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Abstract: The spatial distribution of surface and subsurface soil attributes is an important input to environmental modeling. 
Soil attributes represent an important input to the Soil and Water Assessment Tool (SWAT), which influence the accuracy of 
the modeling outputs.  An ArcGIS-based tool was developed to predict soil attributes and provide inputs to SWAT.  The 
essential inputs are digital elevation model and field observations.  Legacy soil data/maps can be used to derive observations 
when recent field surveys are not available.  Additional layers, such as satellite images and auxiliary data, improve the 
prediction accuracy.  The model contains a series of steps (menus) to facilitate iterative analysis.  The steps are summarized 
in deriving many terrain attributes to characterize each pixel based on local attributes as well as the characteristics of the 
contributing area.  The model then subdivides the entire watershed into smaller facets (subdivisions of subwatersheds) and 
classifies these into groups.  A linear regression model to predict soil attributes from terrain attributes and auxiliary data are 
established for each class and implemented to predict soil attributes for each pixel within the class and then merged for the 
entire watershed or study area.  SLEEP (Soil–Landscape Estimation and Evaluation Program) utilizes Pedo-transfer functions 
to provide the spatial distribution of the necessary unmapped soil data needed for SWAT prediction.  An application of the 
tool demonstrated acceptable accuracy and better spatial distribution of soil attributes compared with two spatial interpolation 
techniques.  The analysis indicated low sensitivity of SWAT prediction to the number of field observations when SLEEP is 
used to provide the soil layer.  This demonstrates the potential of SLEEP to support SWAT modeling where soil data is scarce. 
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1  Introduction 

Providing information about the vertical and lateral 
distribution of soil characteristics is a challenging task for 
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most environmental modeling applications[1].  This is 
partially due to the complexity of soils and their spatial 
distribution and the cost and effort of collecting detailed 
information.   However, the accuracy of soil information 
determines the accuracy of these applications and the 
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decisions made based on these [2,3].  The use of 
small-scale maps is a possibility but the heterogeneous 
representation of soil characteristics is a limitation[4,5].  
The gradual change in soil characteristics is not perfectly 
reflected in the polygon representation provided by most 
available traditional soil maps[6,7].  Therefore, another 
approach that considers these limitations is needed[4,8,9]. 

Topographic variables play an important role in soil 
differentiation[5,10].  Soil scientists use qualitative 
relationships between topography and soil variation in 
soil mapping[6,7,9].  Some researchers have used 
quantitative relationships to estimate the spatial 
distribution of different soils[10,11].  The use of GIS and 
remote sensing provide promising tools to quantify these 
relationships and aid digital soil mapping efforts through 
the relationships between soils and topographic and 
remote sensing variables[2,3,6,12–16].  Digital elevation 
models (DEMs) are used to derive many topographic 
variables, which are used to predict the distribution of soil 
characteristics[7,10,17,18].  

Many researchers have found satisfactory statistical 
relationships between different soil attributes and terrain 
attributes easily derived from DEM. Some of the 
promising indicators are pH, organic matter, carbonates, 
particle size distribution, color, bulk density and depth to 
specific horizon boundaries[5,10,19].  Soil depth was 
significantly correlated (R2 = 0.30) with slope angle and 
absolute and relative height[20].  Soil depth and 
A-horizon depth were correlated with plan curvature, 
compound topographic index (CTI) and upslope mean 
plan curvature[17].  Models that utilized only CTI 
explained 84% and 71% of variation in soil depth and 
A-horizon depth, respectively[19].  Slope and wetness 
index accounted for half of the variability in A-horizon 
depth, sand content and other soil properties[4].  
Research indicated that slope, tangential and profile 
curvatures were good predictors of soil texture[5].  The 
increasing availability of high-resolution remote sensing 
data provides a new window for predicting soil 
characteristics with acceptable accuracy[21].  Researchers 
have provided evidence regarding the contribution of 
remote sensing data in providing acceptable prediction of 
soil characteristics[22–24]. 

Soil data represent a basic input of the Soil and Water 
Assessment Tool (SWAT). SWAT is a semi- distributed 

process based ecohydrological model used to simulate 
stream flow, crop yield, sediment transport and nutrient 
transport, which has been applied worldwide across a 
broad range of watershed scales and environmental 
conditions[25,26].  In-depth descriptions of the theoretical 
underpinnings of the model have been provided 
elsewhere[27,28].  Major inputs needed to setup the 
SWAT model and simulate hydrologic processes include 
spatially distributed Digital Elevation Map (DEM), land 
use and soil data, along with weather data.  Cropping 
system, fertilizer applications and other management data 
are also important inputs when simulating agricultural- 
generated diffuse pollution.  With the advancement in 
remote sensing, satellite precipitation data and other data 
sources, most of these data are becoming increasingly 
available worldwide for at least coarse resolutions.  
However, larger gaps exist regarding availability of 
adequate soil data in many global subregions.  Therefore, 
the need exists for tools to be developed that support 
easier preparation of soil input data for SWAT.  

