
June, 2015                Int J Agric & Biol Eng      Open Access at http://www.ijabe.org                Vol. 8 No.3   125 

 

Effects of spatial and temporal weather 
data resolutions on streamflow modeling 

of a semi-arid basin, Northeast Brazil 
 

Danielle de Almeida Bressiani1,2, Raghavan Srinivasan2, Charles Allan Jones2, 

Eduardo Mario Mendiondo1,3 
(1. University of São Paulo –USP, Engineering School of São Carlos-EESC, SHS, 13566-590, São Carlos/SP, Brazil; 

2. Department of Ecosystem Science and Management, SSL, Texas A&M University (TAMU), College Station, TX 77843, USA; 
3. Brazilian Center of Monitoring and Early Warning of Natural Disasters, CEMADEN/MCTI, São José dos Campos/SP, 12247-016, Brazil) 
 

Abstract: One major difficulty in the application of distributed hydrological models is the availability of data with sufficient 
quantity and quality to perform an adequate evaluation of a watershed and to capture its dynamics.  The Soil & Water 
Assessment Tool (SWAT) was used in this study to analyze the hydrologic responses to different sources, spatial scales, and 
temporal resolutions of weather inputs for the semi-arid Jaguaribe watershed (73 000 km2) in northeastern Brazil.  Four 
different simulations were conducted, based on four groups of weather and precipitation inputs: Group 1- SWAT Weather 
Generator based on monthly data from four airport weather stations and daily data based on 124 local rain gauges; Group 2- 
daily local data from 14 weather stations and 124 precipitation gauges; Group 3- Daily values from a global coupled forecast 
model (NOAA’s Climate Forecast System Reanalysis - CFSR); and Group 4- CFSR data with 124 local precipitation gauges.  
The four simulations were evaluated using multiple statistical efficiency metrics for four streamflow gauges, using: 
Nash-Sutcliffe coefficient (NSE), determination coefficient (R2), the ratio of the root mean square to the standard deviation of 
the observed data (RSR), and the percent bias (PBIAS).  The Group 4 simulation performed best overall (provided the best 
statistical values) with results ranked as “good” or “very good” on all four efficiency metrics suggesting that using CFSR data 
for weather parameters other than precipitation, coupled with precipitation data from local rain gauges, can provide reasonable 
hydrologic responses.  The second best results were obtained with Group 1, which provided “good” results in three of four 
efficiency metrics.  Group 2 performed worse overall than Groups 1 and 4, probably due to uncertainty related to daily 
measures and a large percentage of missing data. Groups 2 and 3 were “unsatisfactory” according to three or four of the 
efficiency metrics, indicating that the choice of weather data is very important. 
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1  Introduction 

Climate variability has substantial impact on 
hydrologic systems; including the availability and quality 
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of water, as well as the frequency and severity of floods 
and droughts.  Capturing climate variability and its 
hydrologic impacts is a major challenge in the 
development of a hydrological model.  

Weather data are the most fundamental driving  
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variables for hydrologic models; however, it is often 
difficult to acquire good-quality weather data, especially 
in developing countries.  Weather stations are often 
inadequate in number, spatial distribution and periods of 
operation.  In addition, data are often missing and 
instruments are sometimes poorly calibrated[1,2].  There 
is a serious limit on the application of hydrologic models 
when good quality measured weather data are not 
available, especially for large-scale watersheds[2,3].  

Many models, such as the Soil and Water Assessment 
Tool (SWAT) water quantity and quality model[4,5],use 
the nearest weather station for each subbasin.  However, 
if the station is far away or if it has poor quality data, the 
simulation quality will be adversely affected[1].  Daily 
data from an inadequately sited and maintained weather 
station network may represent well the dynamics needed 
for a good hydrologic simulation[3,6].  Numerical 
weather prediction models with greater resolution may 
provide an alternative data source for developing and 
testing large-scale hydrological models[2].  Inappropriate 
choices of data sources can have significant impacts on 
model estimates, introducing uncertainties.  
Quantification of errors and estimation of the uncertainty 
of meteorological input data can help to interpret the 
processes simulated[3].  It is even more important to 
evaluate the quality of input data and its effects on the 
reliability of model estimates when the results are used 
for decision support[3,7].  

Many watersheds are poorly gauged or ungauged, and 
streamflow simulation in such basins is an ongoing 
problem[8].  A number of studies have investigated the 
impacts of different sources of climatic data on watershed 
modeling[8-18], including using rain gauge and Tropical 
Rainfall Measuring Mission (TRMM) data for SWAT 
modeling[8]; combining rain gauges, TRMM and Special 
Sensor Microwave Imager (SSM/I) datasets[9], and using 
both rain gauge with radar-based precipitation data[10].  
These three studies[8-10] demonstrated that using more 
than one source of precipitation data can improve the 
efficiency of streamflow simulation. 

Further testing has been conducted on how use of 
ground-based precipitation (Multisensor Precipitation 
Estimator - MPE) and space-based products (TRMM) 

affected hydrologic modeling results for six basins across 
the United States[11].  The MPE approach produced 
superior hydrologic simulations, although both versions 
of TRMM products resulted in acceptable hydrologic 
results.  MPE (or Stage IV Next-Generation Radar) data 
were investigated regarding potential improved accuracy 
of stream flow simulations using SWAT[12,13].  It was 
suggested that modelling efforts in watersheds with poor 
rain gauge coverage can be improved with MPE radar 
data, especially at short time steps[12].  On the other hand, 
MPE Stage IV data was not adequate for simulation of a 
mountainous basin[13]. 

