
Catena 137 (2016) 298–309

Contents lists available at ScienceDirect

Catena

j ourna l homepage: www.e lsev ie r .com/ locate /catena
Assessment of the soil water content in the Pampas region using SWAT
S.B. Havrylenko a, J.M. Bodoque b, R. Srinivasan c, G.V. Zucarelli d, P. Mercuri a

a Instituto de Clima y Agua, CIRN-CNIA, INTA, Los Reseros y Las Cabañas s/n- B1686IQN, Hurlingham, Buenos Aires, Argentina
b Mining and Geological Engineering Department, University of Castilla La Mancha, Campus Fábrica de Armas, Avda. Carlos III, Toledo E-5071, Spain
c Spatial Sciences Laboratory in the Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77845, USA
d Facultad de Ingeniería y Ciencias Hídricas (FICH), UNL, Ciudad Universitaria, Paraje “El Pozo”, 3000 Santa Fe, Argentina
E-mail address: havrylenko.sofia@inta.gob.ar (S.B. Hav

http://dx.doi.org/10.1016/j.catena.2015.10.001
0341-8162/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 November 2014
Received in revised form 25 August 2015
Accepted 4 October 2015
Available online xxxx

Keywords:
Agricultural droughts
SPI
NDVI
Semi-distributed modelling
Soil moisture
Pampas region basin
The Pampas region has recently experienced an expansion of agriculture towards more fragile environments,
which has been associated with an increase in the frequency of droughts affecting the whole region. In the
present study, we obtained a long-term record of soil water content (SWC) using a Soil and Water Assessment
Tool (SWAT)model, for the first time in Argentina. The reliability of thismodelwas contrastedwith the temporal
variation of the Standard Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to
characterise episodes of drought. We also estimated the correlation between SWC anomaly (aSWC) and SPI, as
well as the correlation between NDVI anomaly (aNDVI) and SPI. The model performance was reasonably satis-
factory. The model calibration showed determination coefficient (R2) and Nash–Sutcliffe coefficient (NS) values
of 0.70 and 0.59, respectively, and the model validation showed R2 and NS values of 0.77 and 0.75, respectively.
The aNDVI showed a relatively low correlation with aSWC (0.26 ≤ r ≤ 0.45). In contrast, the SPI presented sig-
nificantly positive correlationswith aSWC(0.67 ≤ r ≤ 0.83). Thiswork showed that SWAT is a suitable tool tomea-
sure SWC in poorly gauged geographical areas such as the Pampas region. Additionally, our approach could be
applied to other systems resembling that studied here, without any significant reduction in performance.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Droughts are a natural hazard occurring in almost all regions of the
world (Das et al., 2003; Van Lanen et al., 2013; Wilhite et al., 2014),
with an intensity and frequency of occurrence which depend on each
region (Ravelo et al., 1999). Drought is considered to be a slow and com-
plex phenomenon affecting large regions, and its severity is difficult to
determine (Wilhite, 2005). More specifically, agricultural droughts
(Narasimhan and Srinivasan, 2005) can frequently occur along different
phenological periods of the crop, affecting different areas and generat-
ing significant production losses (Xu et al., 2013). Argentine agricultural
sector has shown an important expansion since the early seventies,
with an increase in the nineties (Viglizzo, 2008). This process has
extended the agricultural frontier into more fragile environments and
it has replaced traditional crops, pastures and native forests for soy
monocultures (Viglizzo et al., 2001), leaving these new production
areas more exposed to water-related hazards (i.e. droughts or floods).

In Argentina, diverse approaches have been applied to characterise
agricultural droughts at regional scales. Researchers as Núñez et al.
(2005), Seiler and Rotondo (2006) and Gonzalez and Cariaga (2009)
applied the Standard Precipitation Index (SPI, McKee et al., 1993) to
characterise droughts in large areas of the Pampas region. The SPI
rylenko).
index is recommended because of its simplicity and flexibility for iden-
tifying and monitoring wet and dry events at various temporal scales.
Moreover, Llano and Penalba (2010) studied some characteristics of
dry sequences using daily precipitation data, to analyse the degree of
spatial coherence and the temporal variability of these sequences
throughout Argentina. In addition, some authors explored remote
sensing techniques to assess the impact of agricultural droughts on
crop yields. For example, Seiler et al. (1998), Ravelo et al. (1999), and
Hartmann et al. (2003) applied indices for using themas indicators of
drought derived from remote sensing data (e.g. SPOT-Vegetation,
Normalized Difference Vegetation Index (NDVI), Vegetation Condition
Index (VCI), etc.). They found that satellite data can provide valuable in-
formation about drought development, impacts, and also about crop
condition and production at regional scale. However, to date, no studies
have determined soil water content (SWC) as an indicator able to char-
acterise agricultural droughts in Argentina at the basin level.

SWC in the root zone (Maltese et al., 2013) is an excellent indicator
of agricultural drought (Johnson et al., 2009), as it is a measure that de-
pends on weather variables (e.g. precipitation and evapotranspiration),
soil properties (e.g. water storage capacity, texture, structure), existing
vegetation, and management practices (Narasimhan et al., 2005). SWC
is also an important hydrological parameter that controls various pro-
cesses of the hydrological cycle. Additionally, on the ground surface,
soil moisture is a critical factor in the interaction with the atmosphere,
while in the root zone, it conditions the coverage and state of vegetation
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(Schnur et al., 2010). Researchers such as Mavi and Tupper (2004),
Wilhite (2005), Mishra et al. (2009), Hong et al. (2010), and Han et al.
(2012) concluded that, in order to characterise SWC, hydrological
modelling should be combined with other approaches.

