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ABSTRACT: This study tests the applicability of the curve number (CN) method within the Soil and Water
Assessment Tool (SWAT) to estimate surface runoff at the watershed scale in tropical regions. To do this, sur-
face runoff simulated using the CN method was compared with observed runoff in numerous rainfall-runoff
events in three small tropical watersheds located in the Upper Blue Nile basin, Ethiopia. The CN method gener-
ally performed well in simulating surface runoff in the studied watersheds (Nash-Sutcliff efficiency [NSE] > 0.7;
percent bias [PBIAS] < 32%). Moreover, there was no difference in the performance of the CN method in simu-
lating surface runoff under low and high antecedent rainfall (PBIAS for both antecedent conditions: ~30%; modi-
fied NSE: ~0.4). It was also found that the method accurately estimated surface runoff at high rainfall intensity
(e.g., PBIAS < 15%); however, at low rainfall intensity, the CN method repeatedly underestimated surface runoff
(e.g., PBIAS > 60%). This was possibly due to low infiltrability and valley bottom saturated areas typical of
many tropical soils, indicating that there is scope for further improvements in the parameterization/representa-
tion of tropical soils in the CN method for runoff estimation, to capture low rainfall-intensity events. In this
study the retention parameter was linked to the soil moisture content, which seems to be an appropriate
approach to account for antecedent wetness conditions in the tropics.
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INTRODUCTION

The curve number (CN) method is a conceptual
model supported with empirical data to estimate
direct runoff volume from single precipitation events
on small agricultural watersheds (Ponce and Haw-
kins, 1996). The CN method uses several predefined
curves to describe the relationship between rainfall
and runoff depending on soil type, land-use type, and

surface treatment conditions. However, the method
does not take into account the spatial and temporal
variability in infiltration and other abstractive losses;
rather, it aggregates these into the total depth loss
for a given rainfall event and drainage area (Ponce
and Hawkins, 1996).

The CN method was originally developed in 1954
by the Soil Conservation Service (SCS) of the U.S.
Department of Agriculture, since renamed the Nat-
ural Resources Conservation Service (NRCS, 2004).
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The origins of the methodology can be traced back to
thousands of infiltrometer tests carried out by SCS
during the 1930s and 1940s at experimental sites
(Ponce and Hawkins, 1996; Williams et al., 2012).
Although it was originally developed mainly for agri-
cultural watersheds, the CN method has since been
adapted for urbanized and forested watersheds (Cron-
shey et al., 1986).

Among the perceived advantages of the CN method
are its simplicity, practicality, predictability, stability,
reliance on a single parameter, and responsiveness to
watershed properties such as soil type, land use, sur-
face condition, and antecedent condition (Ponce and
Hawkins, 1996; Yu, 2012). However, the marked sen-
sitivity of runoff estimation to the choice of CN, the
lack of clear guidance on how to vary the antecedent
condition, the method’s variable accuracy for different
biomes, and the fixing of the initial abstraction ratio
at 0.2 have all been cited as weaknesses (Ponce and
Hawkins, 1996). The most criticized assumption in
the CN method is that the ratio of actual retention to
potential retention is the same as the ratio of actual
runoff to potential runoff.

The CN method is now integrated into more com-
plex simulation models applied throughout the world
(e.g., Williams et al., 1985; Arnold et al., 1998; HEC-
HMS, 2000). In continuous models — including the
Soil and Water Assessment Tool (SWAT) — the CN is
updated daily to take account of the antecedent wet-
ness condition (also commonly referred to as the “an-
tecedent runoff condition”) (Williams et al., 2012).
The daily CN in SWAT is determined based on daily
soil moisture content or plant evapotranspiration
(Neitsch et al., 2012).