Climate Forecast System Reanalysis (CFSR) 
precipitation and temperature data have also been used to 
force SWAT for several different watersheds, resulting in 
stream flow simulations as good as or better than 
corresponding simulations based on traditional weather 
gauging stations[14].  Ensemble precipitation modeling 
has also been found to considerably increase the level of 
confidence in simulation results, particularly in data-poor 
regions[15]. 

Obtaining representative meteorological data for 
hydrological modeling can be difficult and time 
consuming[14], especially in regions that lack adequate 
weather station coverage.  This points to a need to 
investigate different sources of climate data to discern 
which options can support hydrologic and water quality 
modeling studies.  Thus the aim of this study is to 
analyze how hydrologic predictions respond to different 
weather inputs with different resolutions for the semi-arid 
Jaguaribe River watershed in northeastern Brazil.  
Specifically, the objectives of this research are to: (1) 
assess the sensitivity of the warm-up period durations and 
different evapotranspiration methods within the baseline 
SWAT streamflow calibration and validation process for 
the Jaguaribe River watershed, and (2) analyze the 
impacts of four different combinations of climate data 
sources on SWAT streamflow estimates for the Jaguaribe 
River watershed.  

2  Materials and methods 

2.1  Study area 
The Jaguaribe Watershed is situated in the state of  
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Ceará in northeast Brazil (Figure 1), between latitude 
4°30′ and 7º45′ south and longitude 37°30′ and 41°00′ 
west.  The total length of the Jaguaribe River is about 
610 km, which drains an area of approximately       
73 000 km2.  The region’s prevailing biome is the 
Brazilian Caatinga (Steppe Savanna) and the watershed is 
located in a zone with a predominantly semi-arid 
climate[20,21], which is characterized by strong seasonal 
precipitation and inter-annual variability, related to El 
Niño, that results in recurring droughts. 

 
Figure 1  The location of the Jaguaribe watershed study area in 

northeast Brazil 
 

Most of the rivers in the region are intermittent, so 
water management and the use of reservoirs are vital for 
both irrigated agriculture and municipal water supply, 
since the watershed also exports water to the metropolitan 
region of Fortaleza, with a population of approximately 
8.5 million people[22-24]. 
2.2  SWAT model 

SWAT has been applied in many studies around the 
world, especially in research related to water balance, 
land management, sediment, nutrient and pesticide 
transportation, water quality, and climate and land use 
changes[25-29].  It is a mathematically complex 
semi-distributed model, developed by the US Department 
of Agriculture, Agricultural Research Service 
(USDA-ARS).  It is usually operated on a continuous 
daily time-step, and simulates water, sediment, nutrient 
and pesticide transportation at a watershed scale[30,31].  It 
is a process-based model that takes into account 
hydrologic, physical and chemical processes[32]. SWAT 
simulations are constructed by delineating a watershed 

into multiple subbasins, and then further subdividing each 
subbasin into hydrologic response units (HRUs) that 
consist of homogeneous landuse, soil, and landscape 
characteristics which are not spatially identified within 
the given subbasin; i.e., HRUs represent percentages of 
land areas within a subbasin.  Flow and pollutant losses 
are initially estimated at the HRU level, then aggregated 
to the subbasin level and finally routed through the 
simulated stream system to the watershed outlet[25- 29]. 

SWAT requires the following daily weather data: 
precipitation, maximum and minimum temperature, solar 
radiation, wind speed and relative humidity.  These 
weather data can be entered either from measured sources 
and/or generated internally in the model using SWAT’s 
weather generator[19].  Long-term statistics are input into 
the weather generator to generate daily weather inputs.  
The weather generator is used to simulate data if the user 
specifies this option, or when measured data is missing.  
For example, for precipitation, the number of wet days is 
determined in the weather generator based on a first order 
Markov Chain model; skewed or exponential 
distributions are then used to estimate the rainfall 
amounts[1,19].  
2.3  Model set up and data sets 

The Jaguaribe SWAT model was constructed using 
freely available information. Most of the data were 
obtained via data collected through a World Bank 
program in partnerships with local government 
agencies[33].  The Digital Elevation Map (DEM) was 
built from the U.S. Geological Survey’s (USGS) public 
domain Shuttle Radar Topography Mission (SRTM) 
DEM data[34], which consists of 3 arc-second, 
approximately 90 m resolution.  The 1:600 000 soils 
map was vectorized by the Ceará State Water Resources 
and Meteorological Foundation (FUNCEME)[35].  The 
land use map used was also obtained from FUNCEME[33]. 

The Jaguaribe Watershed model setup was 
constructed using the ArcSWAT interface within the 
ArcGIS 10.0 platform[36].  The first step in constructing 
the SWAT simulations was to delineate the subbasins.  
This was performed in ArcSWAT by delineating the 
stream network, based on the SRTM DEM and setting the 
minimum drainage area for each subbasin to 250 km2.  
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As a result, a total of 232 sub-basins were delineated in 
SWAT, with an average area of 315 km2.  Also 1,145 
HRUs were generated, according to the watershed’s land 
use, soil types, and slope characteristics. 