Numerous hydrological models have proved useful for modelling
spatial and temporal distribution of soil moisture at basin level
(Bergström, 1995; Liang et al., 1996; Grayson et al., 1997; Zhang
et al., 1999; Klawitter, 2006). Among the many hydrological models
currently available, Soil and Water Assessment Tool (SWAT), developed
by USDA Agricultural Research Service (ARS) (Arnold and Fohrer, 2005;
Neitsch et al., 2011),was chosen for this research to specifically determine
its reliability to calculate SWC in the Pampas region. SWAT has been ex-
tensively used by researchers since it has been designed to predict the im-
pact of land management practices on water, sediment and agricultural
management planning of large and complex watersheds.

Narasimhan and Srinivasan (2005), Li et al. (2010), Richard et al.
(2010), and Wang et al. (2011) have used SWAT as a suitable model
to simulate SWC at sub-basin level. These authors have successfully
implemented SWAT to simulate SWC in different basins and regions.
They found that SWAT can generate long-term SWC series, and they
also compared the simulated data with observed data as well as those
coming from other sources, such as SPI and NDVI. Nevertheless, the ap-
plication of SWAT in regions as Argentina, where there are few hydro-
logical data, is a challenge, given that SWAT requires a diversity of
spatially distributed information in order to run adequately (e.g. accu-
rate topography, land uses, soils) together with many inputs, necessary
for proper calibration. Furthermore, very little hydrological modelling
has been made using SWAT model in Argentina, which creates the op-
portunity to explore its use as a new tool.

This study provides an approach to assess droughts in watersheds
with agricultural activity and to monitor the impacts of drought on
soil moisture, growth and crop yield at basin level. The main aim was
to explore the reliability of the SWATmodel to estimate SWC in a poorly
gauged basin of the Pampas region with specific drought indicators,
such as NDVI and SPI. The specific objectives were: (1) to develop a
Fig. 1. Location of t
long-term record of SWCusing SWAT; (2) to analyse the correlation be-
tween SWC anomaly (aSWC) and SPI aswell as the correlation between
NDVI anomaly (aNDVI) and aSWC; (3) to analyse the temporal variabil-
ity of NDVI, SPI and SWC.

2. Material and methods

2.1. Study area

TheArrecifes basin is located in the centre of the Pampas region (north
of Buenos Aires province) (Fig. 1), covering an area of 10,700 km2. The
outlet of the study area coincides with the gauging station “Arrecifes” de-
fining a draining area of 8742 km2 (Fig. 1). This basin belongs to the
Rolling Pampa region. The topography is characterised by the presence
of low round-topped hills, which gives the landscape a rolling geomor-
phology. The elevation ranges from 21 m at the basin outlet to 108 m at
the highest point in the catchment. The basin has a high drainage density,
being 176.9 km its longest flow path.

The Arrecifes river has a flow regime module of 21 m3/s with an
average annual contribution of 579 Hm3/year. Based on the flow time
series available, it can be observed that the hydrological regime exhibits
flow peaks during spring and autumn, which coincide with the period
of greatest rainfall (September to May). Conversely, minimum flows
take place during late winter and January, corresponding to the month
with greatest water deficit.

This watershed has a particular interest for agricultural activities
because it is located in the humid Pampas region (Fig. 1), the most pro-
ductive ecoregion of the country (National Institute of Agricultural Tech-
nology of Argentina (INTA), 2009). In this zone, the soils are very deep,
neither alkaline nor saline, with a moderate susceptibility to water ero-
sion and a good agricultural potential. According to the Köppen–Geiger
climate map (Peel et al., 2007), temperate rain is the dominant climate,
Cfa called “humid subtropical climate”.

The basin has an average winter temperature of 11 °C, while the
average summer temperature is 23 °C (Bianchi and Cravero, 2010).
he study area.
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Annual precipitation presents no spatially marked gradient and it
ranges from 1000 to 1200 mm. Further, maxima precipitation occurs
in spring and autumn and is mainly generated from convective phenom-
ena. Usually, these storms are local, presenting large spatial variability,
while minimum precipitations occur in winter, associated with frontal
systems. However, the water deficit of greatest importance occurs during
late spring and early summer, as a result of increased evapotranspiration
at this time of the year. The annual potential evapotranspiration of the re-
gion ranges from 1000 to 1200 mm, with maxima monthly values up to
160 mm in January (INTA, 2013).

2.2. Input data

The data required to apply the SWAT model were gathered from
various sources and subjected to appropriate processing before being
incorporated into the model. Daily meteorological data were obtained
from two weather stations (Fig. 1). The time series taken into account
for the simulation was between 1959 and 2011. We checked the quality
of the data using stationarity and independence of the data as criteria.
To do this, the non-parametrical Mann–Kendall (Hirsch et al., 1982) test
was used for trend analysis, while Kolmogorov–Smirnov (Conover,
1999) test was chosen to assess the continuity of data. Also, we graphical-
ly analysed the time series to detect invalid and missing values.

