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Abstract The pressure on water resources, deteriorating water quality, and uncertainties associated with
the climate change create an environment of conflict in large and complex river system. The Black Sea Basin
(BSB), in particular, suffers from ecological unsustainability and inadequate resource management leading
to severe environmental, social, and economical problems. To better tackle the future challenges, we used
the Soil and Water Assessment Tool (SWAT) to model the hydrology of the BSB coupling water quantity,
water quality, and crop yield components. The hydrological model of the BSB was calibrated and validated
considering sensitivity and uncertainty analysis. River discharges, nitrate loads, and crop yields were used to
calibrate the model. Employing grid technology improved calibration computation time by more than an
order of magnitude. We calculated components of water resources such as river discharge, infiltration, aqui-
fer recharge, soil moisture, and actual and potential evapotranspiration. Furthermore, available water
resources were calculated at subbasin spatial and monthly temporal levels. Within this framework, a com-
prehensive database of the BSB was created to fill the existing gaps in water resources data in the region. In
this paper, we discuss the challenges of building a large-scale model in fine spatial and temporal detail. This
study provides the basis for further research on the impacts of climate and land use change on water
resources in the BSB.

1. Introduction

The pressures on water resources and increasing conflict of interest present a huge water management
challenge in the Black Sea Basin (BSB) [Global International Waters Assessment (GIWA), 2005]. The small-scale
sectoral structure of water management is now reaching its limits. The integrated management of water in
the Basin requires a new level of consideration where water bodies are to be viewed in the context of the
whole river system and managed as a unit within their basins. This is of key interest for efficient and tar-
geted water management through regional coordination, transparent balancing of interests, and clear prior-
ity setting [Water Agenda 21, 2011]. A frequently advocated approach is to have adequate knowledge of
temporal and spatial variability of the fresh water availability and water quality [United Nations Environment
Program (UNEP), 2006].

The BSB is internationally recognized for its ecologically unsustainable development and inadequate
resource management leading to severe environmental, social, and economical problems. In 1995, it was
rated as being of the highest concern in five out of seven environmental categories, making it the worst of
any of the European seas [Stanners and Boudreau, 1995]. In another study, the German Advisory Council on
Global Change (WBGU) states that the Black Sea is likely to experience (i) a degradation of freshwater
resources; (ii) an increase of storm and flood disasters; (iii) a decline in food production; and (iv) environ-
mentally induced migration [Wissenschaftlicher Beirat Globale Umweltver€anderung (WBGU), 2007]. In addition,
transboundary pollution effects (TPE) can be seen with respect to all economic sectors. Transboundary pol-
lution is the pollution that originates in one country but causes damage in another country’s environment,
by crossing borders in the rivers [Paleari, 2005].

Furthermore, the Intergovernmental Panel on Climate Change [IPCC, 2007] predicts important changes in
the coming decades that will not only modify climate patterns in terms of temperature and rainfall, but will
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also drastically change freshwater resources qualitatively and quantitatively. This is expected to lead to
more floods or droughts in different regions, lowering of drinking water quality, increased risk of water-
borne diseases, and irrigation problems. These changes may trigger socio-economic crises that need to be
addressed well in advance of the events in order to reduce the associated risks.

Previous research, which addressed water quantity and water quality in the BSB, includes a few global and
regional studies. WaterGAP2 [Alcamo et al., 2003; D€oll et al., 2003] is a global model for water availability
and water use. This model focuses on the global hydrology at grid scale (30 arc min) considering 3565
major basins in the world with the drainage areas greater than 2500 km2. The model was initially used to
estimate the water availability and demand and provides relatively limited water cycle-related components.
In WaterGAP3 [Aus der Beek et al., 2012], a regional version of WaterGAP2, the hydrological fluxes draining
into Mediterranean and Black Sea were modeled with improved spatial resolution (5 arc min), snow melt,
and water use. However, results using WaterGAP3 and WaterGAP2 are not significantly different in the BSB
[Aus der Beek et al., 2012]. In a different approach, Meigh et al. [1999] developed a grid-based model Global
Water Availability Assessment (GWAVA) to predict water resources scarcity at continental and global scales.
This model has recently been further developed to include water quality [Dumont et al., 2012]. Using a sta-
tistical approach, Grizzetti et al. [2008] assessed nitrogen content of surface water for major European river
basins. Furthermore, discharges of water and nutrient to the Mediterranean and Black Sea are reported in a
study by Ludwig et al. [2009] for major rivers.

Next to the above mentioned studies, there are a few other investigations on the status of river basins in
the BSB [Sukhodolov et al., 2009; Sommerwerk et al., 2009; Wolfram and Bach, 2009]. However, often average
loads entering the Sea are reported without adequate spatial and temporal resolution on the current and
future freshwater availability for the entire BSB. General shortcomings of the previous studies are missing
detail information on model inputs and outputs, unavailability of their input data, coarse spatial resolution
and scale of the models, and missing model calibration/validation and uncertainty analysis components.

In recent years, improvements in integrated hydrological modeling, advancements in calibration and uncer-
tainty analysis tools, and availability of grid technology for model execution allow building more detailed
and holistic models. These models account for processes such as water quantity and quality, soil, climate,
land use, agricultural managements, and nutrient cycling in a coupled single package. The aim of the pro-
ject is to build a high-resolution model of the entire BSB and to look at the impact of land use and climate
change on the water resources. The reason for building a single model of the BSB is to have a uniformly cali-
brated model of the region rather than several disparately calibrated models. A high-resolution large-scale
model has the advantages of allowing a holistic look at the Basin while retaining the small-scale system var-
iabilities. The objectives of the current study are to: (i) gather and share a comprehensive database of the
BSB, (ii) model the hydrology of the entire BSB by including agricultural management and crop yield to bet-
ter quantify water quantity and water quality at daily time step and subbasin level, (iii) calibrate and validate
the model with uncertainty analysis using grid technology, (iv) produce a relatively accurate picture of water
resources availability, reliability, and pressures in the Basin.

To achieve the objectives of this research, we used the program Soil and Water Assessment Tool (SWAT)
[Arnold et al., 1998]. SWAT was used because it is a continuous time and spatially distributed watershed
model, in which hydrological processes and water quality are coupled with crop growth and agricultural
management practices. The program was successfully applied in a wide range of scales and environmental
conditions [Gassman et al., 2007]. Another advantage of SWAT is its modular implementation where differ-
ent processes can be selected.