Currently, the majority of soil data are available as 
soil maps, in polygon format, which tend to aggregate the 
individual soil attributes and present soil information in a 
form of soil classification that generalizes soil variability 
within one polygon into one value or class.  The 
extraction of layers of individual soil attributes, which 
also reflect the spatial variability within these polygons is, 
in most cases, not possible.  Environmental modeling as 
well as other soil applications require proper 
representation of the spatial distribution of soil attributes 
and favor the representation of attributes as individual 
layers for each soil parameter to facilitate the integration 
with other layers of information.  The approach 
described in this study is designed to help users generate 
higher resolution soil information to cover areas where 
soil data is not available or available at low resolution.  
Using digital elevation model and soil observations, the 
model generates spatially continuous representation of 
soil attributes that are available in format ready for use as 
an input to SWAT.  This will also benefit users who are 
demanding spatially distributed soil information for 
various applications.  

Generally, the prediction accuracy of environmental 
models, such as SWAT, depends on how well the inputs 
describe the spatial characteristics of the watershed[29–33].  
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For example, the use of different resolutions of soil data, 
such as the U.S.  State Soil Geographic (STATSGO)[34] 
versus the Soil Survey Geographic (SSURGO)[35] 
databases, may give different simulation results for water, 
sediment and agricultural chemical yields[36,37].  The 
effect of the spatial resolution of soil data in the 
prediction accuracy of runoff and soil erosion was 
investigated in several previous studies[29–33,36–39].  
Results indicated differences in runoff prediction as a 
result of using different soil data inputs, with 
SSURGO–based predictions the most accurate.  The 
results also indicate that the accuracy of modeled runoff 
is reduced when lower resolution soils data are used and 
when the model parameters are lumped to larger spatial 
units of analysis[38].  The use of STATSGO resulted in 
assigning a single classification to areas that may have 
different soil types if SSURGO were used.  This resulted 
in different number and size of HRUs, the number of 
HRUs generated when STATSGO and SSURGO soil 
data were used is 261 and 1301, respectively, which 
influences sediment yield parameters (slope and slope 
length)[29].  Therefore, the predicted stream flow was 
higher when SSURGO was used compared to STATSGO. 
Furthermore, the predicted sediment and 
sediment-attached nutrients was less in the case of 
SSURGO.  Thus, modelers need to select the optimum 
inputs with a suitable resolution to ensure proper outputs. 

Researchers have used different statistical 
relationships to predict individual soil characteristics or 
soil classes with promising results[4,6,17,19].  However, 
these methods are not reproducible owing to the 
complexity of applying these relationships and the 
necessary iterations to reach an acceptable result.  
Therefore, automation of these analyses and the ease of 
running several iterations in a relatively short time, 
through a user-friendly program, will aid the application 
of SWAT (and other models) at larger scales and for 
various environmental condition[40].  Thus, the objectives 
of this work is to describe the Soil–Landscape Estimation 
and Evaluation Program (SLEEP), a user-friendly 
GIS-based program, to investigate different options to use 
SLEEP to provide high resolution soil attribute layers, 
and to explore the quality of the outputs.  This will 
foster the use of better soil information in many land and 
water resources management and modeling efforts. 

 
 

 

2  Theoretical background 

The key SLEEP model software requirements and 
functions are outlined in Figure 1 and Box 1.  SLEEP 
uses  measured soil properties (viz. soil depth and 
percentage content of clay, silt, sand, stone and organic 
matter) at different locations in a watershed along with 
the geographical co-ordinates of the measurement 
locations, to produce the spatially distributed soil 
properties for the whole watershed in the form of raster 
data (Figure 1).  These watershed distributed soil 
properties are also input into an Microsoft Excel Macro 
Tool (MS-Excel Tool)[41] to convert the above soil 
properties into the soil database required for SWAT by 
using Pedo-transfer functions[37].  Both the SLEEP 
model and MS-Excel Tool are built as standalone 
programs; they can be used in combination to produce the 
SWAT soil database but they can also be executed 
independently.  Existing spatially distributed soil 
properties are required if a user intends to use the 
MS-Excel Tool to generate tabulated soil properties for 
SWAT without executing SLEEP within ArcGIS 10.1[42]. 

 

Box 1  SLEEP software requirements, documentation and 
anticipate internet access information 

Key user aspects Additional requirements/description 

Required software  

ArcGIS 10.1 
Arc-Hydro Tools and Spatial Analysis Extensions 
need to be enabled (Note: SLEEP will be updated in 
the future for new versions of ArcGIS)  

Microsoft Excel 
Macro capabilities need to be enabled (can be 
executed independently of ArcGIS 10.1 depending 
on user objectives ) 

Documentation  

SLEEP User Guide[43] Will be posted on SWAT website (see URL below)  

Internet access  

SWAT website http://swat.tamu.edu/software/links/ 

Anticipated release date June 1, 2015  
 

 
Figure 1  Flow chart showing the process of generating a SWAT 

user-soil database using SLEEP software in ArcGIS 10.1 in 
combination with the Microsoft Excel macro Tool 
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The SLEEP model can be used independently to 
convert any measured soil properties, in addition to those 
mentioned above, into spatially distributed forms for 
applications other than SWAT.  An example of these 
applications is the use of SLEEP outputs in land 
suitability and land use planning analyses.  Previous 
research has shown that the use of predicted soil 
attributes using soil–landscape modeling improved the 
accuracy of suitability maps compared with traditional 
sources of soil data[41].  The SLEEP tool will facilitate 
and speed up the production of detailed soil attributes and 
therefore provide detailed suitability maps to aid better 
land use planning.  The tool is sufficiently flexible to 
include steps that will automate production of suitability 
maps in future versions. 