Topographic data (Table 1) were derived from the C Band corre-
sponding to the Shuttle Radar Topography Mission (SRTM-C) of 1 arc
second resolution (Farr et al., 2007). However, SRTM data cannot be
directly used for hydrological applications. This is because band C signal
is especially sensitive to the geometry and orientation of the vegetation
leaves. Therefore, the energy is strongly scattered, unable to penetrate
the vegetation, so the resulting Digital Elevation Model (DEM) does
not show the ground surface but the height of the visible surface, e.g.
vegetation and buildings (Fig. 2A). In the Pampas region, the description
above is denoted by a continuous mosaic of crops and grassland areas
interrupted by small forests. These height peaks cause a significant
source of noise, especially in flat areas as those in this study (Fig. 2B).
As a result, the SRTM-C data had to be filtered by identifying and delet-
ing pixels (arboreal and shrubby vegetation) which could lead to errors
in themodel (Fig. 2C). This process allowed us to obtain the ground sur-
face topography and ensure that flow direction and flow accumulation
algorithms (Olivera and Maidment, 1999) accurately reflected the hy-
drological network of the basin. Then, the gaps were filled using a
multisurface interpolation technique (Wang, 1990). Lastly, to homoge-
nize the surface of the DEM, we applied the median filter, which is a
sliding-window spatialfilter that replaces the centre value for themedi-
an of all the pixel values of the window (Fig. 2D).

Land use coverage (Fig. 3) was derived using an automatic object
extraction technique from satellite images provided by the Landsat
5 Thematic Mapper (TM) sensor. Prior to their use, the scenes were
Table 1
Remote sensing data used.

Sensor Purpose Data type Spatial resolution

Landsat 7 ETM+ Geometric correction L1G 30 m

Landsat 5 TM Classification Level 5 30 m

SRTM Topography DTED-2 1″
geometrically corrected resorting to Landsat 7 ETM+ images (Table 1)
as basis. The automatic object extraction technique differs from the
pixel-based classification because it generates highly accurate classifica-
tion results,whereas pixel-based approaches often have ‘salt-and-pepper’
noise as they assume that the data of each pixel are independent
(Blaschke, 2010; Susaki, 2012). First, wemade a contextual segmentation
wherefinal segments (the objects)weredepictedwith a variety of spatial,
spectral (brightness and colour), and texture attributes. These segments
ideally correspond to real-world objects (Platt and Rapoza, 2008;
Blaschke, 2010). Next, we applied a supervised classification approach
where some of these objects were selected as training areas for the spec-
ified landuse. Subsequently, all objects appearing in the imageswere clas-
sified so as to become themost representative for their land use. In order
to establish results' quality, thefinal classificationwas visually interpreted
(Haack and Jampoler, 1995; Horler and Ahern, 1986). Land use mapping
was tested based on field observations and analysis from Google Earth
Images.

Soil map (Fig. 4) was derived from soil cartography published by
INTA (2009) at resolution of 1:50,000. The database contains major
physical and chemical properties at unit series level. Each unit is
composed for three subgroups that were classified according to the
USDA Soil Taxonomy (Soil Survey Staff, 2014). In this research, only the
predominant subgroup of each unit series was considered (Table 2).
Additional soil parameters required by SWAT were calculated using the
software Soil Water Characteristic (Saxton and Rawls, 2006) and other
regional soil information (INTA, 2009). Finally, the subgroup soil informa-
tion was used to generate the soil input file which was imported to the
SWAT Database.

2.3. Hydrological modelling

SWAT is a continuous long-time, semi-distributed and physically
based model. It can simulate different parameters at the spatial resolu-
tion necessary to capture the spatial variability of the watershed (Di
Luzio and Arnold, 2004; Neitsch et al., 2011), requiring spatially distrib-
uted information in order to run. Simulation of the hydrological cycle of
a watershed is divided into two parts: land phase and routing.

The land phase determines the amount of the loadings (i.e. water,
sediments and nutrients). The water balance is simulated for each
HRU and is represented by four storage volumes: snow, soil profile
(0–2 m), shallow aquifer (typically 2–20 m), and deep aquifer. The
model parameterization starts by dividing the watershed into subunits.
This division is helpful when the basin reflects a large scale spatial het-
erogeneity to impact hydrology processes (Neitsch et al., 2011). In this
study, this step was based on surface topography. The watershed was
partitioned into 20 sub-basins, taking into account the homogeneity
of soil series (Fig. 4). For this purpose, the stream network was
built considered a minimum drainage area of 4398 ha. Afterwards,
Path/row Date acquired Catalogue

226-084
226-083
227-084
227-083

12/09/1999
11/28/2001
12/16/1999
04/22/2000

University of Maryland (http://glcf.umd.edu/)

226-084/83
226-084/83
226-084/83
226-084/83
226-084/83
227-084/83
227-084/83
227-084/83
227-084/83

09/15/2006
12/04/2006
01/21/2007
02/22/2007
03/10/2007
10/24/2006
12/27/2006
02/13/2007
03/17/2007

National Commission of Spatial Activities
(http://catalogos.conae.gov.ar
/Landsat/)
Brazilian Institute for Space Research
(http://www.dgi.inpe.br/CDSR/).

National Geographic Institute
(http://www.ign.gob.ar/)

http://glcf.umd.edu
http://www.dgi.inpe.br/CDSR/
http://www.dgi.inpe.br/CDSR/
http://www.ign.gob.ar


Fig. 2. A) False colour composite of a multispectral Landsat 5 TM image (R:4, G:5, B:3). Arboreal masses appear in blue shapes in dark red; B) SRTM-C data without filter. Whiter shades
correspond to elevated surfaces due to tree vegetation; C) red shapes represent heights not linked to ground surface; D) final SRTM-C data once it was filtered. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Land uses maps: A) summer crops; B) winter crops.
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Fig. 4. Soil map of the Arrecifes basin.
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sub-watersheds were delineated redefining the position of outlets
in order to coincide with the boundaries of soil series (Fig. 4).