The soil layer data required to define soil 
characteristics for the soils map were obtained from the 
ISRIC - World Soil Information world data base[37].  
Previously developed Pedo Transfer Functions (PTF)[38] 
were used with ISRIC soil texture, organic matter and soil 
depth data to estimate the other soil parameters required 
for SWAT.  

The initial land use map consisted of a limited set of 
broad categories.  Data from the Municipal Agriculture 
Production for Ceará State from the Brazilian Institute of 
Geography and Statistics (IBGE)[39] were used to 
determine the planted area of different crops in the region.  
Major crops produced in the region include maize, dry 
beans, dry rice, cassava and cashew[23], and Ceará also 
produces 20 percent of the cowpeas in Brazil[40].  The 
traditional agriculture in the region[23] consists of (1) 
dryland systems dominated by short-cycle corn and bean 
production, and (2) sugarcane and cashew 
production[20,23] which are sometimes irrigated. 
Considering these different agricultural production 
characteristics of the region, the dryland crops simulated 
with SWAT simulations were corn and cowpea, potato 
(which was substituted for cassava because the SWAT 
crop parameter database does not have cassava 
parameters) while sugarcane and banana (substituted for 
cashew due to a lack of cashew crop parameters in the 
SWAT crop parameter database) were simulated as 
irrigated crops.  

There are three large reservoirs in the watershed that 
were not included on the Jaguaribe SWAT model, 
because at the time no sufficient data was made available 
to perform and capture reservoir water balance dynamics 

through simulation.  Regarding management operations, 
simplified approaches were used which included: (1) a 
single model-determined application of nitrogen fertilizer 
per year for each crop system, which was triggered when 
the stress factor of the plant declined below 0.75, and (2) 
a single auto-irrigation of sugarcane and banana, 
triggered when the plant water stress factor reached 0.75, 
with the maximum of 50 mm per irrigation.  In addition, 
sugar-cane was simulated as a three year rotation 
consisting of a plant crop and two ratoons. 
2.3.1  Climate data inputs and climate scenarios 

Different climate data sensitivity simulations were 
conducted with four groups of precipitation and other 
weather data inputs (Figure 2 and Table 1), holding all 
the other model inputs and configurations constant.  
These groups of data were chosen to test different spatial 
and temporal inputs and are described in detail as 
follows: 

 
Figure 2  Location of weather and rain gauges that were used for 

the four groups of Precipitation and weather data 

 

Table 1  Overview of the four weather and precipitation gauge groups 

Group Weather data scenario Precipitation data source Other daily weather data sourcesa Weather generator data sourcesb 

1 Airports and local rain gauges Local Rain gauges (ANA+FUNCEME) Generated internally in SWAT Airports 

2 Weather stations and local rain gauges Local Rain gauges (ANA+FUNCEME) Local Stations (INMET) INMET 

3 Global Database-CFSR CFSR CFSR Airports 

4 CFSR and local rain gauges Local Rain gauges (ANA+FUNCEME) CFSR Airports 

Note: a Includes maximum and minimum temperature, solar radiation, wind speed, and relative humidity climatic inputs. 
b The SWAT weather generator was used to generate non-precipitation data for Group 1; the weather generator was also used to generate missing precipitation data for all 
four groups and any other missing data for Groups 2, 3 and 4.    
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Group 1: This consisted of a combination of monthly 
average climate data from the closest four airport stations 
(Figure 2), including those located outside of the study 
area, and local precipitation gauges.  The precipitation 
data were based on 124 local rain gauges maintained by 
the Ceará State Water Resources and Meteorological 
Foundation (FUNCEME) and Brazilian National Water 
Association (ANA)[41], which are referred to as 
FUNCEME-ANA in Figure 2 and Table 1.  The airport 
data are internet-accessible as provided by the National 
Climatic Data Center, National Oceanic and Atmospheric 
Administration (NOAA), USA[42].  Daily climate values 
were generated internally in SWAT from the monthly 
average values provided in the airport data, including 
precipitation data for missing days in the 
FUNCEME-ANA data. 

Group 2: The daily precipitation data were from 124 
FUNCEME-ANA rain gauges (Figure 2 and Table 1).  
The other daily climate data were input from the 14 
INMET stations[43] (Figure 2 and Table 1), while missing 
data was generated in SWAT based on monthly statistics 
created from long-term measured data available from the 
14 INMET stations.  Solar radiation values available in 
the INMET local weather station network were estimated 
based on insolation[44-46]. 

Group 3: All of the daily climatic values were input 
from data obtained from NOAA’s National Centers for 
Environmental Prediction Climate Forecast System 
Reanalysis (CFSR)[47], a global coupled atmosphere- 
ocean-land surface-sea ice system and forecast model.  
The CFSR data are available in SWAT input format on 
the SWAT website[48].  Missing data were generated 
internally in SWAT using the Airports weather generator 
data (Figure 2 and Table 1). 