For calibration and uncertainty analysis in this study, we used the Sequential Uncertainty Fitting program
SUFI-2 [Abbaspour et al., 2004, 2007]. SUFI-2 is a tool for sensitivity analysis, multisite calibration, and uncer-
tainty analysis. It lends itself easily to parallelization and is capable of analyzing a large number of parame-
ters and measured data from many gauging stations (outlets) simultaneously. SUFI-2 is linked to SWAT in
the SWAT-CUP software [Abbaspour, 2011]. Yang et al. [2008] found that SUFI-2 needed the smallest number
of model runs to achieve a similarly good calibration and prediction uncertainty results in comparison with
four other techniques. This efficiency is of great importance when dealing with computationally intensive,
complex large-scale models. We ran parallelized SUFI-2 on grid system described by Rouholahnejad et al.
[2012] and Gorgan et al. [2012].
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2. Material and Methods

2.1. Study Area
The Black Sea Basin (Figure 1) with a total area of 2.3 3 106 km2 drains rivers of 23 European and Asian
countries (Austria, Belarus, Bosnia, Bulgaria, Croatia, Czech Republic, Georgia, Germany, Hungary, Moldova,
Montenegro, Romania, Russia, Serbia, Slovakia, Slovenia, Turkey, Ukraine, Italy, Switzerland, Poland, Albania,
and Macedonia) to the Black Sea. The Basin is inhabited by a total population of around 160 million people
[Black Sea Investment Facility (BSEI), 2005]. It is mountainous in the east and south, in the Caucasus, and in
Anatolia, and to the northwest with the Carpathians in the Ukraine and Romania. Most of the rest of the
Black Sea’s western and northern neighborhood is low lying. Mean annual air temperature shows a distinct
north-south gradient from <23�C to >15�C. The precipitation pattern is characterized by a west-east gradi-
ent from a high of >3000 mm yr21 to a low of <190 mm yr21 [Tockner et al., 2009]. The dominant land use
in the basin is agricultural with 65% of coverage according to MODIS Land Cover [NASA, 2001]. Major rivers
draining into the Black Sea include Danube, Dnieper, and Don. The greatest sources of diffuse pollution are
agricultural and households not connected to sewer systems [European Environmental Agency (EEA), 2010].

2.2. Soil Water Assessment Tool (SWAT)
SWAT was used to simulate hydrology, water quality, and vegetation growth in BSB. SWAT is a process-
based, semidistributed, hydrologic model. The model has been developed to quantify the impact of land
management practices on water, sediment, and agricultural chemical yields in large complex watersheds
with varying soils, land uses, and management conditions over long periods of time. SWAT was chosen
because of the close linkage between its development purposes and the objectives of this project, open
access to the source code, and its successful application in a wide range of scales and environmental
conditions.

The main components of SWAT are hydrology, climate, nutrient cycling, soil temperature, sediment move-
ment, crop growth, agricultural management, and pesticide dynamics. SWAT is a continuous simulation
model operating on a daily time step. The spatial heterogeneity of the watershed is preserved by topo-
graphically dividing the basin into multiple subbasins. These are further subdivided into hydrologic
response units (HRU) based on soil, land use, and slope characteristics. These subdivisions enable the model
to reflect differences in evapotranspiration for various crops and soils. In each HRU and on each time step,
the hydrologic and vegetation-growth processes are simulated based on the curve number rainfall-runoff
partitioning and the heat unit phenological development method [Neitsch et al., 2009].

Figure 1. Illustration of Black Sea Basin showing major rivers and measured stations of climate, discharge, and nitrate. Also shown is the
comparison of observed and simulated discharge and nitrate using the efficiency criterion bR2. The six large river basins of Danube,
Dnieper, Don, Kuban, Kizilirmak, and Sakarya are highlighted.
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Runoff is predicted separately for each HRU and routed to obtain the total model runoff for the watershed.
The routing phase of the hydrologic cycle in SWAT is the movement of water, nitrate, etc., through the
channel network of the watershed. Once SWAT determines the loadings of water, sediment, nutrients, and
pesticides to the main channel, the loadings are routed through the stream network of the watershed. In
addition to keeping track of mass flow in the channel, SWAT models the transformation of chemicals in the
stream and streambed.

Energy availability governs vegetation phenology. At each point in the growth cycle, biomass production is
derived from the interception of solar radiation by leaves, plant-specific radiation use efficiency, and leaf
area index (LAI). Crop yield is calculated at harvest by multiplying the above-ground biomass with the har-
vest index. The harvest index is a fraction of the above-ground plant dry biomass removed as dry yield.
Plant growth is limited by temperature, water, and nutrient availability in the soil and is influenced by agri-
cultural management (e.g., fertilization, irrigation, and timing of operations). A detailed description of
SWAT’s theory can be obtained in Neitsch et al. [2009].

2.3. Input Data and Model Outputs
BSB Digital Elevation Model (DEM) at 90 m spatial resolution was extracted from SRTM [Jarvis et al., 2008].
The river network data set was from European Catchments and Rivers Network System [EEA Catchments
and Rivers Network System (ECRINS) v1.1, 2012]. The ECRINS river map was corrected in the areas where there
was a mismatch with DEM to achieve a correct flow direction.

The soil data were obtained from the FAO-UNESCO global soil map [Food and Agricultural Organization
(FAO), 1995], which provides data for 5000 soil types comprising two layers (0–30 cm and 30–100 cm depth)
at a spatial resolution of 5 km.

Four different land uses were available for the region: (i) Global Land Cover Characterization (GLCC) at 1 km
spatial resolution [U. S. Geological Survey (USGS), 2008], (ii) MODIS land cover with spatial resolution of
500 m [NASA, 2001], (iii) GlobCover with spatial resolution of 300 m [Environmental Space Agency (ESA),
2008], (iv) Global Corine at 300 m spatial resolution [Environmental Space Agency (ESA), 2010].