Once the above corrections were made, the sub-basins were dis-
cretised into a series of hydrologic response units (HRUs), which are
portions that present a unique soil type, land use and management
combination (Arnold et al., 2011). Runoff is predicted separately for
each HRU and routed to the associated reach and catchment outlet
through the channel network to obtain the total runoff for the water-
shed (Neitsch et al., 2011). In total, 337 HRUs were delineated by the
Table 2
Soil classes and average properties of the profiles present in the study area.

Soil orders Soil taxonomy Depth (m) Texture M

Alfisols Mollic Natraqualfs 0.6 Silt loam to silty clay loam 1.
Typic Natraqualfs 1.2 Silt loam to silty clay loam 1.

Mollisols Vertic Argiaquolls 1.8 Silt loam to Silt 1.
Abruptic Argiudolls 2.0 Silt loam to silty clay 1.
Aquic Argiudolls 1.6 Silt loam to silty clay 1.
Typic Argiudolls 2.0 Loam 1.
Vertic Argiudolls 2.0 Silty clay loam 1.
Acuic Hapludolls 1.2 Sandy loam to Loam 1.
Typic Hapludolls 1.4 Sandy loam to Loam 1.
Typic Natralbolls 1.6 Silt loam 1.
Typic Paleudolls 2.5 Silt loam to silty clay loam 1.

Not classified Complex undifferentiated – – –
Water – – –
Miscellaneous – – –
Rock – – –
definition of a 2% level threshold for land use, 5% for soil type, and a uni-
form slope to decrease the computational time.

Subsequently, the physical characteristics of the hydrological net-
work and the sub-basin geomorphology were automatically estimated
from the DEM by themodel. However, due to the low spatial resolution
of this one (i.e. 30 m), some values were corrected to the best of our
possibilities, resorting to cross-sections provided by the National
Water Institute of Argentina (INA). Two 5-km-long reaches correspond-
ing to themain channel were used and Google Earth was referred to the
remaining reaches.

The growth cycle of a plant is controlled by plant attributes and
management operations (Neitsch et al., 2011).Rainfed crops were con-
sidered in the entire basin assuming a classical crop rotation. The plant-
ing rotation was aimed to simulate the evolution of land use based on
three short-term (3 years) scenarios of different vegetation covers.
The crop rotation system was taken from the guides of field crops of
Argentina provided by INTA and Rural Change Program (PCR) (1997a,
b,c,d). The schedule was defined by calendar day and for each crop.
Management operations (Table 3) were listed in chronological order
and only one land cover could grow in each HRU at a time, i.e. before
planting a new crop the previous land cover had to be removed.

Finally, the method chosen to estimate potential evapotranspiration
(PET) was Priestley–Taylor (Priestley and Taylor, 1972). This method is
appropriate to beusedwhendetailedmeteorologicalmeasurements are
not available. In this regard, Priestley–Taylor does not require wind
speed data, which is a local variable that changes significantly in
time and space. Additionally, the CN parameter was calculated as
function of plant evapotranspiration, since this method is less de-
pendent on soil storage and more dependent on antecedent climate
(Neitsch et al., 2011).

In the routing phase, the loadings were routed through the stream
network channel of the watershed. Flowwasmoved by using a variable
storage coefficient method developed by William (1969). As a final
stage, the simulationwas conductedusing amonthly time step, beginning
on January 1, 1969 and ending on December 31, 2002. The first 6 years
(1969–1974)were used aswarm-up period tomitigate the unknown ini-
tial conditions and were excluded from the analysis.
2.4. Model performance evaluation

Model performance was assessed using SWAT-CUP. This pro-
gramme includes five methods from which the Sequential Uncertainty
Fitting was chosen (SUFI-2) (Abbaspour et al., 2004, 2007, Schuol
et al., 2008). Daily discharge data were provided by the local water au-
thorities (Fig. 1). The series length covered the period between 1963
and 2002, and for some years there were either few or no records. Ob-
served daily discharge was used to calculate monthly values for model
oist bulk density (gr/cm3) Available water capacity (mm H2O/mm soil) Area (%)

36 0.18 0.097
36 0.16 0.7
47 0.20 0.2
27 0.16 2.8
35 0.17 1.7
29 0.15 75.5
33 0.17 0.007
53 0.13 0.091
51 0.13 5.8
37 0.17 0.7
36 0.18 1.8

– 9.7
– 0.104
– 0.8
– 0.002



Table 3
An example of a corn–wheat–soybean rotation practice.

Year Management operation Crop Month Day

1 Tillage operation September 10
1 Planting/beginning of growing season Corn October 15
2 Harvest and kill operation April 15
2 Tillage operation June 5
2 Planting/beginning of growing season Wheat July 15
2 Harvest and kill operation November 14
2 Tillage operation December 1
2 Planting/beginning of growing season Soybean January 10
3 Harvest and kill operation April 26
3 Tillage operation April 30
3 Planting/beginning of growing season Pasture May 5
3 Harvest only operation August 15
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calibration (1975–1992) and validation (1993–2002), though, all those
months with less than 60% of daily observations were discarded.

The initial selection of parameters to be calibratedwas based on sen-
sitivity analysis using the method known as one-at-a-time (Abbaspour
et al., 2007, Schuol et al., 2008). Next, a second selection was deter-
mined by implementing global sensitivity analysis (Abbaspour et al.,
2004) after the fourth iteration. Global sensitivity analysis shows thebe-
haviour of each parameter regarding the objective function, while all
other parameters are changing. Likewise, parameters are ranked ac-
cording to their sensitivities, and highly correlated parameters are iden-
tified. Abbaspour et al. (2004), suggest that among the highly correlated
parameters, those with the smaller sensitivities should be fixed to their
best estimates and removed from additional sampling rounds.

