban
land use was fully dependent on the distance factors. The
grass and agriculture land uses showed a mixed relationship
with the altitude, distance, and soil driving factors. Bare field
was independent of the soil factors. The high ROC values in‐
dicate that the spatial pattern of five land use types can be rea‐
sonably explained by 11 driving factors. To evaluate the
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(a)

(b)

Figure 3. Bias‐corrected MIROC3.2 HiRes A1B: (a) annual precipitation and (b) temperature.

CLUE‐s generated land use for the study watershed, the 2000
Landsat land use and CLUE‐s land use were compared. The
kappa coefficient was 0.79, representing high agreement be‐
tween two land uses.

By applying the derived regression models and the pre‐
pared land uses, the future land uses for 2010‐2039,
2040‐2069, and 2070‐2099 were predicted (fig. 5). The
CLUE‐s model in this study was applied by combining the
driving factors, land use demands, and government policies.
The highest degree of change occurred more frequently at
low elevations, around Lake Chungju and urban areas. By
2070‐2099, forest and agriculture are predicted to decrease
by 6.2% and 1.6%, respectively, compare to 2000. Mean‐

while, urban, bare field, and grass increased by 1.7%, 1.3%,
and 4.8%, respectively. The big increase in grass within the
watershed was the result of steady pasture construction dur‐
ing the 1970s and 1980s and golf course construction in the
1990s. According to the Korea National Statistical Office
(2008), golf course land use has increased dramatically since
1990. The increasing trend of grass area is likely to continue
into the future due to increasing demand for golf courses and
pasture farming. This result is consistent with the study by
Ahn et al. (2008) for future land use change using the CA‐
Markov technique, which also showed a tendency of decreas‐
ing forest and paddy land and increasing urban, grassland,
and bare fields by 2090.

(a) (b)

Figure 4. Monthly changes in the 2010‐2039, 2040‐2069, and 2070‐2099 MIROC3.2 HiRes A1B (a) temperature and (b) precipitation based on a 2000
baseline.
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Table 4. Logistical regression model results for
the five land use types with 11 driving factors.

Driving Factor

Land Use Type[a]

Urban
Bare
Field Grass Forest

Agricul‐
ture

Altitude ‐‐ 0.0014 0.0010 0.0019 0.0007
Slope ‐‐ ‐‐ ‐‐ 0.0081 ‐‐
Aspect ‐‐ ‐0.0024 ‐‐ ‐0.0006 ‐‐

Distance to nat'l road ‐0.0003 ‐0.0001 ‐0.0001 ‐0.0001 ‐0.0002
Distance to local road ‐‐ ‐‐ ‐‐ 0.0002 ‐‐

Distance to city ‐0.0001 ‐‐ ‐4.0E‐05 0.0001 ‐‐
Distance to stream ‐0.0004 ‐‐ ‐‐ 4.0E‐05 ‐‐
Soil drainage class ‐‐ ‐‐ ‐‐ ‐0.1256 ‐0.0960

Soil type ‐‐ ‐‐ 0.1100 0.0774 ‐‐
Soil depth ‐‐ ‐‐ ‐‐ ‐0.0027 ‐‐

Land use in the soil ‐‐ ‐‐ ‐‐ ‐0.0346 ‐‐
Constant ‐3.5653 ‐5.2972 ‐4.800 ‐1.6195 ‐2.2253

ROC 0.7340 0.7480 0.6020 0.7780 0.6460
[a] ‐‐ = value not significant at the 0.05 significance level, and thus

excluded from the model.

IMPACT OF CLIMATE AND LAND USE CHANGES ON

WATERSHED HYDROLOGY
By applying the future MIROC3.2 HiRes downscaled cli‐

mate and CLUE‐s land use conditions, SWAT was run to eval‐
uate the future impact of climate and land use changes on
watershed hydrology (specifically evapotranspiration, sur‐
face runoff, groundwater recharge, and streamflow). The
large predicted increase in precipitation (and the resulting in‐
creasing precipitation inputs to SWAT) had dramatic effects

on watershed hydrology. Thus, climate change created much
larger impacts than land use change. Table 5 shows a summa‐
ry of the future predicted hydrologic components for three
scenarios: land use change only, climate change only, and
land use change with climate change. The future evapotran‐
spiration and surface runoff were more affected by climate
change than by land use change. The 2070‐2099 evapotran‐
spiration showed an increase of +23.1% with climate change
only, but an increase of +29.4% with the land use and climate
change scenario. The 2070‐2099 surface runoff showed an
increase of +47.7% with climate change only, but an increase
of +52.0% with the land use and climate change scenario.
The climate change impacts on watershed hydrology are
larger because their relative changes for future precipitation
(13% to 34%) are larger than for future land use (less than
10%, as shown in fig. 6).

As seen in table 5, the effect of both land use change and
climate change are larger for surface runoff and streamflow
than for ET and groundwater recharge. The impact of future
land use change only on ET, surface runoff, groundwater re‐
charge, and streamflow had maxima of +7.8%, +7.6%,
+6.7%, and +10.8%, respectively, in 2070‐2099. The
2070‐2099 groundwater recharge showed an increase of
+28.1% with climate change only, but an increase of +38.5%
with the land use and climate change scenario. The
2070‐2099 streamflow showed an increase of +39.8% with
climate change only, but an increase of +55.4% with the land
use and climate change scenario. The results show that future
land use changes need to be considered in conjunction with
climate change, which in this case is a large increase in pre-

Figure 5. Comparison of the land use change areas in (a) 2010‐2039, (b) 2040‐2069, and (c) 2070‐2099 based on 2000 land use.