The theoretical foundation of SLEEP is based on 
previously published work[44–46] and is summarized  in 
the flow chart shown in Figure 2 and Table 1.  SLEEP 
allows users to use a DEM to automatically generate 

terrain attributes required to predict the soil parameters.  
The SLEEP utilizes the DEM and available soil 
observations to generate spatially continuous layers of 
soil attributes.  The difference between these layers and 
those generated by spatial interpolation is that the latter 
uses the distance as a major factor in interpolating soil 
attributes between two points, without considering the 
factors that govern soil variation between the points.  
However, SLEEP allows for the consideration of the 
topography between two points and hence accounting for 
soil forming factors in the interpolation process.  
Assuming that two observations were sampled at the top 
of two adjacent hills, the spatial interpolation will assign 
values to the pixels between the two points without 
considering the low areas between the two hilltops.  The 
SLEEP model considers these changes in the topography, 
using the DEM-derived topographic attributes, and 
therefore assigns values that simulate the variations in the 
soil forming factors. 

 
Figure 2  Flow chart showing the methodology of SLEEP model 
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Table 1  List of SLEEP variables, attributes processing steps and corresponding descriptions for Figure 2 

Process step Variable, attribute or processing name Description 

1 Initial Arc-Map Settings In this step the Geoprocessing Settings and the map document properties are set. 

2a Input: DEM Digital Elevation map of the watershed or region is loaded 

2b Input Soil Shape File Point shape file of the locations where the soil observations exist is loaded 

2c Measured Soil Attribute Measured soil properties are tied to attribute table of the above shape file. 

2d Input IR Band Input Infra-red Band Image 

2e Input Red Band Input Red Band Image 

3a Fill Sinks Step used to fill the sinks in the DEM and create a seamless DEM 

3b Flow Direction Step used to create flow direction of each pixel from the DEM 

3c Flow Accumulation Step used to calculate the flow accumulation using the Flow direction raster 

3d Catchment Delineation Step used to delineate the catchment using the DEM 

3e Drainage Line These are streams created while delineating the catchment  

3f Longest Flow Path This is a polyline feature which represents the longest flow path 

4 Facets Subwatershed polygons divided by the drainage line feature or the longest flow path feature 

5a NDVI Normalized Difference Vegetation Index 

5b SAVI Soil Adjusted Vegetation Index 

5c F-DEGSLP Slope grid measured in degrees and converted to an integer grid 

5d PCTSLP Slope grid measured in percent and converted to an integer grid 

5e PLC Perpendicular curvature to direction of maximum slope, influences flow convergence and divergence; 
interpreted as convex, concave or flat. 

5f CURV Curvature of the surface at each cell with respect to the eight surrounding neighbors, the slope of the slope 

5g PROFC Curvature in the direction of the maximum slope, affects acceleration and deceleration of flow, interpreted 
as convex, concave or flat. 

5h AATa-DEGSLP Accumulated slope degree 

5i AATa-PCTSLP    Accumulated slope percent 

5j AATa-PLC Accumulated perpendicular curvature 

5k AATa-CURV     Accumulated curvature 

5l AATa-PROFC Accumulated profile curvature 

5m CTI Compound Topographic Index 

6 Facet Classification Unsupervised classification of the Facets 

7 Regression Equation Equation relating the soil properties and the above parameters 

8 Modeled Soil Attribute Raster Raster-based spatially distributed soil properties for entire watershed 

9 Filter Smoothening of the raster layer 

10 Predicted Soil Attribute Final predicted soil attribute required for SWAT (or other application) 

Note: aAAT refers to the Outputs of the Basic Terrain Attributes model that represent the average upstream value accumulated in each cell.  To calculate the average, 

the attribute values are accumulated, and then divided by the number of cells accumulated.   

 
Within SLEEP, the entire watershed is subdivided 

into subwatersheds and each subwatershed is further 
divided into two subdivisions or “facets” (Figure 3).  
These facets are made by subdividing a subwatershed into 
two parts by a delineated main stream.  In the case of a 
subwatershed located along the boundary of an entire 
watershed, the longest flow path is used to divide it into 
facets.  Figure 3 shows an example of the facets created 
by the SLEEP tool.  The facet is viewed as an infinite 
number of hillslope units where the flow of material is 
expected in the direction from the upper part of the 

hillslope (boundaries between two subwatersheds (ridges)) 
to the lower part (stream line at the end of the hillslope).  
This enables the establishment of a relationship between 
terrain attributes within each facet and soil attributes 
because of the uniformity of soil forming processes 
within each particular facet.  This is because the 
relationships are generally weak if established for the 
entire watershed or regional study area.  Within these 
facets the relationships are stronger and enable the 
prediction of soil characteristics from terrain and satellite 
variables with acceptable accuracy. 