The range of calibration parameters was initially wide, and it
changed according to new values suggested by objective functions. Cal-
ibration addressed the whole basin, so that parameters were changed
simultaneously for all sub-basins. Some parameters were modified by
substituting a value for another (v_x), while in situations in which the
parameters differed among HRUs, we chose either to decrease it or in-
crease it by adding a value (a_x) or multiplying a value (1 ± a percent-
age) (r_x). Further, groundwater and main channel parameters were
distributed in three areas, according to NDVI regionalisation made by
Havrylenko (2013) in the basin. The regionalisation referred to had re-
sulted in 4 groups: 2 groups of sub-basins located at the head and at
the outlet of the basin (area I: 1, 2, 3, 4, 5, 6, 7 and area II: 20, 18, 12)
(Fig. 4); and other 2 groups of sub-basins located in the middle part,
which, in this case, were joined in a single area with similar characteris-
tics (area III: 8, 9, 10, 11, 13, 14, 15, 16,17, 19) (Fig. 4). Next, a multi-
objective formulation (Abbaspour et al., 2004) was applied using
Nash–Sutcliffe coefficient (NS), and summation form of the square
Table 4
Initial selection of parameters to be calibrated in SWAT.

Parameter group Parameter Definition

Evapotranspiration ESCO Soil evaporation compensa
CNCOEF Plant ET curve number coef

Surface runoff and time of concentration SURLAG Surface runoff lag coefficien
CN2 SCS runoff curve number fo
CH_N1 Manning's value for the trib
SLSUBBSN Average slope length (m).

Transmission losses from surface runoff CH_K (1) Effective hydraulic conduct
Soil water SOL_AWC Available water capacity of
Lateral flow LAT_TTIME Lateral flow travel time (da

SLSOIL Slope length for lateral sub
Groundwater GW_DELAY Groundwater delay time (d

ALPHA_BF Baseflow alpha factor (1/da
GWQMN Threshold depth of water in
GW_REVAP Groundwater revap coeffici
REVAPMN Threshold depth of water in
RCHRG_DP Deep aquifer percolation fr

Chanel water routing TRNSRCH Fraction of transmission los
CH_N (2) Manning's “n” value for ma
CH_K (2) Effective hydraulic conduct
error (sum). Additionally, the coefficient of determination (R2), Nash–
Sutcliffe coefficient (NS), the percent bias (PBIAS) and the ratio of the
root mean square error to the observation standard deviation (RSR)
were used as performance metrics. Afterwards, the uncertainty was
determined for all variables of the objective function by applying Latin
Hypercube sampling (Abbaspour et al., 2007).

Goodness of fit was assessed by the uncertaintymeasures calculated
from the percentage of measured data bracketed by the 95% prediction
uncertainty (95PPU). P-factor, which is the percentage of measured
data bracketed by 95PPU, was calculated at 2.5% and 97.5% levels of
the cumulative distribution of an output variable obtained through
Latin hypercube sampling, disallowing 5% of the worst simulations.
The degree of uncertainty was assessed using the R-factor, which is
the average distance between the upper and the lower 95PPU
(Abbaspour et al., 2004, 2007). The ideal outcome is that 100% of the
measurements are bracketed by the 95PPU (P-Factor → 1) into the
narrowest 95PPU band (R-Factor → 0).

2.5. Acquisition of time series of soil water content

After calibrating and validating themodel, time series of SWC for the
period (1982–1998) were extracted from the SWAT model at the
sub-basin level and considered the entire soil profile. These data were
filtered by calculating the standardised anomaly to characterise water
deficit/excess more accurately, so that aSWC could be related to SPI
and NDVI. Negative anomaly values mentioned above mean that
aSWC is lower than the mean value, whereas positive values indicate
the opposite. The equation used to calculate the standardised anomaly
was Eq. (1):

aSWC ¼ xi� x
St

ð1Þ

where: xi is the simulated value of SWC in a given month, x is the aver-
aged value of the time series, and St is the standard deviation.

2.6. Correlation between aSWC and SPI/aNDVI

The occurrence of water deficit/excess was determined using the
severity categories of SPI established by Lloyd-Hughes and Saunders
(2002). SPI was calculated applying SPI SL 6 software, developed
by the National Drought Mitigation Center (NDMC), which can be
downloaded from http://drought.unl.edu/MonitoringTools.aspx. SPI
was calculated for the two weather stations available (between 1982
and 1998) and at one-month and three-month level. The one-month
tion factor.
ficient
t.
r moisture condition II.
utary channels.

ivity in tributary channel alluvium (mm/h).
soil layer (mm H2O/mm).
ys).
surface flow (m).
ays).
y).
the shallow aquifer required for return flow to occur (mm H2O).

ent
the shallow aquifer for revap or percolation to the deep aquifer to occur (mm H2O).

action
ses from main channel that enter deep aquifer.
in channel
ivity in main channel alluvium (mm/h).

http://drought.unl.edu/MonitoringTools.aspx


Table 5
SWAT model parameters included in the calibration procedure, default range, final values, and rank.