Two different climate databases were available: measured and gridded data. Measured climate included
456 rainfall and 678 temperature stations mainly collected from National Climatic Data Centre (NCDC;
http://www.climate.gov/#dataServices/dataLibrary), the European Climate Assessment and Dataset (ECAD)
[Haylock et al., 2008], Turkish Ministry of Forest and Water Affairs (MEF), and Romanian National Institute of
Hydrology and Water Management (INHGA) for the period of 1970–2008. Only stations with <20% missing
data were included in the model. Gridded data are constructed from measured climate stations and inter-
polated to grid resolution. We used data from Climate Research Units [Climatic Research Unit (CRU), 2008;
Mitchell and Jones, 2005] at 0.5� resolution amounting to 1147 grid points. The daily global solar radiation
data were obtained from 6110 virtual stations at 0.5� resolution for the duration of 1960–2001 [Weedon
et al., 2011].

Monthly river discharge data for model calibration and validation were obtained from Global Runoff Data
Center [Global Runoff Data Centre (GRDC), 2011], National Institute of Hydrology and Water Management
(INHGA) and Danube Delta National Institute for Research and Development (DDNI) in Romania, and Turkish
Ministry of Forest and Water Affairs (MEF) for the period 1970–2008. Only stations with <20% missing data
and minimum length of 5 years were included in calibration-validation process. This led to 144 discharge
outlets where 37 of them also contained nitrate data from International Commission for the Protection of
the Danube River (ICPDR). These outlets had differing beginning and ending time periods.

Point sources were also assigned to each subbasin in the model. The nutrient loads of subbasins were calcu-
lated based on the population of the subbasins, the percentage of population connected to wastewater
treatment plant, and the average rate of nitrogen per population equivalent. Population percentage con-
nected to any kind of sewage treatment was derived from Eurostat for the period of 2000–2009. This share
was above 80% in approximately half of the European Union countries for which data are available, rising
to 95% in Germany. At the other end, less than one in two households were connected to urban wastewater
treatment in Bulgaria and Romania. In terms of treatment levels, tertiary wastewater treatment was most
common in Germany, Austria, and Italy where at least four in every five persons were connected to this
type of wastewater treatment. In contrast, no more than 1% of the population was connected to tertiary

Water Resources Research 10.1002/2013WR014132

ROUHOLAHNEJAD ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4

http://www.climate.gov/#dataServices/dataLibrary


wastewater treatment in Romania and Bulgaria. We assumed the treatment efficiency to be 80% in all coun-
tries with 20% loading directly into surface waters and hence considered as point sources.

To account for industrial and household releases, Zessner and Lindtner [2005] calculated the nitrogen load
to be 8.8 g N P21

e d21, where Pe is population equivalent, which is the number expressing the ratio of the
sum of the pollution load produced during 24 h by industrial facilities and household to the individual pol-
lution load in household sewage produced by one person in the same time. The ratio of population and Pe

varies in a way that 80% of the treatment plants lie in the range of 0.4–0.9. The average value of this ratio is
assumed to be 0.63 [Zessner and Lindtner, 2005]. The nutrient load is calculated as

LN5PeIN 12Srateð Þ1 12Teffð ÞSrate½ � (1)

where LN is the nitrogen load entering rivers in subbasins (g d21), Teff is the wastewater treatment efficiency,
IN is the average input of nitrogen from household to wastewater (g N P21

e d21), and Srate is the percentage
of the population connected to any kind of sewage treatment. We used population map of year 2005 from
the Center for International Earth Science Information Network in 2.5 arc min resolution [Center for Interna-
tional Earth Science Information Network (CIESIN), 2005] and extrapolated to other years based on the
national population growth rate provided by the World Bank.

Cropping area and the start and end month of cropping periods in the BSB countries were derived from
MIRCA2000 database on global monthly irrigated and rain-fed cropping areas around the year 2000 (5 year
average), at a spatial resolution of 5 arc min [Portmann et al., 2010]. This database represents multicropping
systems and maximizes consistency with census-based national and subnational statistics. Crop yield data
were obtained from McGill University [Monfreda et al., 2008] at 5 min resolution. This data were 5 year aver-
ages around the year 2000 and were used to calculate per subbasin crop yields for maize, barley, and
wheat. Country-based crop yield was obtained from FAOSTAT database [Food and Agricultural Organization
Statistics (FAOSTAT), 2013].

SWAT produces a large amount of output variables. In this study we look at the water cycle components,
crop yield, and nitrate concentration in rivers. Using the water cycle constituents calculated in SWAT, we
could also calculate water resources components such as ‘‘blue water,’’ ‘‘green water flow,’’ and ‘‘green water
storage.’’ Currently, the definition of blue water is generally accepted as the sum of the river discharge and
the deep groundwater recharge. This is in essence the water resources by the traditional hydrological and
engineering definition. There exist slightly different definitions for the term green water. Falkenmark and
Rockstrom [2006] differentiate between the green water ‘‘resource’’ and the green water ‘‘flow.’’ According
to their definition, green water resource is the moisture in the soil, which is a renewable resource and can
potentially generate economic returns, as it is the source for rain-fed agriculture. The green water flow is
composed of the actual evaporation (the nonproductive part) and the actual transpiration (the productive
part), commonly referred to together as the actual evapotranspiration.

2.4. Model Setup
The subbasins were delineated with a threshold area of 100 km2 yielding 12,982 subbasin. This was the
smallest threshold that could be used to build the ArcSWAT project on a 64 bit laptop with 2.7 GHz process-
ors, 4 cores, 8 GB of RAM, and Windows7 operating system. This is because of memory limitation and ineffi-
ciency of ArcGIS in handling large raster calculation. In addition, the personal geodatabase of ArcSWAT
created by ArcGIS9 has a limitation of 2 GB on the file size. Fourteen different land cover classes of MODIS
were assigned to land uses in the SWAT database. Subsequently, each of the 12,982 subbasins was spilt
into unique combinations of slope, land use classes, and soil types resulting in 89,202 Hydrologic Response
Unit (HRU). Three classes of slope (0–3%, 3–6%, and >6%) were used in the subbasin discretization. We also
used five elevation bands in each subbasin to adjust for orographic change in temperature (26�C km21)
and precipitation (670 mm km21) after some initial fitting.