Group 4: This represented a combination of 
precipitation from the local rain gauges 
(FUNCEME-ANA) and CFSR daily climate values 
(Figure 2 and Table 1).  Missing data were again 
generated internally in SWAT using the Airports weather 
generator data (Table 1).  
2.4  SWAT calibration process 

Appropriate SWAT streamflow‐related parameters 

were changed from their default values in order to 

conduct a basic manual calibration for baseline 
streamflow conditions.  The parameters identified to be 
changed were based on the most problematic aspects of 
the predicted hydrographs in comparison with the 
observed streamflow and evaluations based on 
Nash-Sutcliffe statistics[49,50].  Some variations in 
modified input parameters were tested for all four 
different groups of weather input simulations, based on 
the physical characteristics of the watershed.  Ultimately, 
the same changes were performed for all four groups of 
simulations and for the entire watershed, based on the 
subset of input parameters that resulted in the most 
accurate streamflow results.  The altered parameters and 
default values are presented in Table 2. 

 

Table 2  Default and altered parameter values or methods for 
the SWAT simulations 

SWAT Parameters Parameters Description SWAT Default Altered 

ESCO Soil evaporation compensation 
coefficient 0.95 0.6 

ICN Curve number methods 0 (soil moisture) 1(ET) 

CNCOEF ET curve number coefficient 1 0.5 

SHALLST/mm Initial depth of water in the 
shallow aquifer 0.5 1000 

GWQMIN/mm Depth of water in shallow aquifer 
required for return flow 0 750 

GW_REVAP Groundwater revaporation 0.02 0.1 

RCHRG_DP Deep water percolation fraction 0.05 0.1 

REVAPMN/mm Depth of water in shallow aquifer 
for revaporation to occur 1 500 

ALPHA_BF Baseflow recession constant 0.048 0.0552 
 

A key parameter used in many SWAT hydrologic 
calibrations is the soil evaporation compensation 
coefficient (ESCO)[26], which can be adjusted between 
0.1 and 1.0 to affect the depth distribution that is used to 
meet soil evaporative demand; decreasing the ESCO 
value increases the ability of the model to extract 
evaporative demand from lower soil layers[51].  
Migliaccio & Chaubey (2008)[52] performed a sensitivity 
analysis and concluded that most of the variance in the 
predicted flow in their study resulted from uncertainty in 
the ESCO parameter.  Wu & Johnston (2007)[53]  

determined an ESCO value of 0.5 for average conditions, 
based on stream flow patterns and on minimizing stream 
flow deviation between measured and simulated data in 
southern Lousiana. Santhi et al. (2001)[54] adopted an 
ESCO value of 0.6 for a region in Texas.  Due to the 
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semi-arid and latitude characteristics of the Jaguaribe 
watershed, a range of ESCO values between 0.5 and 0.75 
were tested by comparing the simulated streamflow 
performance with observed values based on hydrograph 
comparisons and calculation of Nash-Sutcliffe modeling 
efficiency (NSE) coefficients[49,50]; the resulting best 
ESCO parameter found was 0.6. 

The three methods (Priestley Taylor, Penman- 
Monteith and Hargreaves)[51] available in SWAT to 
calculate the potential evapotranspiration were also tested 
(specific results are reported in the Results and 
Discussion section).  The Penman-Monteith method was 
chosen because it performed slightly better according to 
the metrics established and because it is a more complex 
method that needs more meteorological data (in this sense 
evaluating the four sets of weather inputs).  The two 
curve number methods available in SWAT[51], as a 
function of soil moisture (ICN=0) or as a function of 
plant evapotranspiration (ICN=1), were also tested.  
Overall, the daily curve number calculated as a function 
of plant evapotranspiration performed best, in 
conjunction with a value of 0.5 for the evapotranspiration 
curve number coefficient (CNCOEF).  Groundwater 
parameters (Table 2) were also estimated to best fit the 
study area.  The Jaguaribe watershed does not have large 
volumes of storage in aquifers, with most of the 
watershed located over crystalline rocks with low water 
storage potential[19]. 
2.5  Statistical evaluation criteria 

Streamflow estimates for the four simulations were 
evaluated using multiple statistical criteria: NSE, 
coefficient of determination (R2), the ratio of the root 
mean square to the standard deviation of the observed 
data (RSR) and the percent bias (PBIAS)[15,18,49,50,55,56], as 
follows: 
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where, Oi corresponds to the observed data at the time 

step i; Pi to the modeled streamflow at the time step i; O  
and P  are the mean values of observed and predicted 
streamflow (respectively) in the simulated time period, 
and n is the number of observations, being i=1, 2, 3,···, n.  
The simulations were evaluatated on an aggregated 
monthly time step in which the SWAT daily streamflows 
were summed to monthly totals and compared with the 
corresponding observed monthly values.  

Guidelines for model evaluation used in this study 
were based on performance ratings suggested by Moriasi 
et al. (2007)[49] for a monthly time step.  Here a grading 
method was established to determine if the model 
performance was “Very good”, “Good”, “Satisfactory” or 
“Unsatisfactory”, by combining the three ranges of values 
of the statistical methods (NSE, RSR and PBIAS) 
evaluated by Moriasi et al. (2007)[49].  If one or more of 
the ranges of RSR, NSE and PBIAS indicated an 
“unsatisfactory” result, then the model performance was 
determined unsatisfactory.  If no unsatisfactory results 
were indicated by the three statistical methods, then a 
grading system based on an overall summation as shown 
in Table 3 was used. 