Parameter Initial range Basin Area I Area II Area III Final rank

Final value Final value Final value Final value

ESCO (v_) 0.6–1.0 0.91 – – – 2
CNCOEF (v_) 0.5–1.5 0.73 – – – 4
SURLAG (v_) 0.05–15 0.14 – – – 1
CN2 (r_) −0.1–0.1 – −0.077 0.035 −0.08 3
CH_N1 (v_) 0.010–0.020 0.017 – – – 12
SLSUBBSN (v_) 70–120 66 – – – 13
CH_K (1) (v_) 1–50 23 – – – 18
SOL_AWC (r_) −0.1–0.1 – −0.15 0.00 0.04 14
LAT_TTIME (v_) 60–120 51 – – – 19
SLSOIL (v_) 50–110 75 – – – 17
GW_DELAY (v_) 60–120 – 37 128 96 9
ALPHA_BF (v_) 0.06–0.2 – 0.19 0.17 0.14 15
GWQMN (v_) 0–5000 – 4595 406 1502 6
GW_REVAP (v_) 0.02–0.20 – 0.10 0.13 0.02 11
REVAPMN 0–500 – 294 448 455 16
RCHRG_DP 0–1 – 0.47 0.37 0.2 10
TRNSRCH (v_) 0.0–1.0 0.56 – – – 5
CH_N (2) (v_) 0.010–0.050 – 0.021 0.017 0.026 7
CH_K (2) (v_) 30–100 – 41 32 88 8
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SPI reflects relatively short-term conditions, so that its application can
be closely related to short-term soil moisture and crop stress, especially
during the growing season. A three-month SPI reflects short- and
medium-term moisture conditions. In primary agricultural regions,
the three-month SPI might be applicable to highlight availablemoisture
conditions.

NDVI index (Tarpley et al., 1984) was chosen because it has been
successfully used to identify and track areas affected by droughts at re-
gional and local levels (Seiler et al., 2000; Tucker and Anyamba, 2005;
Bayarjargal et al., 2006; Bajgirana et al., 2008). In addition, NDVI may
be used to indicate conditions and variations of vegetative health at
any given time of the vegetation, ranging between −1 and 1. Positive
values of NDVI between 0.1 and 0.7 represent vegetated areas, so that
high values of NDVI mean increases in vegetation or vegetation
with great vigour. In contrast, negative values are interpreted as non-
vegetated areas such as water, ice and snow bodies, while values close
to 0 represent areas of bare soil. We used the set of fortnightly images
ofNDVI,which correspond to theAVHRR sensor from theNational Ocean-
ic and Atmospheric Administration and were provided for free by the
Global Inventory Monitoring and Modelling Systems http://glcf.umiacs.
umd.edu/data/gimms/. The original data were downloaded with the ra-
diometric corrections to be used from a multitemporal point of view.

To apply this index, each fortnightly image was averaged monthly
(for the period 1982–1998 and every sub-basin) by raster/vector layer
operations. A mean monthly value for each sub-basin was obtained.
The analysis of the temporal variation was based on studying the
monthly evolution by using graphs aimed to detect periods with low
NDVI values, as well as their duration. Similarly to SWC, NDVI values
were filtered using the standardised anomaly (aNDVI). The resulting
valueswere interpreted as follows: negative values indicated a response
lower than normal, whereas positive values showed the opposite.

To explore the statistical relationship between monthly values of
SPI/aNDVI and aSWC, the Pearson correlation coefficient (McNemar,
1969) (at a 5% significance level) and the bivariate correlation method
(McCuen, 2002) were used.
Table 6
Final statistic coefficients for calibration and validation procedures.

Objective function Stage R2

Nash–Sutcliffe coefficient (NS) Calibration 0.70
Validation 0.76

Summation form of the square error (SUM) Calibration 0.70
Validation 0.76
3. Results

3.1. Model calibration and validation

The calibration process began including 30 hydrological parameters,
after the fourth iteration 19 were found to be sensitive to discharge
(Table 4). The list of chosen parameters, the initial and optimised values,
and the relative sensitive ranking are shown in Table 5. Moreover, the
results of objective functions to reach the optimisation are listed in
Table 6. In general, monthly calibration offered reasonably satisfactory
results. It was necessary to carry out 20 iterations of 400 simulations
each one to achieve the final optimisation. Goodness of fit of the
monthly calibration was evaluated by estimating the uncertainty
(Fig. 5). In this regard, acceptable values of the P- and R-factors were ob-
tained (Table 6). Likewise, the validation results were also satisfactory
(Fig. 6); the metric performance for the model in the validation can be
seen in Table 6.

3.2. Correlation and analysis of temporal variation between aSWC and
aNDVI/SPI

Correlation between monthly values of aSWC and one-month SPI/
three-month SPI was significant, although lower values were derived
when one-month SPI was lagged one month (Fig. 7A). In addition,
higher correlations were obtained when three-month SPI was consid-
ered (Fig. 7B). A seasonal pattern, associated with the growing season
of crops, was detected.Higher values of correlationwere found between
October and March (0.64 ≤ r ≤ 0.83) when three-month SPI was taken
into account.