Twenty-five different management plans were designed based on the crop types, cropping dates, winter or
summer crops, irrigated or rain-fed applications. Each HRU then corresponded to a management plan.
Exclusive agricultural classes were assigned to each country so that desired management could be defined
at the national level. Subsequently, agricultural areas within these classes were subdivided proportional to
the cropping areas of irrigated/rain-fed, winter/spring types for wheat, maize, and barely. The three major
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crops were allocated to agricultural lands in MODIS proportional to their contribution in each country’s har-
vested areas as reported by MIRACA2000 [Portmann et al., 2010].

The option of automatic fertilization in SWAT was employed to meet crop need and the annual maximum
application amount was set to 300 kg N ha21. This assumption leads to underestimation of nitrogen in areas
where application is more than crop need. Elemental nitrogen and elemental phosphors were applied to
the agricultural lands in each subbasin as the main fertilizer in BSB. An additional nitrogen input of 1.2 mg
N l21 was assumed in the rainfall. It is notable that in the MODIS classification agricultural land does not
include permanent grassland.

We invoked automatic irrigation based on plant water demand in such a way as to minimize crop water
stress in irrigated lands. In this study, potential evapotranspiration (PET) was estimated using the Hargreaves
method [Hargreaves et al., 1985] while actual evapotranspiration (ET) was estimated based on Ritchie [1972].

The simulation period was 1970–2006 using 3 years of initialization (1970–1972) as warm up period. As
each station had a different beginning and ending time periods, the model was calibrated from 1973 to
1996 and validated from 1997 to 2006 for discharge, and because of fewer data in the early years, the
nitrate loads were calibrated from 1973 to 2000 and validated from 2001 to 2006. Within these general
years different stations had different data availability periods. Given the disparity in data lengths and
timing, this was the most sensible division of data between calibration and validation time period.
SWAT always runs on daily time step, but we used monthly outputs for calibration and validation of the
model. Using SWAT 2009, it took 42 h for a single-model run on the laptop where ArcSWAT project was
built.

2.5. Model Calibration Procedure
Sensitivity, calibration, validation, and uncertainty analysis were performed for water quantity, water qual-
ity, and crop yield using river discharges, nitrate loads in rivers, and yields of wheat, barley, and maize.
SUFI-2 was used for calibration and uncertainty analysis. In SUFI-2, all sources of uncertainties are mapped
to a set of parameter ranges. They are calibrated with the dual aim of bracketing most of the observed
data with as narrow as possible uncertainty band. Initially, a set of meaningful parameter ranges are
assigned to calibrating parameters based on literature, knowledge of site processes, and sensitivity analy-
ses. Then a set of Latin hypercube samples are drawn from the parameter ranges, and the objective func-
tion is calculated for each parameter set. The uncertainty is quantified at the 2.5% and 97.5% levels of the
cumulative frequency distribution of all simulated output values, and it is referred to as the 95% predic-
tion uncertainty (95PPU). The lower, middle, and upper boundaries of the 95PPU (L95PPU, M95PPU, and
U95PPU) reflect the 2.5, 50, and 97.5 percentiles of the distribution, respectively. Values at the 50% proba-
bility level are used for drawing average long-term maps of different variables. The goodness of model
performance in terms of calibration and uncertainty level is evaluated using the P-factor and the R-factor
indices. The P-factor is the percentage of measured data bracketed by the 95PPU band. It ranges from 0
to 1 where 1 is ideal and means all of the measured data are within the uncertainty band (i.e., model pre-
diction). The R-factor is the average width of the band divided by the standard deviation of the measured
variable. It ranges from 0 to1 where 0 reflects a perfect match with the observation. Based on the expe-
rience, an R-factor of around 1 is usually desirable [Abbaspour et al., 2007] where the thickness of the
uncertainty band does not exceed the measured standard deviation. SUFI-2 allows for a measurement
error of about 10% to be assigned to all observed variables, which are accounted for in the 95PPU
calculations.

Coefficient of determination r2 is a measure of dispersion around the mean of the observed and predicted
values and can be used as an efficiency criteria. The range of r2 lies between 0 and 1 which describes how
much of the observed dispersion is explained by the prediction. A value of zero means no correlation at all
whereas a value of 1 means that the dispersion of the prediction is equal to that of the observation. The
fact that only the dispersion is quantified is one of the major drawbacks of r2 if it is considered alone. A
model which systematically over or underpredicts all the time will still result in good r2 values close to 1.0
even if all predictions were wrong. By weighting r2 by the slope of regression line between observed and
predicted, under or overpredictions are quantified together with the dynamics which results in a more com-
prehensive reflection of model results. We used a slightly modified weighted r2 as originally introduced by
Krause et al. [2005] as the efficiency criterion for discharge and nitrate
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jbjr2 for jbj � 1

jbj21r2 for jbj > 1

(
(2)

where r2 is the coefficient of determination and b is the slope of the regression line between the simulated
and measured data. For a good agreement the interception of the regression line should be close to zero
which means that an observed runoff of zero would also result in a prediction near zero and the gradient b
should be close to one. For multiple outlets and attributes, the objective function U was expressed as
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where wv1 and wv2 are weights of the two variables, n1 and n2 are the number of discharge and nitrate sta-
tions, respectively, and wi’s are the weights of variables at each station. The function / and consequently H
vary between 0 and 1. The best simulation is considered the one with the highest H value. A major advant-
age of br2 efficiency criterion is that it ranges from 0 to 1, which compared to Nasch-Sutcliff Efficiency coeffi-
cient, ensures that in a multisite multiattribute calibration, the objective function is not dominated by a few
bad results. Weights in equation (3) would be critical if an objective function such as mean square error was
used, but because of using br2 they did not make any significant difference to model calibration results. For
this reason, we set them to 1. For crop yield we used mean square error as the objective function after an
initial calibration of model for discharge and nitrate
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where n3 is the number of sites with wheat, barley, and corn yield data, Yo (t ha21) is the observed yield,
and Ys (t ha21) is the simulated yield.

A few iterations are then carried out seeking to reach an optimal P-factor and R-factor until a further
improvement in the objective function is not found. As mentioned before, the calibration runs were made
using parallel SUFI-2 [Rouholahnejad et al., 2012] and the grid-based SWAT (gSWAT) [Gorgan et al., 2012]. As
SUFI-2 is a sequential procedure, several iterations of 200 simulations each were performed for calibration.