 

Table 3  Model Performance Ratings[49] and Classification used to evaluate the results of the different weather group (Table 1) 
simulations 

Performance Rating RSR NSE PBIAS/% Grading for each Classification - Sum 

Very Good 0.00≤RSR≤0.50 0.75<NSE≤1.00 PBIAS<±10 3 7<E≤9 

Good 0.50<RSR≤0.60 0.65<NSE≤0.75 ±10≤PBIAS<±15 2 5<E≤7 

Satisfactory 0.60<RSR≤0.70 0.50<NSE≤0.65 ±15≤PBIAS<±25 1 3<E≤4 

Unsatisfactory RSR>0.70 NSE≤0.50 PBIAS≥±25 Unsatisfactory Unsatisfactory 
 

The SWAT model was used for the 4 proposed 
weather input scenarios, holding all the other model 

inputs and configurations constant.  The simulations 
were evaluated based on the comparison among the 
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discharges at four flow gauge stations.  These four 
stations were chosen due to availability of data, and the 
spatial distribution of the flow gauges is shown in  
Figure 3. 

 
Figure 3  Location of streamflow gauge stations in the 

Jaguaribe watershed 
 

 Executing a warm-up or equilibration period is 
important to ensure that the hydrologic balance is 
accurately simulated in SWAT, although the use of such a 
warm-up period usually becomes less important as the 
simulation period increases[57].  In this study it could be 
hypothesized that a short warm-up period would be 
sufficient, because the simulation period of 20 years is 
relatively long.  However, this may not be true due to 
the fact that, for example, the aquifers start empty in 
SWAT, as well as the soil moisture, etc.  Thus both a 
1-year and 5-year warm-up periods were tested.  
Therefore, the river discharge was simulated for the 
period of 01/01/1984 to 12/31/1999, with five years 
(1979-1983) as warm-up period, and for 01/01/1980 to 
12/31/1999, with only one year of warm-up period 
(1979). 

3  Results and discussion 

3.1  Initial testing of warm-up period duration and 
ET method 

The statistical results (NSE values) of testing the four 
different groups of weather inputs (Table 1) with either a 
one- or five-year warm-up period at the four streamflow 
gauge stations (Figure 3) are shown in Figure 4.  It is 
clear from the plots in Figure 4 that the use of 5 years as 
warm-up period provided better results for all of the 
gauge stations and weather groups combinations (except 
for Group 3 on gauge station 4), especially for the Group 

2 performance.  This difference in results shows the 
importance of using adequate warm-up periods to better 
establish the watershed initial conditions, and also implies 
that the length of needed warm-up period can vary 
between different conditions.  The better performance of 
Group 2 with the five-year warm-up period than with the 
one-year warm-up period is probably due to poorer 
weather data for the first few years of the time-series 
and/or the greater sensitivity of this group of weather 
inputs to the initial conditions of the model. 

The results of testing the three previously described 
ET methods at streamflow gauge station 3 (Figure 3) are 
presented in Table 4 in terms of PBIAS, NSE and RSR 
statistics as a further assessment of SWAT simulation 
performance.  Gauge station 3 was chosen for this phase 
of testing because it is located in the middle of the 
watershed, upstream of a major reservoir (Figure 3) that 
was not included in the SWAT model simulation.  No 
absolutely clear pattern was established between the three 
ET methods.  However, Hargreaves (HG) method 
resulted in the most overall unsatisfactory evaluations, 
while Penman-Monteith (PM) method had the strongest 
overall performance (with one satisfactory and one very 
good evaluation).  Thus, the PM method was selected 
for the remaining weather group testing based on its 
performance and because it was the most complex 
method that uses a full suite of weather inputs.  It should 
also be noted that while several of the combinations of 
ET methods and gauge station 3 resulted in unsatisfactory 
results, stronger overall results were obtained for two of 
the climate groups as discussed in section 3.5. 

 
Figure 4  Comparison of Nash-Sutcliffe (NSE) values at gauge 
stations 1-4 (Figure 2) for the SWAT simulations (Groups 1-4; 

Table 1) with warm-up periods of 1 or 5 years 
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Table 4  Performance metrics for simulations conducted with different ET methods at gauge station 3 (Figure 3) 

NSE PBIAS RSR Evaluation 
Group 

PM* PT* HG* PM PT HG PM PT HG PM PT HG 

1 0.76 0.78 0.69 17.33 11.75 -41.10 0.49 0.47 0.49 Satisfactory Good Unsatisfactory 

2 0.69 0.71 0.77 -51.39 -58.21 -38.68 0.56 0.54 0.48 Unsatisfactory Unsatisfactory Unsatisfactory 

3 0.32 0.34 0.37 -27.14 -46.09 -33.07 0.82 0.81 0.79 Unsatisfactory Unsatisfactory Unsatisfactory 

4 0.79 0.78 0.77 -6.75 -24.69 -15.19 0.46 0.46 0.48 Very Good Satisfactory Satisfactory 

Note: *PM = Penman-Monteith; PT = Preistley-Taylor; HG = Hargreaves. 
 

3.2  Graphical comparisons of simulated and observed 
streamflow 

Simulated and observed monthly flows at gauge 
station 1 (Figure 3) are presented for 01/1984 to 12/1999 
in Figure 5, to visually evaluate the performance of the 
proposed simulations.  Overall there is a general 
agreement among the hygrographs; the SWAT simulation 
performed with Group 3 (Table 1) overestimated the 
peaks more than the others. 