Table 5. Summary of the future predicted annual hydrological components by climate and land
use change scenarios (values in parentheses indicate percent of increase based on baseline).

Scenario Years
Rainfall
(mm)

ET
(mm)

Surface Runoff
(mm)

Groundwater
Recharge (mm)

Streamflow
(mm)

Baseline 2000 1155 407 419 233 691

Land use 2010‐2039 1155 (0.0) 421 (3.4) 423 (0.9) 234 (0.6) 712 (3.0)
2040‐2069 1155 (0.0) 428 (5.1) 436 (4.0) 241 (3.7) 743 (7.5)
2070‐2099 1155 (0.0) 439 (7.8) 451 (7.6) 248 (6.7) 766 (10.8)

Climate 2010‐2039 1304 (12.9) 454 (11.5) 470 (12.2) 263 (13.1) 773 (11.8)
2040‐2069 1422 (23.1) 479 (17.7) 538 (28.3) 279 (19.9) 862 (24.7)
2070‐2099 1552 (34.4) 501 (23.1) 619 (47.7) 298 (28.1) 966 (39.8)

Land use and 2010‐2039 1304 (12.9) 460 (13.0) 474 (13.1) 270 (16.1) 811 (17.3)
climate change 2040‐2069 1422 (23.1) 491 (20.6) 569 (35.7) 293 (26.0) 953 (37.9)

2070‐2099 1552 (34.4) 527 (29.4) 637 (52.0) 322 (38.5) 1074 (55.4)
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Figure 6. Proportion of future predicted land uses by CLUE‐s.

(a)

(b)

(c)

(d)

2010-2039 (2020s) 2040-2069 (2050s) 2070-2099 (2080s)

Figure 7. Future monthly change in each hydrological component by MIROC3.2 HiRes climate and CLUE‐s land use change scenarios: (a) evapotran‐
spiration, (b) surface runoff, (c) groundwater recharge, and (d) streamflow.
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dicted precipitation, because of their cumulative impacts on
watershed hydrology.

Another key for the long‐term planning and management
of water resources is consideration of the seasonal effects of
climate and land use change (Park et al., 2009). In this study,
land use change increased ET up to +63.6% (12.4 mm) in De‐
cember of 2010‐2039, while climate change increased ET up
to +183.4% (13.7 mm) in January of 2070‐2099 (fig. 7). For
surface runoff, climate change increased surface runoff in
June (+1099.9%, 101.4 mm) and July (+173.1%, 126.9 mm)
of 2070‐2099 but decreased it in August (‐23.3%, 115.0 mm)
of 2070‐2099 and September (‐19.9%, 157.7 mm) of
2010‐2039. The land use change (+1.7% increase of impervi‐
ous area in 2070‐2099) increased surface runoff up to +88.5%
(15.9 mm) in June of 2070‐2099. For groundwater recharge,
land use change resulted in changes between ‐14.9%
(5.0�mm) in January of 2010‐2039 and +48.1% (3.1 mm) in
February of 2040‐2069, while climate change generally re‐
sulted in increases, up to +338.6% (9.2 mm) in February of
2010‐2039. For streamflow, land use change with climate
change resulted in a +323.3% (39.4 mm) increase in January
of 2070‐2099. The land use change increased streamflow
+55.2% (26.4 mm) in November of 2070‐2099, while the cli‐
mate change increased streamflow up to +304.0% (37.6 mm)
in January of 2070‐2099. The primary factor in the increased
surface runoff and streamflow was the 34.4% increase in pre‐
cipitation for 2070‐2099; however, the 6.2% decrease of for‐
est and 1.7% increase of urban areas also contributed to the
increases.

SUMMARY AND CONCLUSIONS
This study evaluated the impacts of future potential cli‐

mate and land use changes on the hydrologic components of
a 6642 km2 watershed in South Korea. For the future climate
conditions, the MIROC3.2 HiRes GCM A1B data for
2010‐2039, 2040‐2069, and 2070‐2099 were prepared using
a change factor simple statistical downscaling method. The
future 2070‐2099 temperature changes were +6.1°C in win‐
ter, +5.3°C in autumn, +4.3°C in summer, and +3.6°C in
spring. Monthly precipitation was predicted to increase in ev‐
ery month except August and September, and dramatic in‐
creases in annual precipitation totals were predicted (+397
mm by 2070‐2099). The future land uses were predicted by
CLUE‐s using Landsat satellite images from 1975 to 2000.
By 2070‐2099, forest and agriculture land uses were pre‐
dicted to decrease by 6.2% and 1.6%, while urban, bare field,
and grass land uses were predicted to increase by 1.7%, 1.3%,
and 4.8%, respectively, based on a 2000 baseline.

The assessment of watershed hydrological components in
the future was conducted by inputting the predicted climate
and land use data into SWAT, which was calibrated and vali‐
dated with a total of six years of stream flow data from the
watershed. The future evapotranspiration was more affected
by climate change than by land use change. The 2070‐2099
ET showed an increase of +23.1% due to climate change
only, but an increase of +29.4% due to land use and climate
changes. The 2070‐2099 groundwater recharge showed an
increase of +28.1% due to climate change only, but an in‐
crease of +38.5% due to land use and climate changes. The
2070‐2099 streamflow showed an increase of +39.8% due to
climate change only, but an increase of +55.4% due to land

use and climate changes. The results indicate that the pre‐
dicted dramatic increases in precipitation will have a greater
impact on watershed hydrology than the predicted land use
changes, but that land use change also plays an important role
because it can magnify these impacts. Therefore, to mitigate
negative hydrologic impacts and utilize positive impacts,
both land use and climate changes should be considered in
water resource planning for the Chungju dam watershed.
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