3. Results and Discussion

The model response to various land uses and climate data was tested by comparing simulated river dis-
charges against the observation. For land use, our analysis indicated that classification and resolution did
not have a significant effect on river discharge simulation in the BSB model. MODIS land cover was used in
the final SWAT project as it produced relatively better discharge results. As model calibration started far
back in time, we also tested the model by changing the land use during SWAT simulation. We found that
the impact of historic land use change on our large-scale model results was negligible and, hence, did not
consider this change during calibration.

We also found that CRU-based simulated discharges performed significantly better in the project as com-
pared to simulated discharges based on measured climate stations. This could be because the climate sta-
tions suffered from a large amount of missing data, different data qualities, and uneven distribution
throughout the region. Subsequently, the CRU data set was selected to model the hydrology of the BSB.

SWAT calculates the rainfall and temperature of each subbasin using the nearest climate station to the cent-
roid of that subbasin. As rainfall is the most important driving variable in a hydrological model, when com-
paring the results of this work with other works, it is important to have the distribution of the rainfall in
mind (Figure 2). Differences are observed in the coefficients of variation (CV) of long-term annual precipita-
tion and temperature averages (1973–2006) across the BSB. This indicates the degree of year to year
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variability during the simulation period. This variation has an influence on the prediction uncertainties of all
water cycle components as we will see later for the case of Bulgaria and Turkey.

3.1. Calibration and Uncertainty Analysis
3.1.1. Examining Model Setup
Initially, a broad set of parameters were used for discharge calibration [Holvoet et al., 2005; Wang et al., 2005,
Abbaspour et al., 2007; Faramarzi et al., 2009]. Then a sensitivity analysis was performed to identify the key
parameters across BSB, which led to selection of 20 parameters integrally related to stream flow (Table 1).
Although the initial parameter ranges were as wide as physically meaningful, some outlets were still com-
pletely outside of the 95PPU range. These outlets would obviously not benefit from parameter calibration
alone. We investigated the poorly simulated outlets one by one using the visualization module of SWAT-
CUP. This involves projection of the study area on the Microsoft’s BING map to identify the reasons for the
inadequate simulations. In the visualization module, we observe the subbasins, outlet positions, simulated
rivers, and climate stations from the SWAT project, as well as landcover and other layers of information in
the BING map. Several problems were discovered, which are inevitable in a large-scale projects and needed
careful attention.

Examples of these include positioning the outlets on a wrong rive (Figures 3a and 3b). As SWAT connects
each measured outlet to the nearest rivers, any errors in the coordinates of outlets can cause a wrong

Figure 2. Long-term annual average (1973–2006) precipitation and average temperature distribution across Black Sea Basin based on the CRU data set. Also shown are the coefficients
of variation indicating the temporal variability of precipitation and average temperature.
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placement. This perhaps leads to the biggest calibration problem. As shown in Figure 3b, the outlet is
placed on a tributary of the Danube called Tamis near Pancevo in Serbia. The black dashed line near the x
axis (Figure 3c) is simulated river discharge before correcting the location, and the red line shows simulated
discharge after correcting the location.

Other major problems result from an outlet being positioned downstream of a reservoir. In particular, in
Southern Bug in Ukraine, the simulated discharge and observations match quite well until the Alexandra
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Figure 3. Example of a wrong positioning of the outlets due to errors in the reported coordinates of the measurement stations. The out-
let’s correct position is on the Danube River (upstream area of 497,500 km2) rather the Tamis River (upstream area of 16,460 km2), a tribu-
tary of the Danube.

Table 1. List of Parameters and Their Initial Ranges Used for Model Calibration

Parameter Name Definition Initial Range

r__CN2.mgt SCS runoff curve number for moisture condition II 20.35 to 0.35
r__ALPHA_BF.gw Base flow alpha factor (days) 20.8 to 0.8
r__GW_DELAY.gw Groundwater delay time (days) 20.8 to 0.8
r__GWQMN.gw Threshold depth of water in shallow aquifer for return flow (mm) 20.8 to 0.8
r__GW_REVAP.gw Groundwater revap. coefficient 20.4 to 0.4
r__REVAPMN.gw Threshold depth of water in the shallow aquifer for ‘‘revap’’ (mm) 20.4 to 0.4
r__RCHRG_DP.gw Deep aquifer percolation fraction 0.3 to 0.5
r__CH_N2.rte Manning’s n value for main channel 20.8 to 0.8
r__CH_K2.rte Effective hydraulic conductivity in the main channel (mm h21) 20.8 to 0.8
r__ALPHA_BNK.rte Base flow alpha factor for bank storage (days) 20.6 to 0.6
r__SOL_AWC().sol Soil available water storage capacity (mm H2O/mm soil) 20.5 to 0.5
r__SOL_K().sol Soil conductivity (mm h21) 20.8 to 0.8
r__SOL_BD().sol Soil bulk density (g cm23) 20.4 to 0.4
r__SFTMP().sno Snowfall temperature (�C) 20.4 to 0.4
r__SMTMP().sno Snow melt base temperature (�C) 20.4 to 0.4
r__SMFMX().sno Maximum melt rate for snow during the year (mm �C21 d21) 20.4 to 0.4
r__SMFMN().sno Minimum melt rate for snow during the year (mm �C21 d21) 20.4 to 0.4
r__SLSUBBSN.hru Average slope length (m) 20.4 to 0.4
r__OV_N.hru Manning’s n value for overland flow 20.4 to 0.4
r__HRU_SLP.hru Average slope steepness (m m21) 20.4 to 0.4
r__CMN.bsn Rate factor for humus mineralization of active organic nitrogen 20.4 to 0.4
r__NPERCO.bsn Nitrogen percolation coefficient 20.4 to 0.4
r__N_UPDIS.bsn Nitrogen uptake distribution parameter 20.4 to 0.4
r__RCN.bsn Concentration of nitrogen in rainfall (mg N L21) 20.4 to 0.4
r__SHALLST_N.gw Concentration of nitrate in groundwater to streamflow (mg N L21) 20.4 to 0.4
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Reservoir came into operation in 1979 (Figure 4). Clearly the dynamics of such outlets depend on the man-
agement of the reservoir and not natural processes. Other problematic situations may arise when outlets
are in a highly populated or agricultural region where water management and water transfers are large. In
these situations also, SWAT cannot be expected to produce proper results unless data are available. Con-
structions of dams for irrigation and power generation purposes as well as other water management prac-
tices such as water abstraction and diversion create major difficulties for model calibration. As management
information are usually not available, proper cautions need to be taken during calibration. These include
converting outlets to inlets, weighing those outlets under the influence of management less in the objective
function, or removing the outlets downstream of reservoirs from the calibration process. Because of lack of
water management data, we excluded from calibration those outlets directly affected by infrastructures
such as dams and reservoirs. After making appropriate corrections to badly simulated outlets and obtaining
relatively satisfactory discharge estimation, nitrate parameters (Table 1) were added to the parameter pool.