June, 2015   Ziadat F M, et al.  SLEEP to predict spatial distribution of soil attributes for environmental modeling    Vol. 8 No.3   163 

 
a. Delineated subwatersheds with streams b. Subwatersheds divided into facets

 

Note: facet 1 and facet 2 derived from one subwatershed. 
 

Figure 3  Deriving facets from subwatersheds 
 

The slope and area of subwatersheds (facets) are used 
to subdivide the entire watershed or study area into 
homogeneous classes of subwatersheds.  Statistical 
relationships between soil attributes, derived from field 
observations, and the derived topographic attributes and 
remote sensing parameters are established for each class.  
Regarding soil attributes, it can be any soil attribute that 
was measured in the field or analyzed in the laboratory at 
a particular location in the field (the exact location is 
determined by the geographic coordinates of the sampling 
site).  This gives the user of SLEEP high flexibility in 
predicting soil attributes that was recorded at particular 
site(s), which also widen the applications of SLEEP for 
users other than SWAT users.  For the terrain attributes, 
the possible attributes that could be derived from any 
DEM are listed in Figure 2.  However, SLEEP also 
enables the user to add further attributes deemed useful 
for the prediction.  This includes additional 
DEM-derived attributes or any other auxiliary layers that 
are important in determining soil variations under certain 
conditions.  In Figure 2 there are 13 independent 
variables (attributes; X1 through X13), but the user can 
add to these further important independent attributes to 
enhance the prediction.  These relationships are applied 
to predict soil attributes for each pixel within the class as 
shown in Figure 2.  The predictions are then merged 
together to provide predictions of soil attributes for the 
entire watershed or study area  The predicted soil 
attributes are converted as inputs to SWAT.  The results 
are presented in digital format and with high resolution 
(based on the resolution of DEM and satellite data).  

This makes these outputs an attractive input for SWAT 
and many other environmental-related models[44].  More 
details can be found on the help and tutorial 
documentation within the program. 

3  SLEEP description 

The only software required to install and run SLEEP 
is ArcGIS 10.1 along with the ArcHydro tool[45] 
(although users will also need to install Microsoft Excel 
to perform selected functions as described earlier).  The 
data requirement for using SLEEP are: (1) measured soil 
attributes at various observation points in the field, which 
should be converted into a shape file (in case field survey 
data for this are not available, legacy soil data/maps can 
be used to derive observations to run the tool), (2) DEM 
of the areas under considerations, and (3) an optional 
infrared and red band of the field to calculate the 
normalized difference vegetation index (NDVI) and the 
soil adjusted vegetation index (SAVI).  The users can 
access the help documentation and tutorial when the tool 
is downloaded (Box 1).  

The overall aim of SLEEP software is to construct a 
relationship between the measured soil attributes and the 

landscape and environmental attributes, and then predict 
the soil attributes for the entire watershed or study area 

using these relationships.  SLEEP automatically assists 

the user to calculate the landscape and environmental 
attributes and to establish linear relationships between 

these and the soil attributes.  However, the user is 
expected to have a basic understanding of the 

relationships between landscape and environmental 
properties as well as soil attributes, in order to make 

decisions as to how these relationships are used.  
However, the tool is designed to allow easy iterations of 

the analysis to achieve desirable results. 
The whole package was created with ArcGIS tool box 

options and code written in Visual Basic.  The tool is 
divided into five major steps and each step is divided into 
some sub-tasks.  The major steps are (Figure 4): (1) 
Initial ArcMap Setup, (2) Basic DEM Processing, (3) 
Facet and Attribute Processing, (4) Image Processing and 
(5) Soil Attribute Prediction. 
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Figure 4  Main and dropdown menus of SLEEP 

 

3.1  Initial ArcMap setup 
The first menu, Initial ArcMap Setup (Figure 4), 

provides guidance on how to set up a new project 
including the following steps: enable proper access to 
input data, organize outputs to specific target databases 
and avoid duplication of files in case of running many 
iterations.  Some of these steps are not directly 
accessible through SLEEP and need to be done through 
other menus available in ArcMap or other ArcGIS 
modules.  However, the user will be directed to the 
necessary action when clicking in the dropdown menu. 
3.2  Basic DEM processing 