The CN method has been applied throughout the
world (e.g., Hjelmfelt, 1991; Krysanova et al., 2005;
Abbaspour et al., 2007; Krysanova and Arnold, 2008;
Rostamian et al., 2008; Schuol et al., 2008; Stehr et al.,
2008; Setegn et al., 2010a, b; Yu, 2012). However, sev-
eral authors (e.g., Liu et al., 2008; Collick et al., 2009;
Steenhuis et al., 2009; White et al., 2011) have ques-
tioned the representativeness of the approach in differ-
ent climates and geological settings as it was originally
developed for applications in temperate regions, espe-
cially in the United States. Tropical regions tend to
have highly variable rainfall with distinct dry seasons,
rainfall events of high intensity, and soil types that are
highly crusted, have low organic matter content, and
have dry surface conditions. In temperate regions the
rainfall intensity is moderate and the soil has high
infiltrability and conductivity.

The underlying mechanism for the CN method is
perceived to be infiltration excess mechanism (e.g.,
Liu et al., 2008; Tilahun et al., 2015). Liu et al.
(2008) studied the effective rainfall-discharge rela-
tionships for three small watersheds in the Ethiopian

highlands, namely, Anjeni, Andit Tid, and Maybar.
They found that after 500 mm rainfall threshold,
approximately 50% of any further rainfall on these
watersheds will directly contribute to catchment run-
off, instead suggesting that saturation excess process
is the dominant mechanism for runoff generation in
the Ethiopian highlands. Thereafter, more field and
modeling studies have been conducted in watersheds
in the Ethiopian highlands (e.g., Collick et al., 2009;
Steenhuis et al., 2009; Bayabil et al., 2010; White
et al., 2011; Tilahun et al., 2013a, b, 2015) and demon-
strated that saturation excess is the main runoff gen-
eration mechanism. On the other hand, SWAT and the
CN method has been widely applied in the Lake Tana
watersheds in particular and the Ethiopian highlands
in general (e.g., Setegn et al., 2009, 2010a,b; Betrie
et al., 2011; Dile et al., 2013, 2016; Gebremicael et al.,
2013; Dile and Srinivasan, 2014) and provided satisfac-
tory results. Most of these studies, however, have not
directly evaluated the surface runoff estimation with
the CN method. Their evaluation was based on the
total streamflow, where interception, infiltration, plant
and soil evaporation, channel losses, such as evapora-
tion and seepages, and groundwater recharge and
return flow are part of the process in evaluating the
hydrological budget (cf. Tessema et al., 2014). Evalua-
tion of SWAT model performance based on total
streamflow may not fully evaluate the surface runoff
estimation by the CN method.

This study aims to test the applicability of the CN
method for estimating surface runoff in tropical
regions by comparing runoff estimates through the CN
method with measured surface runoff in three experi-
mental small watersheds in the Upper Blue Nile basin
of Ethiopia. This is, to our knowledge, the first study to
use data on measured surface runoff to test the appli-
cability of the CN method for estimating surface runoff
in tropical watersheds. This study evaluates the CN
method focusing only on direct runoff on cultivated
and grazing landscapes in three small watersheds. At
the small watershed, with highly controlled environ-
ment of one soil type, one land-use type, and slope, it is
more convenient examining the surface runoff estima-
tion through the CN method in tropical regions.

Furthermore, to assess the usability of the CN
method in tropical regions, we specifically tested the
method under conditions typical of tropical regions
that may affect the runoff process, in one of the water-
sheds. Five-day antecedent rainfall was used as a
proxy to capture conditions of very dry and wet soils
that commonly occur in monsoonal climates. Moreover,
we compared high and low rainfall-intensity events to
test the ability of the method to capture tropical storms
(e.g., very high intensity events). Surface runoff was
estimated using the CN approach within the ArcSWAT
modeling environment (Neitsch et al., 2012).
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ArcSWAT is an ArcGIS extension for the SWAT graph-
ical user interface (Winchell et al., 2013). The theoreti-
cal framework for the CN method within SWAT model
is presented as Supporting Information (SI).

MATERIALS AND METHODS

This research was based on data from the south-
eastern part of the Lake Tana basin, which is located
in the upper part of the Upper Blue Nile basin in
Ethiopia. The field data were collected from three
small watersheds: Gegudeguade, Aletu, and Shim-
braye (Figure 1). These watersheds were chosen to
capture rainfall-runoff dynamics in different land-
scapes. Two were located on agricultural land and
the third on grazing land. Large parts of the agricul-
tural watersheds were covered by fields of teff (Era-
grostis tef, a native grain crop). As the watersheds
were close to each other — it was possible to place a

temporary weather station within 1.2 km from any of
them — rainfall variation between them was
assumed small. Table 1 gives the basic characteristics
of the three watersheds. Secondary data for use in
setting up the model were collected from national
and global databases.