3.1.2. Parameterization
In subsequent iterations the model was parameterized. Parameterization refers to regionalization of param-
eters tailored to achieve the best response from the simulation program and individual outlets. Some exam-
ples are if there is an early shift in the simulation (Figure 5a), then decreasing the overland flow (HRU_SLP)
by 10–20%, increasing Manning’s roughness coefficient (OV_N) by 10–30%, and increasing the flow length
(SLSUBBSN) by 5–15 m in all the upstream subbasins of that outlet will improve the simulated discharge.
Accordingly, if the simulated base flow is too high (Figure 5b), then parameterization includes: increasing
deep percolation loss (GWQMN), increasing groundwater revap coefficient (GW_REVAP) to a maximum of
0.4, and decreasing the threshold depth of water in shallow aquifer (REVAPMN) to a minimum of zero. In
another example, if the simulated peak flow is underestimated (Figure 5c), then the following adjustments
to the upstream subbasins of that outlet should be made: increasing the curve number (CN2) by 10–15%,
decreasing the soil available water storage capacity (SOL_AWC) by 5–10%, and decreasing the soil evapora-
tion compensation factor (ESCO) by 20–30%. This will ensure a better simulation at the specified outlet. For
every outlet, the upstream subbasins were parameterized as described above.

3.1.3. Calibration Performance
The final calibration results for outlets that were used in model calibration range from very good to poor
(Figure 1). The bR2 statistic for discharge outlets range from 0.2 to 0.8 and for nitrate outlets from less than
0.1 to 0.7. The time series examples (Figure 6) for two outlets show good results in both calibration and vali-
dation periods.

It is important to note that the 95PPU represents model prediction and not the ‘‘best simulation.’’ The latter
is only provided for reference. Calibration is concerned with the problem of making inferences about physi-
cal systems from measured output variables of the model (e.g., river discharge, nitrate load, etc.). Because
nearly all measurements are subject to some uncertainty, the inferences are usually statistical in nature. Fur-
thermore, because one can only measure a limited number of (noisy) data and because physical systems
are usually modeled by continuum equations, no calibration problem is really uniquely solvable [Abbaspour
et al., 2007]. In calibration, therefore, we characterize the set of models, mainly through assigning distribu-
tions (uncertainties) to the parameters that fit the data. We should also make the distinction here between
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could not be captured by the model.
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entire simulation period.
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uncertainty and error. Prediction uncertainty arises from the uncertainty in the parameters, in the model,
and in the inputs. In the concept of SUFI-2, all these uncertainties are assigned to the parameter distribu-
tions. The uncertainty is expressed as the 95PPU, which as stated above is also the output of the model (Fig-
ure 6). Model error, however, is the degree in which the 95PPU does not account or does not bracket the
observation. This, in SUFI-2, is indicated by (1-P-fcator), which is around 20% for Daniper and 41% for Prut
River (Figure 6). A closer examination of the Prut River simulation reveals that most of the error originates
from the base flow simulation. Hence, the processes related to surface water-ground water interaction are
not very well represented in the model in that region.

For a model to better represent a region of study we could introduce more attributes in the objective func-
tion. In this research, we used nitrate load as well as crop yield to achieve a model with more confidence in
predicting the water balance components.

Water quality was simulated through nitrate loads in rivers. We were disappointed at the lack of more easily
available information in the BSB, especially with respect to water quality. Most of the information we gath-
ered came from the Danube River Basin; therefore, the water quality component of the Black Sea model
should be considered as uncalibrated or at best partially calibrated for other river basins within the BSB. The
simulations, however, were surprisingly satisfactory for most stations given that we had estimated the point
sources and had only rough data with respect to diffuse sources of pollution in different countries (Figure 7).
It is expected that nitrate simulation would be accompanied by much large prediction uncertainty due to
larger uncertainty in the input data for point and diffuse sources. An interesting observation is the overesti-
mation of the model at the stations near Danube Delta. As the river approaches the Delta, the concentration
of nitrate decreases, but the model cannot account for this because deltas and wetlands are not represented
in SWAT (Figure 8).

Because of a direct relationship between crop yield and evapotranspiration [Jensen, 1968; FAO, 1986], in
addition to nitrate loads, we included yields of maize, barley, and wheat as extra target variables in the cali-
bration process. With measured river discharges we can obtain a good knowledge of runoff, but cannot
have any confidence with respect to soil moisture, evapotranspiration, or aquifer recharge. Knowledge of
evapotranspiration through simulation of crop yield could, therefore, increase our confidence in soil mois-
ture and aquifer recharge. Average annual yield of three major crops (barley, maize, and wheat) are simu-
lated at subbasin level and aggregated per country for the duration of 1973–2006 and expressed as 95%
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prediction uncertainty (Figure 9). The FAO yield data and the data from the McGill University fall inside or
are close to the predicted bands. We note that the actual uncertainty should perhaps be larger than what
we have reported here. In the final iteration some crop parameters (e.g., heat unit, harvest index, biomass
target, etc.) were fixed to values obtained by manual calibration for the entire country and were not treated
as uncertain. Crop parameters were parameterized based on crop type, management operation (e.g., plant-
ing time, harvest time, irrigation, fertilization, etc.), and region-specific operations, resulting in a large num-
ber of parameters. Their inclusion in the uncertainty analysis would require a large number of simulations,
which was not feasible in the time span of the project. The discrepancies between the simulated and the
reported yields could be due to a lack of knowledge of detailed agricultural management in different
regions in our model, but also errors in the observed data, as there were also differences in the reported
yields of FAO and McGill databases (Figure 9).