In this menu all the tasks required for the delineation 
of the catchment and the streams are done (Figure 4).  A 
more reliable shape file of the streams can be directly 
entered as input if available.  In this step various 
flow-related layers are derived automatically using basic 
dendritic processing (flow direction, flow accumulation, 
stream line and subwatersheds within the entire 
watershed).  The necessary input for this step is a digital 
elevation model (DEM).  The outputs of this step are a 
series of files with known names that describe their 

contents.  An important decision to be made by the user 
is the number of pixels needed to start a stream.  This is 
determined by many factors such as the topography of the 
area, relief and general environmental conditions.  As a 
guideline, 5% of the total number of pixels in the whole 
DEM is initially used.  The user then checks the 
generated stream layer and if it is not suitable, the step 
can be repeated until a satisfactory result is achieved. 
3.3  Facet and attribute processing 

The first step in this menu is the creation of the facets 
(Figure 4).  Each subwatershed is divided into two facets 
by the stream connecting the outlet and the farthest point 
in the subwatershed (Figure 3).  In cases where the 
stream does not join these two points, then the longest 
flow path is used to divide the subwatershed into two 
facets. 

The second step in this menu is basic terrain 
processing (Figure 2 and Table 1).  Some of the terrain 
attributes used in the regression are calculated here.  The 
terrain attributes calculated are degree slope, percentage 
slope, aspect, curvature, profile curvature and plan 
curvature.  
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The next step under this menu is the facet 
classification (Figure 2 and Table 1).  Here the facets are 
classified based on the overall slope value and the area of 
facets.  Previous research indicated that the average 
slope and area are suitable criteria for this classification, 
which enable the generation of homogeneous groups of 
facets[44].  There is no rule to choose the number of 
classes.  Each time the user runs the classification with a 
selected number of classes, the tool will return the 
number of field observations within each class of facets.  
The statistical relationship depends on the number of 
observations within each class.  This step ensures that a 
sufficient number of field observations are available 
within each class to establish rigorous statistical 
relationships between both terrain and remote sensing 
parameters versus soil attributes.  The user is advised to 
repeat the classification until the minimum number of 
observations within each facet is sufficient to build a 
rigorous statistical model and/or the number of 
observations for all facets is, as much as possible, even.  
This will depend on the total number of observations 
available, the total area under consideration and the 
complexity of the terrain.  The user will need to consider 
these issues in selecting a suitable number of classes to 
group the facets. 

The last step in this menu is the compound 
topographic index (CTI) layer creation (Figure 2 and 
Table 1).  CTI is calculated for each pixel using the 
equation CTI = ln (As/tan D), where As is the average 
upslope contributing area and D is the average slope 
degree[4].  Several researchers have indicated the 
potential of this variable in predicting various soil 
characteristics[4,17,19,47]. 
3.4  Image processing 

The fourth menu, Image Processing (Figure 4), allows 
the user to derive remote sensing indices, such as NDVI 
and SAVI (Figure 4 and Table 1).  
       NDVI = [(NIR – Red)/ (NIR + Red)]      (1) 

where, NIR is the near infrared band and Red is the red 
band derived from satellite images.  SAVI is calculated 
using NDVI but multiplied by a factor between zero and 
one, using the equation: 

SAVI = [(NIR – Red)/(NIR + Red + L)] × [1 + L]  (2) 

where, the factor ‘L’ is adjusted for the effect of bare soil 
on deriving the NDVI.  In areas with good vegetation 
cover SAVI = NDVI, and L = 1.  In areas with low 
vegetation or more bare soil then L is approximately 0.5. 
Both NDVI and SAVI improve the accuracy of predicting 
soil characteristics[46].  In areas with low vegetation 
cover, the SAVI index provides information about the 
variations in soil color, which is directly linked to soil 
properties.  Conversely, NDVI data provide information 
about the vegetation conditions in areas with dense 
vegetation cover, which is indirectly reflecting the 
variations in soil properties.  Therefore, proper use of 
these indices provides information about soil variability 
and improves the prediction accuracy.  The user can also 
use any auxiliary information/layers that might improve 
the prediction, such as land use/cover and geology. 
3.5  Soil attribute prediction 

The fifth and last menu, Soil Attribute Prediction, is 
where all generated information in the previous steps are 
collated, analyzed statistically and used to generate the 
final product, a predicted soil characteristic (Figure 2).  
The first step in this menu is to append all output layers 
that were previously generated at the soil observation 
points.  The result of this step is a point shape-file with 
the above calculated terrain attributes and processed 
satellite images (NDVI and SAVI).  The facet class to 
which the points belong is also appended to all field 
observations.  The point file, for each class, contains a 
column for each terrain and satellite image parameter and 
column for each soil attribute.  One row is presented for 
each soil observation.  This will enable the 
establishment of a statistical model (regression) between 
terrain and satellite image indices in one hand and soil 
characteristics in the other hand, for each class of facets. 