Field Data

The field data were collected in the rainy seasons
(July-September) of 2011 and 2012. Climatic and sur-
face runoff data were collected from all three water-
sheds. Climatic variables were monitored with a
Vantage Davis Pro2 weather station (Davis Instru-
ments Corporation, Hayward, California) at a five-
min time step. The parameters monitored included
rainfall, maximum and minimum temperatures, solar
radiation, wind speed, and relative humidity.

Surface runoff was measured in the watersheds
using 2.5 H flumes (Plasti-Fab, Tualatin, Oregon). A
combination of manual and automatic stage recorders

FIGURE 1. The Location of the Watersheds Included in This Study. The red box in the large inset shows their location in the Lake Tana
basin. The small inset shows the basin’s location in Ethiopia.
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was employed: the Stage Discharge Recorder (SDR-
0001-1) from the Sutron Corporation (Sterling, Virgi-
nia) and the Schlumberger Micro-diver (Delft, the
Netherlands). The automatic data loggers (SDR or
Micro-diver) measured stages at five-min intervals.
Manual measurements were taken at small time
intervals so as to produce a smooth hydrograph. The
stages were converted into discharge (flow rates)
using the standard 2.5 H flume rating curve
equation (Q = 0.001499�0.01992H0.4 +0.727294H1.4 +
1.698273H2.5). The flow rates for the events were
converted into depth of water to estimate the surface
runoff that could be generated uniformly over the
entire catchment area.

As the watersheds were small there were no large
groundwater reservoirs and the base-flow contribu-
tion was negligible. Measurements show that the
generation of runoff in the watershed channels stops
only a few minutes after the secession of rainfall,
suggesting that the flow in the channels mainly con-
sists of overland flow. Therefore, this study assumed
that the groundwater contribution from interflow and
bypass flows was negligible, and base-flow separation
was therefore unnecessary.

Runoff data were collected for 70 rainfall events.
However, only those generating runoff and for which
the hydrograph was complete were used in the analy-
sis. Of the total observed runoff events, 53 events
(which accounts 75.7%) were considered in the analy-
sis. The remaining events (24.3% of the total
observed runoff events) were excluded as part of the
data were lost due to either equipment failure or weir
overflow. The analysis used 31 events for Gegude-
guade, 9 for Aletu, and 13 for Shimbraye. These were
considered sufficient for the purposes of the study (cf.
Blume et al., 2010).

To see if the studied rainfall-runoff events cover
the entire rainfall distribution in the study area, we
compared all observed rainfall events that generated
runoff (i.e., events with a total rainfall amount which
exceeded 0.8 mm, which amounted to 84 in total) to
those events used in the rainfall-runoff analysis. We
found that of the rainfall events that generate runoff,
nearly 60% of the events had a rainfall amount of
0.8-5 mm, and only three events exceeded 25 mm

(Figure 2a). Comparing with the rainfall events used
to study runoff generation in this study, we found
that our subset of rainfall events is representative of
rainfall events in the area in general (Figure 2a). For
instance, of the 53 rainfall events that were used in
this manuscript to study runoff, 45% of them had a
rainfall amount of 0.8-5 mm and 2 events were above
25 mm, thus suggesting that the rainfall events that
were used for the rainfall-runoff analysis is a good
representation of the entire rainfall distribution.

The temporal distribution of the rainfall events
included in the study varied over the rainy season
(Figure 2b). Data collection started in the beginning
of July and continued until mid-September. Eight of
the 53 events occurred by mid-July. The maximum
amount of rainfall of a particular event during the
early phase of the rainfall season (i.e., until July 15)
was 21.2 mm. Most of the studied events (37 of 53)
occurred between July 16 and August 15. The highest
rainfall amounts were observed in the first two weeks
of August. After mid-August, both the frequency of
rainfall events and amount of rainfall decreased.
Eight of the studied events happened between mid-
August to mid-September.