3.2. Quantification of Water Resources and Their Respective Uncertainties
We used the calibrated BSB model to calculate water resources components: blue water, green water flow,
and green water storage. These concepts give an overall picture of water resources and bring the outputs
of the BSB model closer to the needs of water resources researchers and policy makers. The upper and
lower bounds of the 95% prediction uncertainties for the blue water (Figures 10a and 10b) show a wide
range in some regions indicating the importance of uncertainty analysis in hydrological modeling. This
uncertainty reflects primarily the prediction uncertainty (including model, parameters, and inputs) as well as
the temporal climate variation as a secondary effect. The temporal variation is depicted by the coefficient of
variation (CV) in Figure 10d. The simulated daily water fluxes have been accumulated on the annual basis
and averaged for the years 1973–2006 at the subbasin level (Figure 10c). The latter map shows the distribu-
tion of the average annual freshwater availability. It is basically the water yield to stream flow from HRUs in
the watershed (e.g., surface runoff, plus the lateral flow to the river, plus the shallow aquifer contribution to
the rivers, minus pond abstraction and transmission losses) plus deep aquifer recharge. Transmission losses
reflect the water lost from tributary channels in the HRUs via transmission through the bed.

Green water components are illustrated in Figure 11 along with their CVs. In each case, there are large spa-
tial variations across the Basin. CV depicts the temporal variation and it is seen that green water storage or
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soil moisture is relatively less variable temporally in many regions. This indicates a higher reliability of this
resource over time, and hence, a less risky opportunity for development of green, or rain-fed agriculture.

The confidence on water resources estimates is relatively high because surface runoff as well as evapotrans-
piration (through crop yield) was satisfactorily calibrated in the model. For a further comparison with the
reported literature we calculated the freshwater availability on country basis and compared them to the val-
ues of FAO (Figure 12). The simulation results are expressed as 95% prediction uncertainty bands. It is seen
that the FAO-estimated water availability fall inside or are very close to the simulation 95PPU band in all
countries. Summary of water resources for major BS countries are presented in Table 2. Georgia is shown to
have the largest blue water in mm yr21, and Bulgaria the smallest.

Knowledge of the long-term time series of water availability is very important in water management and
planning studies, water transfers, reservoir operation, and conjunctive water analyses. Many countries have
large monthly variabilities in the blue and green water components as illustrated, for example, by the long-
term monthly variations in Turkey and Bulgaria (Figure 13). It is interesting to note that soil moisture (green
water storage) is larger in Bulgaria than in Turkey, while Turkey’s blue water is larger. We could conclude
that as a whole, runoff is larger in Turkey, while the share of infiltration is greater in Bulgaria. The large
uncertainty in green water storage in Bulgaria appears to be dominated by large annual variation in precipi-
tation (Figure 2b).

3.3. Transboundary Rivers
As measurements cannot be made at all transboundary points and for all variables, models can play an
important role. We use the example of Dniester River to show the ability of the model to address some
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transboundary issues. Dniester (1380 km) has its source in the Carpathian Mountains in Ukraine, flowing
south and east along the territory of Moldova, and re-entering Ukraine near the Black Sea coast (Figure
14a). Dniester is the main source of drinking water in Moldova and is no less important for a significant part
of Ukraine, particularly the Odessa Region. Hydropower is one of the major sectors affecting the ecological
status of the Dniester Basin. The Dniester flow in its middle section was dammed to fill a chain of reservoirs,
the largest of them being the Dubossary (1954) and Dniestrovsky (1983) reservoirs. Large areas of intensive
irrigated agriculture, both in Ukraine and Moldova, and soil erosion contribute significantly to the contami-
nation of water bodies by nutrients and chemical fertilizers [OSCE/UNECE, 2005].

The simulation of discharge and nitrate loads just before the Dniester River enters Moldova and right after
it leaves the country (Figures 14b and 14c) shows an increase in the discharge with larger peaks as well as a
significant increase in nitrate load as the river leaves Moldova. Such analyses can serve as important instru-
ments in resolving transboundary conflicts and lead to a better management of the transboundary rivers.

4. Summary and Conclusion

In this study, we aimed for building a high-resolution hydrological model for the Black Sea Basin. The objec-
tive was to quantify water resources availability and water quality in terms of nitrate load at subbasin spatial

Figure 10. Annual averages of blue water at 12,982 modeled subbasins of Black Sea Basin expressed as (a) lower (L95), (b) upper (U95), and (c) median (M95) of the 95% prediction
uncertainty range, (d) coefficient of variation indicating temporal flocculation calculated for the period of 1973–2006.
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Figure 11. (a, c) Long-term annual averages (1973–2006) of green water flow and green water storage at subbasin level in the Black Sea Basin. (b, d) The coefficients of variation (CV) on
the right show the temporal variability in each component (1973–2006). A low CV indicates a higher reliability of that resource.
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and monthly temporal level. We used the SWAT model for this purpose and calibrated the model using
SUFI-2 algorithm, which ran on a grid network. The calibration was based on river discharge, crop growth,
and river nitrate load at multiple sites. As there are often no data on soil moisture, evapotranspiration, or

Table 2. Fresh Water Availability and Per Capita Water Resources of Black Sea Basin Countriesa

Country Area (km2)
Precipitation

(mm yr21)
Blue Water
(mm yr21)

Green Water
Flow (mm yr21)

Green Water
Storage (mm)

Per Capita Blue
Water Availability
(m3 capita21 yr21)