The regression is performed externally by a Visual 
Basic code and is linked to the toolbox as a step in 
SLEEP.  The attribute table generated in the previous 
step is used as an input into this tool.  The regression 
tool gives the correlation coefficient between the chosen 
soil parameter and the various calculated terrain attributes 
and remote sensing attributes.  From these correlation 
coefficient values the user can choose the variable(s) to 
be used for generating the regression equation to produce 
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the chosen soil attribute.  Here different regression 
equations are generated for different facet classes.  An 
example of these equations is:  

Clay content (class 3) = 39.2–0.53(slope) + 
1.34(CTI) + 3.93(aspect) + 0.04(NDVI)       (3) 

The last step is the Soil Attribute Prediction.  Here 
the regression equation for different facets formed in the 
previous steps is used to generate the soil attribute for 
each pixel in the corresponding facets.  For example the 
above equation is applied within class three, by using the 
values of slope, CTI, aspect and NDVI, for each pixel, to 
derive the predicted clay content for that pixel and for all 
pixels within the class.  The regression coefficient (R2) 
of predicting clay content (Equation (3)) using slope, CTI, 
aspect and NDVI was 0.80, which is in agreement with 
previous research[5,45,46].  Since these terrain parameters 
are already calculated from the DEM, clay content could 
be estimated for any other pixel within class 3, with an 
acceptable accuracy.  The model will then apply each 
equation for the relevant class to derive the predicted soil 
attributes.  The results will then be combined for all 
classes of facets to generate one layer of predicted soil 
characteristics for the entire watershed or study area.  
This represents the ultimate product of this program.  
The users are advised to run at least one smoothing filter 
of 3 × 3 or 5 × 5 windows to smooth any extreme values 
generated during the prediction process, especially at the 
edges between different classes. 

An independent set of observation points which is not 
used in the above process can be used for validation of 
the soil attribute layer predicted by SLEEP.  The root 
mean square error (RMSE) can be used to assess the 
agreement between predicted and observed data.  The 
whole process can be iterated any number of times until a 
satisfactory result is obtained.  During each iteration, the 
number of facet classes and the variables chosen for the 
regression equation can be changed.  In case sufficient 
field observations are not available, the users are 
encouraged to search for legacy soil data, either from 
previous surveys or to derive these from existing soil 
maps with attached soil observations.  

The model also includes a step known as “SLEEP 
format conversion” within the “Soil Attribute Prediction” 
menu.  The output is produced in the form of raster 

image.  This is converted into ASCII format and then 
into a tabular form.  The conversion to this tabular form 
will help in exporting the data to any other model or tool 
which requires data in tabular format.  The MS-Excel 
Tool developed uses this output and applies the 
Pedo-transfer function to form the soil attributes required 
by the SWAT model.  

4  SLEEP application: An example 

4.1  Description of the methodology 
SLEEP was tested in a 54-km2 watershed located in 

the Tana River basin in northwest Ethiopia (Figure 5).  
The watershed has 203 field observations, where soil 
attributes were collected in the field and/or analyzed in 
the laboratory[46].  The measured soil attributes, which 
were used in this application, included the depth of the 
soil layer and percentages of silt, sand, clay and organic 
matter in different layers of the soil profile.  These were 
selected because these are the basic soil attributes needed 
by SWAT, as well as by many other environmental 
models.  There were two trials done using SLEEP.  In 
the first, nearly 80% of the observations were used for the 
calculation of the seamless soil attribute raster map, and 
the remaining points were used for validation of the 
model.  Therefore, 167 points were used for calculation 
and 36 points were kept aside for validation.  To ensure 
robustness of the model, the second trial used fewer 
points for calculation (only 30 points out of the total of 
167 were used for calculation) and the same 36 points as 
used in the previous step were used for validation, thus 
ensuring cross comparison of model performance. 

 
Figure 5  Location of the study area (Tana River basin) in 

northwest Ethiopia 
 

The model results were also compared with the spatial 
interpolation techniques available in the ArcGIS package.  
Inverse distance weighted (IDW) and Kriging methods 
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were used to interpolate the soil attributes using the same 
167 and 30 sample points for input as used for SLEEP. 
4.2  Results and discussion 

The accuracy of the results derived from SLEEP and 
from the two spatial interpolation techniques were 
compared, based on their agreement with the same set of 
verification observations and on their merit in reflecting 
the spatial distribution of the predicted/interpolated soil 
attributes.  The coefficients of determination (R2) of the 
established regression models using either 167 or only 30 
observations (Table 2) were generally in agreement with 
previous studies[48–50].  Within SLEEP, the slope and 
area of subwatersheds (facets) are used to subdivide the 
entire watershed or study area into homogeneous classes 
of subwatersheds.  The statistical relationships between 
soil attributes and topographic attributes and remote 
sensing parameters are established for each class.  The 
grouping of facets into classes improves the prediction 
compared with establishing statistical relationships for the 
entire watershed.  However, the number of observations 

for each class should be enough to establish a robust 
regression model.  Using 167 observations, it was 
possible to group all facets into six classes.  However, 
only one class was used for the subset of 30 observations 
because there are not enough observations.  The R2 
could be improved using stepwise regression.  However, 
at this stage SLEEP allows only simple multiple linear 
regressions between soil attributes as dependent variables 
and terrain and remote sensing attributes as independent 
variables.  In future versions of SLEEP, this will be 
improved to allow better fine-tuning of the regression 
models to improve the results.  At present, SLEEP users 
can view the correlation coefficients and use these to 
select the terrain and satellite attributes that will be used to 
build the regression model and predict soil attributes.  An 
example of the regression models to predict the soil 
organic matter content of the surface layer is presented in 
Table 3.  The R2 for the different classes were in the range 
of 0.23–0.57, and these models were applied within 
SLEEP to predict soil attributes. 