Secondary Data

The secondary data used in setting up the model
included a digital elevation model (DEM), soil, land
cover, and historical climatic data. The DEM was
needed to delineate the watersheds in the ArcSWAT
interface, and the land-use and soil data were impor-
tant to define the hydrologic response units (HRUs).
Historical weather data were used to simulate the
hydrological processes in SWAT. The weather data
consisted of daily rainfall and maximum and mini-
mum temperatures at the nearby Woreta weather
station between 1990 and 2012. The built-in weather
generator for SWAT (Neitsch et al., 2012) was used
to fill gaps in the data.

The DEM data were obtained from the CGIAR
Consortium for Spatial Information website (CGIAR-
CSI, 2012) and had a resolution of 90 m 9 90 m. The
stream network, land use, and soil maps of the study

TABLE 1. Characteristics of Three Small Watersheds in the Lake Tana Basin, Ethiopia.

Micro-Watershed Area (ha)

Elevation
(m a.s.l.)

Land-Use Type Distance from Temporary Weather Station (m)Max. Min.

Gegudeguade 4.63 1,920 1,879 Crops 726
Aletu 6.71 1,892 1,866 Crops 416
Shimbraye 1.84 1,925 1,881 Grazing 1,140

Note: m a.s.l., meters above sea level.
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area were from the Ethiopian Ministry of Water
Resources (MoWR, 2009). The physical and chemical
properties parameters for soil that are required by
SWAT were derived from the Africa map sheet of the
1995 CD-ROM edition of the Soil Map of the World
(FAO, 1995). The weather data was provided by the
Ethiopian National Meteorological Services Agency
(ENMSA, 2012).

Model Setup

An ArcSWAT model environment (Winchell et al.,
2013) was used to test the CN method in this study.
SWAT is a physically based model developed to pre-
dict the impact of land management practices on
water, sediment, and agricultural chemical yields in
watersheds with varying soil, land use, and manage-
ment conditions (Neitsch et al., 2012). The model can

simulate hydrological cycles, vegetation growth,
and nutrient cycling with a daily time step by disag-
gregating a river basin into subbasins and HRUs.
HRUs are lumped land areas within the subbasin
representing unique land cover, soil, and management
combinations.

Five slope classes were implemented in defining
the HRUs. These were slope <2, 2-8, 8-12, 12-20, and
>20%. A threshold area of 0.5 ha was used for water-
shed delineation at each outlet, to replicate the char-
acteristics of the watersheds. Multiple HRUs were
created within each subbasin, and zero percent
threshold area was used to define the HRUs (i.e., all
land use, soil, and slope classes in a subbasin were
considered in creating the HRUs). The management
data used in setting up the model for the two agricul-
tural watersheds are shown in Table 2.

The SWAT model was run from 1990 to 2012,
including five years of warm-up period (Daggupati

FIGURE 2. (a) Comparison between Observed Rainfall Distribution in the Study Watershed, and Rainfall Events That Were Used for the
Rainfall-Runoff Analysis in This Study, (b) Temporal Distribution of the Rainfall Events Included in This Study.
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et al., 2015), using the CN method to simulate sur-
face runoff. The retention parameter was updated
based on soil moisture content. Hargreaves method
was used to determine potential evapotranspiration,
and the variable storage routing method was used to
route the flow of water in the channels. As the CN
method assigns CN values for a given land use and
soil combinations, it was appropriate to evaluate the
method with actual values, i.e., without any parame-
ter manipulations. With good model calibration skills
and possibly with model overparameterization, one
can easily fit observed and simulated values, espe-
cially using automatic model calibration tools. There-
fore, we were interested to explore if the CN method
works well without any parameter calibrations.
Although the model was not calibrated, due emphasis
was given to correctly simulating other biophysical
processes. For example, as crop growth and biomass
production significantly affect the runoff generation
and evapotranspiration processes, we ensured that
crop growth was well represented by the modeling
and that the teff yield (~1.0 ton/ha) was in agreement
with regional census data (Dile and Srinivasan,
2014). We also compared the evapotranspiration esti-
mation from the SWAT model to literature. The simu-
lated average actual evaporation in the studied
watershed was 610 mm. Using the Hargreaves
method in SWAT, Setegn et al. (2010a, b) estimated
that the average evapotranspiration in the entire
Lake Tana basin including the Lake is ~758 mm. The
difference between our estimate and that of Setegn
et al. (2010a, b) was likely due to the inclusion of
evaporation from Lake Tana in their calculation. The
actual evaporation from Lake Tana ranges 1,478-
1,789 mm (Kebede et al., 2006; Wale et al., 2009;
Rientjes et al., 2011; Dessie et al., 2015). Given Lake
Tana’s large area coverage in the basin, which is
~20% of the Lake Tana basin, it can be expected that
the estimate from Setegn et al. (2010a, b) is a bit
higher.