Austria 83,870 1124 481–951 369–448 60–208 5,331–10,544
Belarus 202,900 617 99–315 371–432 89–260 3,292–10,455
Bosnia 51,129 1059 338–823 438–545 77–236 5,686–13,865
Bulgaria 108,489 585 72–265 364–469 63–212 1,667–6,167
Croatia 55,974 1015 309–702 473–555 96–295 5,967–13,549
Czech 79,000 627 96–327 360–448 68–224 2,833–9,589
Georgia 70,000 1144 406–995 355–452 61–226 13,683–33,572
Germany 357,022 862 242–574 389–483 72–231 9,012–21,388
Hungary 93,030 579 46–242 368–486 64–223 443–2,337
Moldova 33,843 536 44–218 358–448 63–228 358–1,769
Romania 238,300 643 106–333 375–470 68–217 1,168–3,648
Serbia 102,350 760 180–433 431–513 78–238 2,114–5,093
Slovakia 48,845 739 172–487 352–438 65–214 1,638–4,643
Slovenia 20,253 1319 534–1,109 448–527 86–249 5,427–1,1267
Turkey 780,000 526 63–269 302–412 44–137 1,850–7,883
Ukraine 603,000 568 73–279 344–427 72–242 959–3,676
Russia 1,719,712 564 74–306 326–407 71–241 5,654–23,271

aPrecipitation is presented as the average rainfall in the simulation period. The 95% prediction uncertainty ranges are shown for
water resources components. The lower and upper bounds are averaged over the period of 1973–2006.
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Figure 13. Average (1973–2006) monthly 95% prediction uncertainty distributions of fresh water availability components (blue water,
green water flow, and green water storage) in Turkey and Bulgaria.
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aquifer recharge, we used crop yield as a surrogate to add confidence on the distribution of the compo-
nents of the infiltrated water. The calibration and validation results were quite satisfactory for a large num-
ber of outlets for both discharge and nitrate loads. As a consequence, our confidence on the estimated
water resources is high. However, as nitrate data were only available for the Danube Basin, nitrate load esti-
mation at other areas should be considered as less reliable.

The model output included blue water flow, green water flow, and green water storage as well as nitrate
load, and crop yields. We identified water scarce regions and showed how the model could provide infor-
mation on transboundary water issues such as natural flows and pollution loads. Regions in Ukraine and
Romania bordering the Black Sea and parts of Turkey and Russia in the Basin experience the highest water
deficit. Model outputs could be used to establish environmental goals, planning of remedial measures and
development of monitoring strategies. Much more results and analysis could be obtained with the model
developed in this study, such as calculation of freshwater and nutrient fluxes in to the Sea. In the next phase
of the study, we will use results of land use and climate change models to describe variability in hydrologi-
cal water balance and nutrient load for future conditions.

Based on the results of this study, we conclude that given the present technologies it is possible to build a
high resolution model of a large basin. What could provide more confidence in the model result are more
discharge and water quality data (nitrate, phosphate, sediment, etc.) and higher-resolution crop yield data
for model calibration.
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Danube River Basin, in Rivers of Europe, edited by K. Tockner, U. Uehlinger, and C. T. Robinson, chap. 3, pp. 59–112, Academic Press,
Burlington, Mass.

Stanners, D., and P. Bourdeau (1995), Europe’s Environment: The Dobris Assessment - An Overview, Eur. Environ. Agency Task Force, Eur. Envi-
ron. Agency, Copenhagen.

Sukhodolov, A. N., N. S. Loboda, V. M. Katolikov, N. A. Arnaut, V. V. Bekh, M. A. Usatii, L. A. Kudersky, and B. G. Skakalsky (2009), Western
Steppic Rivers, in Rivers of Europe, edited by K. Tockner, U. Uehlinger, and C. T. Robinson, chap. 13, pp. 497–523, Elsevier, doi:10.1016/
B978-0-12-369449-2.00013-8.

Tockner, K., U. Uehlinger, and C. T. Robinson (2009), Rivers of Europe, Academic, Elsevier.
United Nations Environment Program (UNEP) (2006), Africa Environment Outlook 2: Our environment, our wealth, Div. of Early Warning

and Assess., Nairobi, Kenya.
U. S. Geological Survey (USGS) (2008), Global Land Use Land Cover Characterization (GLCC) Database, Reston, Va. [Available at http://edc2.

usgs.gov/glcc/globdoc2_0.php.]
Wang, X., X. He, J. R. Williams, R. C. Izaurralde, and J. D. Atwood (2005), Sensitivity and uncertainty analyses of crop yields and soil organic

carbon simulated with EPIC, Am. Soc. Agric. Eng., 48, 1041–1054.
Water Agenda 21 (2011), Watershed Management. Guiding Principles for Integrated Management of Water in Switzerland, 20 pp., Swiss Fed-

eral Office for the Environment (FOEN), Swiss Federal Office of Energy (FOE), Swiss Federal Office of Agriculture (FOAG), Swiss Federal
Office for Spatial Development (ARE), Bern.

Weedon, G. P., S. Gomes, P. Viterbo, W. J. Shuttleworth, E. Blyth, H. €Osterle, J. C. Adam, N. Bellouin, O. Bouche, and M. Best (2011), Creation
of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century,
J. Hydrometeorol., 12, 823–848.

Wissenschaftlicher Beirat Globale Umweltver€anderung (WBGU) (2007), World in Transition: Climate Change as Security Risk [in German],
Springer, Berlin.

Wolfram, M., and H. Bach (2009), PROMET—Large scale distributed hydrological modelling to study the impact of climate change on the
water flows of mountain watersheds, J. Hydrol., 376(3–4), 362–377, doi:10.1016/j.jhydrol.2009.07.046.

Yang, J., P. Reichert, K. C. Abbaspour, J. Xia, and H. Yang (2008), Comparing uncertainty analysis techniques for a SWAT application to
Chaohe Basin in China, J. Hydrol., 358, 1–23, doi:10.1016/j.jhydrol.2008.05.012.

Zessner, M., and S. Lindtner (2005), Estimations of municipal point source pollution in the context of river basin management, J. Water Sci.
Technol., 52(9), 175–182.

Water Resources Research 10.1002/2013WR014132

ROUHOLAHNEJAD ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 20

http://dx.doi.org/10.1029/2008GB003435
http://dx.doi.org/10.1016/j.envsoft.2011.12.001
http://dx.doi.org/Elsevier
http://dx.doi.org/Elsevier
http://dx.doi.org/10.1016/B978-0-12-369449-2.00013-8
http://dx.doi.org/10.1016/B978-0-12-369449-2.00013-8
http://edc2.usgs.gov/glcc/globdoc2_0.php
http://edc2.usgs.gov/glcc/globdoc2_0.php
http://dx.doi.org/10.1016/j.jhydrol.2009.07.046
http://dx.doi.org/10.1016/j.jhydrol.2008.05.012

	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