 
Figure 5  Observed and simulated monthly flows from 01/1984 to 

12/1999 at Gauge 1 
 

In Figure 6 the average monthly flows for the entire 
period are presented for the simulated scenarios and 
observed data, for all four gauge station locations  
(Figure 3).  The Group 3 SWAT simulation (Table 1) 
overestimated the streamflows more than the other 
sources of weather data for gauge sites 1 and 4.  In 
comparison, the Group 2 SWAT simulation (Table 1) 
overestimated streamflows the most at gauge station 2 
and was similar to the estimated Group 3 streamflow at 
gauge station 3. 

The greatest difference in SWAT streamflow results 
was predicted at gauge station 4, the furthest downstream 
gauge station (Figure 3).  This gauge station is also 
downstream of a large reservoir, which was not included 
in the SWAT simulations; therefore, differences between 
simulated and measured flows would be expected.  
However, the predicted Group 3 streamflow is much 

higher than streamflows from the other three simulations 
and the observed flow.  This could be due to problems 
with the CFSR world weather data for this region due to 
its proximity to the ocean.  

 
Figure 6  Observed and simulated average monthly flows for 

1984-1999 at Gauge 1 (Figure 5a), 2 (b), 3(c), and 4(d) 
 

Streamflow for gauge 2 (Figure 3) is overestimated by 
Group 2 (Table 1) but is underestimated by Group 3 
(Table 1).  In contrast, for the other three gauge stations, 
Group 3 overestimated streamflow.  Gauge station 2 is 
the farthest upper stream site (Figure 3), so this may be an 
effect of the smaller drainage scale of gauge station 2 
and/or be a problem related to the data of a local INMET 
station close to that area.  There is also a small reservoir 
upstream of gauge 2, which was not incorporated in the 
SWAT simulations and may have influenced the results.  
The SWAT simulations with Groups 1 and 4 (Table 1) 
performed better than Groups 2 and 3 at all four sites.  
Both Groups 1 and 4 consistently under estimated 
observed streamflows, with Group 1 under estimating  



June, 2015   Bressiani D A, et al.  Effects of weather data resolutions on streamflow modeling of a semi-arid basin   Vol. 8 No.3  133 

observed flows more than Group 4 at all four gauges. 
3.3  The influence of the SWAT weather generator 

The simulations made with Groups 1, 2 and 4 have 
the same precipitation input data series (Table 1), but 
SWAT’s weather generator had an important role because 
the percentage of missing data is high (about 32% for the 
ANA+FUNCEME rain gauges, due especially to scarce 
precipitation data after 1992).  The Group 2 generated 
weather is based on local weather stations (INMET; 
Table 1) while the Groups 1 and 4 generated weather are 
based on the airport stations (Table 1).  This difference 
had an influence on the simulated precipitation data for 
the missing values of each group and also on the other 
weather components, leading to different results.  Group 
3 relied on the same weather generator data as Groups 1 
and 4 (Table 1), but there are very few missing 
precipitation data for Group 3 (<0.2%) so the weather 
generator influence on the Group 3 results was minor. 
   The resulting differences related to groups 1 and 4 
versus group 2, especially in precipitation, can be 
attributed to the different weather generator variables.  
At the same time the three groups have different weather 
inputs (other than precipitation) that have direct effect on 
evapotranspiration, which in this region accounts for 
about 80% of precipitation.  Therefore, relatively small 
differences on weather input can have a large impact on 
the different hydrological components.  

Weather generator variables for both weather 
generators used (Table 1) and the relative difference 
between them are presented on Table 5.  The variables 
are weighted averages by station coverage area.  A clear 
difference between the precipitation input variables for 
example can be seen: 3% for the total long term average 
annual precipitation, over 64% for the probabilities of 
being a wet day followed by a wet day and nearly 24% 
for a wet day followed by a dry day.  Other large 
differences can also be seen between some of the other 
weather input variables (Table 5), including the monthly 
average dew point and the monthly average of daily 
minimum temperature standard deviation. 
3.4  Overall water balance results 

The average values and components of the water 
balance over the 16-year simulation period (1984 to 

1999) are presented for the entire watershed for the four 
different weather input scenarios (Table 6).  The average 
annual precipitation for Group 3 is about 6% greater than 
the precipitation for Groups 1, 2 and 4, which was a 
combination of local ANA+FUNCEME precipitation 
gauges in combination with generated precipitation data.  
The Group 2 simulation (Table 1) generated more water 
yield than the other climate groups and also resulted in 
the smallest generation of sediment.  In contrast, the 
Group 1 simulation (Table 1) resulted in the highest 
potential evapotranspiration, which is 45% higher than 
the other three simulations.  This is probably due to the 
airport stations having a tendency to measure high 
temperatures because of both local effects such as black 
surface and radiation, and also due to the fact that two of 
the weather stations were close to the coast and thus were 
impacted by high wind speed and relative humidity. 