The model setup created 2 HRUs each in the
Gegudeguade and Shimbraye watersheds, and 16
HRUs in the Aletu watershed. For the simulation
period of 1995-2012 (excluding the model warm-up
period), the CN value for the Gegudeguade and Aletu
ranges 70.68-92.13 (average at 83.34), and for

Shimbraye, it ranges from 68.91 to 92.13 (average at
82.95).

Statistical Evaluation of the SWAT Simulations

Rainfall-runoff data were collected from the water-
sheds per event, whereas surface runoff simulations
from SWAT were often made daily. The collected
rainfall-runoff events and the respective event rain-
fall-runoff simulations (i.e., the event rainfalls were
simulated as daily rainfalls in SWAT) were com-
pared.

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe,
1970) and percent bias (PBIAS) were used to evaluate
the agreement between the overall observed and sim-
ulated surface runoff (Table 3). Moriasi et al. (2007)
provided clear guidance on how to evaluate model
performance in terms of these goodness-of-fit criteria.
NSE can range from �∞ to 1. An NSE value of 1
indicates a perfect match between observed and sim-
ulated data. An NSE value between 0 and 1 is theo-
retically considered acceptable, whereas a value of 0
or less suggests that the observed mean is a better
predictor than the model. PBIAS indicates the aver-
age tendency of the simulated values to be higher or
lower than the corresponding observed values. The
optimal PBIAS value is 0; positive values indicate
that the model tends to underestimate, and negative
values that it tends to overestimate (Gupta et al.,
1999). Moriasi et al. (2007) suggest that PBIAS can
easily quantify water balance errors and thus indi-
cate model performance. In general, model simula-
tions of streamflow are considered satisfactory if
NSE > 0.50, and PBIAS < �25% (Moriasi et al.,
2007).

To study how the CN method performed under dif-
ferent monsoonal climatic conditions, rainfall-runoff
events were divided into low and high rainfall-inten-
sity categories, and into low and high antecedent
rainfall categories. In the case of continuous numeri-
cal data such as rainfall intensity and five-day ante-
cedent rainfall, conditioning can be done by grouping
a set of observations into bins. The analysis for the
grouping was done using the lattice package in R
statistical computing environment (Sarkar, 2008).

TABLE 2. Land Management Data Used to Set Up a Soil and Water Assessment Tool Model for the Agricultural Small Watersheds.

Operation Tillage Planting

Fertilizer*

Harvest and KillUrea DAP

Timing April 1-July 22 July 22 July 22 and August 22 July 21 December 5
Amount/frequency Four times 18.75 kg/ha and 18.75 kg/ha 37.5 kg/ha

*Urea is nitrogen-based fertilizer, and is applied twice per cropping period (at planting and prior to flowering). DAP is phosphorous-based fer-
tilizer.
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R uses shingles as a way to represent intervals. The
intervals are created using overlapping values (like
roof shingles) to make smooth transition between the
shingles. Gegudeguade watershed, which yielded the
most observed surface runoff data, was used for this
analysis. Events with rainfall intensity of 1.93-
9.62 mm/hr were placed in the low rainfall-intensity
category, and those with 7.32-31.82 mm/hr in the
high rainfall-intensity category. The low antecedent
rainfall category included events with average five-
day antecedent rainfall of 4.09-12.24 mm, and the
high antecedent rainfall category included events
with 8.87-17.89 mm average five-day antecedent rain-
fall. Each rainfall-runoff category had 20 events with
11 overlapping events. The 11 overlapping events
happened to create the smooth transition in the inter-
vals (Sarkar, 2008). Although the overlapping events
were necessary to create smooth transitions, they cre-
ate some redundancy which may introduce bias to
the results. The performance of the CN method is,
therefore, evaluated in each category.