The correlation between monthly values of aSWC and aNDVI also
showed a seasonal pattern (Fig. 8), although r values were less signifi-
cant than those derived from correlating aSWC with SPI. Regarding
the above, higher values of correlation were obtained, when aNDVI
was lagged one month, mainly between October and March, when r
values were between 0.26 and 0.45 (Fig. 8B).
NS PBIAS RSR P-factor R-factor

0.59 14.1 0.64 0.66 0.83
0.75 10.1 0.50 0.67 0.46
0.59 14.1 0.64 0.68 0.87
0.75 10.1 0.50 0.77 0.64

http://glcf.umiacs.umd.edu/data/gimms/
http://glcf.umiacs.umd.edu/data/gimms/


Fig. 5. Monthly calibration between January 1979 and December 1992 (including missing data). The graph shows the 95% prediction uncertainty intervals along with the measured
discharge.
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The analysis of the temporal variability of aSWC and SPI/aNDVI
resulted in the observation that aSWC follows the pattern given by pre-
cipitation and therefore by SPI. The aSWC curve showed a relatively
smooth response regarding the SPI peaks (Fig. 9). So, if a dry period oc-
curs, aSWC curve remains above the curve of three-month SPI (except
in severe droughts), whereas if a wet period occurs, but the antecedent
conditionswere fairly normal, the aSWC curve is fitted or slightly below
the three-month SPI curve (except in very wet situations). However,
similar results to aSWC–SPI were not observed between aSWC and
aNDVI (Fig. 10), and aNDVI did not follow the expected pattern in
severe situations (wet or dry events).

4. Discussion

The methodological approach used here allowed obtaining a long-
term record of SWC, which was tested establishing the correlation be-
tween aSWCand aNDVI/SPI. The results obtained aswell as themethod-
ology used are novel in the context of Argentina, as a hydrologicalmodel
combinedwith the SPI/NDVI indices is used to estimate SWC for thefirst
time.

According to Moriasi et al. (2007), the values obtained for the ob-
jective functions considered indicate a satisfactory performance of the
model. Likewise, they are consistent with those obtained by other
authors in similar geographic contexts and with a shortage of data
(Richard et al., 2010; Barrios and Urribarri, 2010; Gonzalez, 2011; Jha,
2012). The calibration and validation of the SWATmodelwas conditioned
Fig. 6. Monthly validation between January 1993 and December 1998 (including missing da
discharge.
by the spatial representativeness of the precipitation and flowdata. There
is only one gauging station available, and in the basin and its surroundings
there are only twoweather stations. As a result, calibrationwas done only
in the control section that coincided with the outlet of the basin. There-
fore, calibration may be forced, so that the matching of the parameters
can be achieved using ranges for them without enough physical sense.
In addition, this circumstance can lead to errors in the characterisation
of the processes that determine the transformation of rainfall into runoff.
Thus, itwould be desirable to have several gauging stations in the basin or
at least onewith a long time series (Abbaspour et al., 2007). The shortage
of hydro-meteorological data, mainly rainfall (the most sensitive in this
respect), implied a higher uncertainty of estimates concerning average
values of monthly accumulated rainfall, especially in times of flooding in
which hydrological simulations can lead to an underestimation of flows.

SPI results are similar to those found by Núñez et al. (2005) and
Gonzalez and Cariaga (2009), who concluded that the SPI index is suit-
able to identify and follow dry and humid events in the humid Pampas.
Furthermore, themoving average analysis showed that severe droughts
identified with the three-month SPI could have a cyclic behaviour. Re-
garding the correlations between aNDVI/SPI and aSWC, significant and
positive correlationswere foundbetween SPI and aSWC,whereas corre-
lations between aNDVI and aSWC showed lower values. Likewise, a sea-
sonal pattern was noted in the response of both indices.

Correlation between aSWC and three-month SPI showed a lower
dispersion and a more marked seasonal pattern than one-month SPI
(Fig. 7). Moreover, the seasonal pattern showed that the best correlations
ta). The graph shows the 95% prediction uncertainty intervals along with the measured



Fig. 7. Box plots of the result of the correlation between aSWC and SPI, including all subbasins in each month. A) aSWC and SPI (one-month), B) aSWC and SPI (three-month).
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occur in rainy season with high SWC. These results are consistent with
those obtained by Richard et al. (2010) in similar phenological periods
to the one considered here. Hence, the result shows that there is no direct
relationship between precipitation and SWC and it indicates that three-
month SPI has a short delay and a cumulative effect of precipitation on
SWC. One of the main reasons is related to the physical characteristics
of the soils and their local conditions (e.g. topographic factors), while
the low and variable correlations in dry months may be due to the fact
that SWC responds to changes in precipitation in dry months with a lag.

Concerning correlations between aNDVI and aSWC, higher values
were obtained when the aNDVI was lagging one month in regards to
SWC. This result shows that crops respond to change in precipitation,
but this change is not instantaneous and has a cumulative effect on veg-
etation. The lowest values were obtained at the beginning or at the end
of the growth phase of crops. This is consistent with the observation
made by Narasimhan (2004) and Richard et al. (2010), who suggested
that correlations have to be established only for the growth period. An-
other issue to be considered is that the correlation also depends on the
depths of the root system of the crops. Most of the pasture and agricul-
ture crops have shallow root systems and use only the SWC available in
the first part of the soil profile (Narasimhan and Srinivasan, 2005). Con-
sequently, these results can be partially explained by the fact that SWAT
estimates SWC in the whole edaphic profile and, therefore, below the
depth reached by the actual root system. Wang et al. (2007) and
Fig. 8. Box plots of the result of the correlation between aSWC and aNDVI, including all su
Schnur et al. (2010) analysed the response between soil moisture at dif-
ferent depths of the roots andNDVI, finding that they are closely related.
These authors also found that the NDVI corresponding to vegetation
with short root systems presents positive and significant correlations
with SWC in the first centimetres of the soil, and that values decrease
and have a larger lag at higher depths. Conversely, in areas with species
with deeper root systems correlations increased with depth.