 

Table 5  Variables for the weather generators used for the 
different climate groups described in Table 1 

Variables in the weather generator INMET Airports Difference/% 

Annual average precipitation/mm 551.54 535.51 3.0 

Average monthly probability of a wet 
day to follow a dry day 0.17 0.10 64.4 

Average monthly probability of a wet 
day to follow a wet day 0.39 0.51 -23.7 

Monthly average of number of days of 
precipitation 4.85 4.39 10.6 

Monthly average solar radiation/(MJ·m-2·d-1) 20.84 26.94 -22.6 

Monthly average dew point/°C 30.83 21.30 44.7 

Monthly average wind speed/(m·s-1) 3.03 3.66 -17.3 

Monthly average of minimum daily 
temperature/°C 32.91 32.58 1.0 

Monthly average of maximum daily 
temperature/◦C 22.06 24.18 -8.8 

Monthly average of daily maximum 
temperature standard deviation 1.68 1.80 -7.0 

Monthly average of daily minimum 
temperature standard deviation 1.26 1.79 -29.8 

 
 

Table 6  Average annual water balance components for the 
entire watershed and 16-year simulation period for the four 

climate input groups described in Table 1 

Water balance component Group 1 Group 2 Group 3 Group 4 

Precipitation/mm 682 690 721 682 

Water Yield/mm 52 81 76 74 

Runoff/mm 36 39 39 41 

Percolation/mm 104 146 143 131 

Evapotranspiration/mm 597 535 574 542 

Potential Evapotranspiration/mm 2724 1872 1775 1775 

Sediment Loading/(t·hm-2) 13 4 11 16 
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3.5  Statistical evaluation of the streamflow impacts 
of the four climate groups 

NSE and R2 values are shown in Figure 7, which 
represent comparisons between monthly aggregated 
observed and simulated flows for the four simulated 
weather groups and four streamflow gauge stations, for 
the 16-year simulated period (1984 to 1999).  The NSE 
values for Group 3 are negative for gauge stations 1 and 4, 
and are less than 0.5 for the other two gauge stations.  
For Group 2, there is also one negative NSE value at 
gauge station 2, which is the worst NSE value determined 
for this gauge station.  The Group 1 and 4 simulations 
resulted in satisfactory or better NSE values (>0.55 for 
Group 4 and >0.65 for Group 1).  The monthly R2 values 
for Group 3 are the smallest for all gauge stations; the 
other three group simulations have overall good results, 
with all R2 values equal to or greater than 0.69. 

 

 
Figure 7  Nash-Sutcliffe (NSE) values (a) and R2 values (b) 

between observed and simulated and monthly flows for the four 
climate groups (Table 1) and the four gaugestations (Figure 3) over 

the 16-year simulation period (1984 to 1999) 
 

The Group 1 simulation (Table 1) resulted in good 
NSE values for all four gauge stations.  The Group 4 

simulation (Table 1) also performed well for all four 

gauge stations while Group 2 (Table 1) resulted in good 

NSE values for gauges 1, 3 and 4, but an unsatisfactory 
value for Gauge 2.  This suggests that daily measured 

weather data from the fourteen local INMET gauge 

stations are actually providing worse estimates than the 

monthly mean from the four airports that are outside the 
study area (Group 1) and the global database for weather 

data with local rain gauges data (Group 4), for the flow 

gauges where the flow was compared.  This is due to the 

uncertainty related to the daily weather measurements 
and that the stations had a great deal of missing data 

during the simulation period (an average of 36% for the 

INMET stations).  According to Schuol & Abbaspour 
(2006)[1] the quality of daily weather data is not always 

very reliable in some regions and there are also often 

large amounts of missing data.  The authors compared 

SWAT discharge outputs for climatic inputs across the 
northwest Africa subcontinent from local weather stations 

versus the Climatic Research Unit (CRU) coupled with a 

weather generator (dGen-CRU), which was based on a 

Markov Chain approach (similar to SWAT’s weather 
generator).  The authors concluded that weather data 

from the local stations may not be the best available 

climatic input and that the dGen-CRU data produced 

significant better estimations of flow than the simulation 
with the local weather measured data.  Similar results 

were found in this study, where Group 1 and Group 4 

performed better than daily weather data from Group 2. 

The absolute bias percentage values (PBIAS) and the 
ratio of the root mean square to the standard deviation of 

the observed data (RSR) between the simulated scenarios 

in SWAT and the observed flows for monthly time steps 
for the four flow gauge stations are presented in Figure 8.  

The Group 1 and 4 simulations (Table 1) performed 

better overall. Group 4 was the only Group to have 

satisfactory[49] PBIAS values for all four streamflow 
gauge stations per the previously described criteria in 

Table 3.  
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Figure 8  Bias Percentages (PBIAS) (a) and RSR (b) values 

between observed and simulated monthly flows 
 

The Group 2 simulation (Table 1) resulted in large 
absolute PBIAS values, especially for site 2.  The high 
PBIAS values for Group 2 can be attributed to a few 
rainfall events that the model did not capture during the 
later years of the simulation period, due to missing 
precipitation data (after 1992 the precipitation data are 
scarce).  This is a problem, especially in low rainfall, 
semi-arid regions, where the spatial distribution of 
rainfall may not be captured by a network of rain gauges.  
The Group 3 simulation also resulted in high absolute 
PBIAS values, all of which are considered unsatisfactory. 