 

Table 2  Coefficient of determination (R2) of the predicted soil attributes for different classes using different observation densities 

No. of observations used Facet class Organic content/% Clay content/% Silt content/% Sand content/% Stone content/% Soil depth/cm 

30 1 0.33 0.28 0.26 0.19 0.33 0.50 

1 0.57 0.45 0.19 0.34 0.24 0.49 

2 0.53 0.50 0.33 0.38 0.33 0.38 

3 0.33 0.23 0.27 0.08 0.41 0.25 

4 0.49 0.41 0.43 0.23 0.66 0.56 

5 0.29 0.27 0.17 0.05 0.09 0.13 

167 

6 0.23 0.30 0.11 0.33 0.18 0.38 

 
Table 3  Regression model used to calculate organic matter content 

Facet class Intercept NDVI CTI Accum1 slope D Profile curvature Accum2 aspect Accum3 slope P Percent slope R2 

1 2.51 1.02 –0.23 0.60 –0.35 0.42 0.08 0.02 0.57 

2 1.20 –0.68 0.10 1.70 –3.72 0.17 –0.04 0.08 0.53 

3 18.55 0.17 –1.13 –0.38 –0.84 –0.15 0.04 –0.02 0.33 

4 10.57 5.94 –0.50 0.23 –1.71 –0.25 0.12 –0.02 0.49 

5 0.68 –3.14 –0.15 0.81 0.81 0.33 0.09 –0.02 0.29 

6 14.76 –0.13 –0.83 –0.57 0.13 –0.86 0.09 –0.02 0.23 

Note: 1 Accum slope D: average slope degree of the upslope contributing pixels; 2 Accum aspect: average aspect of the upslope contributing pixels; 3 Accum slope P: 
average slope percent of the upslope contributing pixels 
 

The root mean square errors (RMSEs) for the 
predicted soil attributes were generally comparable to 
those generated using the two interpolation techniques 
(Table 4).  This differed slightly compared to results 
from previous studies, which indicated better RMSE and 
accuracy of the soil–landscape prediction models[46,51].  

Previous research has showed that the spatial 
interpolation methods are usually data-specific or even 
variable-specific and indicated that the predictive 
performance of the methods depends on many factors[1].  
The accuracy of the predicted soil attributes using SLEEP 
could be improved significantly using stepwise multiple 



168   June, 2015                Int J Agric & Biol Eng      Open Access at http://www.ijabe.org                Vol. 8 No.3 

linear regressions, which allows the selection of the most 
important factors to predict soil attributes.  It also 
appears that for each soil attribute, within each facet class, 
there are certain terrain and satellite attributes suitable to 
generate an optimum accuracy of prediction; this will be 
considered in further development of SLEEP to improve 
prediction accuracy. 

Nevertheless, comparison of the spatial distribution of  
the predicted soil attributes using SLEEP with those 
derived from interpolation techniques indicate an obvious 

advantage of the former (Figure 6).  While Kriging 
classifies the entire watershed into two classes, within 
which many verification observations are different from 
that class, the prediction using SLEEP classifies the area 
into many classes, within which the verification 
observations are in closer agreement with the spatial 
distribution of soil attributes.  Hence, the application of 
SLEEP, using careful selection of independent terrain and 
satellite attributes, can lead to better mapping of soil 
attributes. 

 

Table 4  Root mean square error between the observed soil parameters and predicted attributes using SLEEP and interpolated 
attributes using Kriging and inverse distance weighted (IDW) techniques using 167 or 30 observations. 

Soil Property SLEEP 
167 

Kriging 
167 

IDW 
167 

SLEEP 
30 

Kriging 
30 

IDW 
30 

Soil depth 24.8 23.2 24.5 29.3 29.9 29.8 

Organic content 1.6 1.4 1.4 1.4 1.3 1.5 

Clay 8.9 10.0 9.0 10.6 10.8 11.1 

Silt 7.7 6.8 6.0 6.4 6.4 6.4 

Sand 8.5 7.4 10.0 7.9 7.5 9.3 

Stone 12.7 13.1 16.0 14.1 17.4 13.7 
 

 
a  b 

 

Figure 6  Comparison of the spatial distribution of predicted soil attributes using (a) SLEEP and (b) interpolated soil attributes using 
Kriging algorithm 

 

The SLEEP model gives the output of the soil 
attributes in the form of raster image and also in table 
format as a MS-Excel file.  If the organic carbon and silt, 
sand, clay and stone percentages are estimated using the 
SLEEP tool for a specific area/watershed, then the soil 
attributes required in the soil database for SWAT can be 
calculated using the Pedo-transfer functions[39,52].  A 

special tool to convert the predicted soil data to SWAT 
input formats will be added in future releases of SLEEP.  
This will enhance the application of SLEEP for 
environmental modeling such as SWAT.  One important 
application would be using SLEEP to generate detailed 
soil layers and testing the improvement of SWAT results 
compared with traditional soil data. 
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5  SLEEP application for SWAT 