In addition, between April and September, aNDVI followed an erratic
pattern, which showed differences with the aSWC time series (Fig. 10).
This could be associated with the fact that the system becomes more
variable. This means that as crops mature and are harvested, the mean
value of aNDVI obtained for each sub-basin no longer reflects just the
state of the vegetation, but also a mosaic of parcels with mature crops,
bare soils, and newly planted or harvested crops. Another situation per-
ceived during some droughts is that a rainfall event (only detected with
one-month SPI) positively increases the aNDVI curve without sig-
nificant increases in the soil moisture curve.

Thus, many factors may cause the low level of significance in corre-
lations between aNDVI and aSWC, such as spectral bandwidth, radio-
metric and spatial resolution of AVHRR instrument, from which NDVI
is derived, spatial scale at which NDVI was used, land cover or the vari-
ability of some local conditions (i.e. type and depth of soil, water table
height, antecedent moisture conditions, slope, and homogeneity of the
sub-basin with respect to land use). In this regard, Richard et al. (2010)
bbasins in each month. A), aSWC and aNDVI, B) aSWC and aNDVI (lagged 1 month).



Fig. 9.Monthly evolution of aSWC, one-month/three-month SPI and precipitation between 1982 and 1998.
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analysed the correlation betweenNDVI and soilmoisture at siteswith dif-
ferent soil and climatic characteristics, and concluded that both the vege-
tation and soil properties play key roles in the ability of NDVI to represent
the role of SWC. InArrecifes basin, dominant soils are TypicArgiudolls, but
the presence of other soil types with local connotation could cause differ-
ent responses in vegetation. Havrylenko (2013) analysed the spatial var-
iability of NDVI in the basin, applying principal components method
across the study area. Four sub-basin groups were found which could be
associated to the type of soils present. On the one hand, 2 groups of
sub-basins located at the head and at the outlet of the basin were related
to hydromorphic and poorly drained soils; and, on the other hand, 2
groups of sub-basins located in the middle part of the basin were linked
to deep and well drained soils. So, it is likely that these latter areas will
be more vulnerable to agricultural drought in dry periods.

It is interesting to compare the evolution of SWC with respect to SPI
and NDVI curves. Analysing drought in time series-plot allowed observ-
ing the performance of drought events occurred in 1988/89, 1994/95
and 1995/96. These three events weremajor droughts at Pampas region
level; the process began with dry winters and continued with insuffi-
cient rainfall until the next summer. The three-month SPI curve indicat-
ed intense droughts until around February; the one-month SPI curve
showed a fluctuating pattern according to the monthly precipitation
fallen; and the aSWC curve reflected negative values below mean
value in 1988/89 and 1994/95, and negative values close to mean
value in 1995/96 (Fig. 9). However, the anomalous behaviour of SWC
curve between spring of 1995 and summer of 1996 was due to the
fact that the model was influenced by the extreme events of precipita-
tion occurred in the autumn of 1995. Moreover, the aNDVI curve
Fig. 10.Monthly evolution of aSWC, aNDVI an
showed negative values below mean value in 1988/89, positive values
above mean value in 1994/95, and values fluctuating around the mean
in 1995/96 (Fig. 10).

The methodology had limitations that did not allow for an optimal
evaluation of the suitability of SWAT in the estimation of SWC. Nonethe-
less, the methodology could be applied with less uncertainty with ap-
propriate parameterization of SWAT and better results could be
obtained in processes related to the hydrological cycle such as the one
studied here. Thus, the approach implemented here could be used by
decision makers to improve the management of agricultural resources
in Argentina, because SWC is the most direct and important indicator
of agricultural drought (Nam et al., 2012). Once the methodology is
set, the combined use of SWC derived from SWAT and different drought
indices could determine the onset, severity, spatial extent, and end of
drought conditions.

5. Conclusions

For the first time in Argentina, a continuous monthly record of SWC
was obtained in a regionwith shortage of data regarding hydrometeorol-
ogy, land use and topography. The reliability of simulated SWC derived
from SWATwas tested establishing the correlation between this parame-
ter and aNDVI/SPI indices. Objective functions used during the calibration
and validation of the SWATmodel defined reasonably satisfactory values,
although they could be improvedwith increasing availability of precipita-
tion and flow data. Moreover, positive and significant correlations were
obtained between aSWC and one/three-month SPI. It is considered that
three-month SPI is a suitable index for the study of agricultural drought
d precipitation between 1982 and 1998.
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for short-term weather conditions. In addition, SPI provided information
about degree and magnitude of events. However, the statistical relation-
ship between aSWC and aNDVI was less significant. Thus, it is considered
that the NDVI index should be used with caution, since it is strongly con-
ditioned by the depth of the root system, the variability of some local con-
ditions, as well as by the occurrence of short and intense precipitation
events within a drought context. Besides, further research is needed to
better characterise the factors affecting NDVI values and their relation-
ships with SWC. Although further testing should be carried out about
the confidence of the SWAT simulation of SWC with other drought indi-
ces, it has currently obtained promising results. It is considered that the
SWATmodel combined with drought index could be used as agricultural
drought monitoring tools and early warning systems at basin scale. It is
difficult to know when agricultural droughts begin and end, just as it is
difficult to know the magnitude of the impact they could have on crops
and their spatial extension. Thus, because of its high variability in space
and time, knowledge of SWC is generally inaccurate. For this reason, a cal-
ibrated SWATmodel can be applied to obtain SWC time series and its spa-
tial distribution both in Arrecifes basin and other watersheds of the
Pampas region. Thereby, the results obtainedhave important implications
at management level, as they could allow decision makers to know the
spatial and temporal variability of agricultural droughts and thus support
a risk-based decision-making process.
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