The composite simulation results based on the Table 3 
grading system are presented on Table 7.  Overall, 
Group 4 (Table 1) performed best, showing good results 
for the two upstream gauges and very good metrics for 
the downstream gauges.  These results show the 
importance of good quality weather data that are well 
distributed spatially.  Our results are consistent with 
those of others[8-10] indicating that that good spatially 

distributed weather data can improve the accuracy of 
streamflow simulation. 

The Group 1  simulation resulted in good metrics 
(Table 7) for the streamflow comparisons at gauge 
stations 1-3 (Figure 3) but unsatisfactory streamflow 
estimate for gauge station 4, which is located below a 
large reservoir.  The Group 1 streamflow prediction at 
gauge station 4 did result in good metrics for NSE and 
RSR (Figures 7 and 8), but the PBIAS value slightly 
exceeded the defined threshold classification value[49], 
thus producing anoverall unsatisfactory result per the 
criteria of Table 3.  The Group 2 (Table 1) simulation 
resulted in an acceptable performance for gauge station 1 
but an unsatisfactory outcome for the other three gauge 
stations (Table 7), due to the high absolute values of 
PBIAS.  The Group 3 (Table 1) simulations were 
unsatisfactory for all four gauges (Table7), leading to the 
worst SWAT predictions.  

 

Table 7  Model Performance Evaluation based on Efficiency 
Metrics and the grading system from Table 3 

Streamflow Gauge Stations  
groups 1 2 3 4 

1 Good Good Good Unsatisfactory 

2 Good Unsatisfactory Unsatisfactory Unsatisfactory 

3 Unsatisfactory Unsatisfactory Unsatisfactory Unsatisfactory 

4 Good Good Very good Very good 
 

Fuka et al. (2013)[14] demonstrated that CFSR data 
could be reliably applied to watershed modelling across a 
variety of hydroclimate regimes and watersheds and that 
it produced as good as or better streamflow predictions 
than local rain gauges.  However, for the Jaguaribe 
watershed the streamflow results simulated in this study 
with CFSR data for weather and precipitation data were 
unsatisfactory, performing worse than the other three 
groups.  Group 4 (CFSR and local rain gauges, Table 1) 
simulation provided good results, suggesting that the use 
of CFSR data for weather parameters other than 
precipitation (which are usually less reliable in quantity, 
quality and spatial distribution), coupled with 
precipitation data from local rain gauges, can provide 
reasonable simulations of hydrologic response.  

This can be of advantage, especially in developing 
countries like Brazil, since it is usually easier to obtain 
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adequate precipitation data than data for other weather 
parameters.  Another advantage of using CFSR data is 
that it can be obtained from the SWAT web site in SWAT 
input format (on text files ready to be used on the model), 
reducing the effort needed to reformat data other than 
precipitation from many weather stations.  

4  Conclusions  

In this study we demonstrated the importance of using 
adequate warm-up periods to better establish the 
watershed model initial conditions and the high 
sensitivity to the difference in warm-up periods used   
(1 and 5 years), in which the longer warm-up period had 
an overall better simulation response, especially for one 
group of weather inputs (Group 2).  No absolutely clear 
pattern was found to establish which ET method worked 
best for the different weather input groups, based on tests 
of the three different ET methods available in SWAT in 
combination with the different weather groups.  
However, it was clear that the model was very sensitive 
in response to the different ET methods and that there is a 
need for testing and comparing the ET methods for 
specific study regions and weather input data. 

In this study we demonstrate that large uncertainties 
in hydrologic simulation result from weather input data, 
and that the choice of the weather data is very important.  
The simulation with the world daily data base from 
NOAA’s CFSR coupled model, but with precipitation 
from the local precipitation gauges (Group 4) performed 
best overall, providing good predictions at all four stream 
gauge stations.  The simulation that used daily local 
precipitation with monthly data from the airport stations 
and SWAT’s weather generator (Group 1) provided good 
results for three of the four gauge stations.  This 
suggests that using spatialized global quality CFSR data 
for weather parameters other than precipitation, coupled 
with precipitation data from local rain gauges, can 
provide reasonable simulations of hydrologic response in 
this semi-arid region.  This can be an advantage, since it 
is usually difficult to have quality data from a dense 
weather station network for all the weather data needed 
for SWAT, but it is easier to have a denser network of 
precipitation stations with longer periods of data. 

The daily measured weather data from the 14 local 
gauge stations of INMET (Group 2) (which are a more 
dense network) actually provided worse estimates than 
those generated with SWAT’s weather generator from 
monthly mean data from the 4 airports that are outside the 
study area, for the flow gauges where the flow was 
compared.  This is probably due to the uncertainty 
related to daily measures and to the fact that over 
one-third of the data from these stations were missing. 

The Group 3 simulation with the Climate Forecast 
System Reanalysis (CFSR) data had high PBIAS values 
and the smallest values of R2, and the simulation was 
considered unsatisfactory for all of the streamflow gauges.  
Although it has performed well previously[14], it was not a 
good precipitation source for the Jaguaribe watershed 
region.  This difference may have occurred because of 
the region’s semi-arid climate with strong seasonal and 
inter-annual variability in precipitation, which could have 
resulted in the CFSR precipitation data being poorly 
calibrated with local weather stations.  Better calibration 
of the CFSR precipitation data in the future could greatly 
reduce the problems we encountered using this data 
source. 
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