For the same watershed located in the Tana basin 
(Figure 5), five SWAT models were setup using the same 
DEM, landuse data and weather data but different soil 
data.  The DEM was obtained from the Shuttle Radar 
Topography Mission (SRTM)[53], the landuse data was 
derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) land use data[54] and the 
weather data used were from the Climate Forecast System 
Reanalysis (CFSR)[55].  The five sets of soil data used 
were: (1) soil layer data derived from the 167 SLEEP 
field data points, (2) soil layer data derived from the 30 
SLEEP field data points, (3) soil layer data derived from 
Kriging interpolation techniques of 167 field data points, 
(4) soil layer data derived from Kriging interpolation 
techniques of 30 field data points, and (5) soil layer data 
based on the Food and Agriculture Organization (FAO) 
Harmonized World Soil Database[56].  This analysis 
allows additional investigation of the performance of 
SLEEP and it is usefulness to improve SWAT outputs 
compared with interpolation methods and the FAO data.  
Ideally, these SWAT outputs should be compared with 
observed data.  However, the absence of sufficient 
runoff data for long time to enable good calibration of 
SWAT is a limitation in this area.  

Daily stream flow time series generated by the above 
mentioned five SWAT models are plotted in Figure 7 for 
the wet periods during August of 2012.  There is nearly 
no discernible difference in the predicted stream flows 
using the soil data generated from the 30 points (SLEEP 
30) versus the soil data based on the 167 points (SLEEP 
167).  This shows the consistency in the SWAT model 
output while using soil data developed using the different 
empirical relations in the SLEEP 167 and SLEEP 30 soil 
datasets.  In addition, this indicates that when SLEEP is 
used extensive field observation are not required to 
generate adequate soil data for SWAT simulations of the 
Tana River basin experimental subwatershed.  However, 
further testing of the SLEEP software is needed to 
determine accurate thresholds for other watershed 
conditions.  The SWAT stream flow output from the 
SLEEP soil data is in better agreement with the output 

using the FAO soil data compared with the SWAT output 
using the Kriging method.  This small watershed in the 
Tana basin is an experimental watershed and has an 
advantage of having soil properties measured at very 
close spatial intervals which should have resulted in the 
SWAT’s performance of SLEEP data being close to that 
of the FAO in predicting stream flow.  However, using 
the same observations to derive soil data for SWAT using 
interpolation techniques doesn’t seem to provide 
comparable SWAT outputs.  These results point to the 
robustness of the SLEEP methodology.  However, the 
performance of SLEEP needs to be tested in multiple 
watersheds with varying environmental conditions and 
different spatial distributions of the measured soil data, 
and with more in-depth calibration and validation of 
SWAT applications using SLEEP-derived soil data. 

 
Figure 7  Comparison of the SWAT modeled stream flow (not 

calibrated) by using different soil inputs 

6  Conclusions 

The SLEEP tool presented here enables users to use 
terrain attributes, remote sensing data and auxiliary 
information to predict the lateral and vertical distribution 
of soil characteristics.  Using GIS capabilities, the user 
can run many iterations in a reasonable time and produce 
satisfactory results.  The five menus of the tool will 
guide the user in a systematic style for analyzing the 
relationship between factors that govern soil variations 
under specific environmental conditions – this will 
facilitate the understanding of the cause–effect 
relationships that aid this prediction.  This approach is 
an attempt to quantify and automate the qualitative 
approach that has long been used by surveyors to map the 
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distribution and characteristics of soils.  The tool 
provides outputs in a format suitable for SWAT, which 
enables the integration of the outputs to enhance the 
prediction of watershed processes.  The application of 
SLEEP in an Ethiopian watershed produced promising 
results in generating accurate predictions coupled with a 
reasonable spatial distribution of soil attributes that better 
resembled the field situation than interpolation techniques.  
The analysis indicated low sensitivity of SWAT 
prediction when SLEEP was used to derive soil inputs 
from 167 observations compared with only 30 
observations.  This highlights the potential of SLEEP to 
provide satisfactory soil inputs for SWAT in areas with 
scarce soil information.  Yet, the tool represents a 
starting point and is designed to be dynamic and to evolve 
in response to users’ needs and feedback.  Additional 
features that will be developed are the ability to use 
stepwise multiple linear regressions or other algorithms to 
replace the simple regression so as to strengthen the 
predictions and incorporating means to verify the spatial 
and attribute accuracy of the predictions.  The stepwise 
multiple linear regression allows the user to select the 
independent variables that are best predictors of certain 
soil attribute, which improve the prediction accuracy as 
compared to simple regression.  It is anticipated that as 
more users from various disciplines use this public 
domain tool, increased development will strengthen and 
widen its use for environmental applications. 
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