A variety of goodness-of-fit criteria were used to
assess the performance of the CN method under these
climatic conditions (Table 3). It was difficult to choose a
single goodness-of-fit criterion for this assessment, as
different criteria may give more weight to certain

aspects of disagreements between simulated and
observed data (Green and Stephenson, 1986). For
example, NSE involves squaring of residuals. As a
result it is highly sensitive to extreme values (Green
and Stephenson, 1986; Legates and McCabe, 1999),
which may create bias in the analysis toward higher
estimates. For this reason, such types of statistical
goodness-of-fit criterion (e.g., NSE) were not used in
the runoff categorizing analysis. The literature (e.g.,
Green and Stephenson, 1986; Legates and McCabe,
1999; Krause et al., 2005) suggests instead using the
means, residual error estimation, and modified effi-
ciency estimation methods for such analyses. It also
suggests modified efficiency estimations, such as the
modified NSE and the relative efficiency criterion
(Erel). Modified NSE (Table 3, No. 8, with j = 1) quan-
tifies the difference between observation and simula-
tion using the absolute values. In modified NSE, an
overestimate or underestimate in higher values has a
greater influence than one in lower values. The rela-
tive efficiency criterion (Table 3, No. 9) counteracts
this deficiency by reducing the absolute differences
during high flows. However, the relative efficiency cri-
terion increases the influence of absolute lower differ-
ences during low-flow periods (Krause et al., 2005).
Because of these inherent biases, multiple statistical

TABLE 3. Statistical Goodness-of-Fit Criteria Used to Evaluate the Performance of the Curve Number Method.

No. Statistical Goodness-of-Fit Criteria Equation Reference

1 Nash-Sutcliffe efficiency (NSE)
NSE ¼ 1�

Pn

i¼1
Qi

o�Qi
sð Þ2Pn

i¼1
Qi

o� �Qoð Þ2

" #
Legates and McCabe (1999) and Moriasi et al. (2007)

2 Percent bias (PBIAS)
PBIAS ¼

Pn

i¼1
Qi

o�Qi
sð Þ�100Pn

i¼1
Qi

o

" #
Green and Stephenson (1986) and Moriasi et al. (2007)

3 Mean absolute error (MAE) MAE ¼ 1
n

Pn
i¼1 Qi

o �Qi
s

�� �� Blume et al. (2010)

4 Sum of absolute errors (G) G ¼Pn
i¼1 jQi

o �Qi
oj Green and Stephenson (1986)

5 Root mean square error (RMSE) RMSE ¼ 1
n

Pn
i¼1 Qi

o �Qi
s

� �2� �1=2
Green and Stephenson (1986), Patry and Mari~no (1983)

6 Proportional error of estimate (PEE)
PEE ¼ Pn

i¼1

Qi
o�Qi

s

Qi
o

� �2
" #1=2

Green and Stephenson (1986) and Manley (1978)

7 Standard error of estimate (SEE)
SEE ¼ Pn

i¼1

Qi
o�Qi

sð Þ2
ðn�2Þ

 !1=2
Green and Stephenson (1986) and Jewell et al. (1978)

8 Modified NSE (Ej)
Ej ¼ 1�

Pn

i¼1
jQi

o�Qi
s j jPn

i¼1
jQi

o� �Qo j j
Krause et al. (2005) and Legates and McCabe (1999)

9 Relative efficiency criterion (Erel) Erel ¼ 1�
Pn

i¼1

Qi
o�Qi

s

Qi
o

� �2

Pn

i¼1

Qi
o� �Qo
�Qo

� �2
Krause et al. (2005)

Note: Qi
o = observed data at the ith time step; Qi

s = simulated data at the ith time step; Qmean
obs = mean of the observed data; and n = total

number of observations.
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goodness-of-fit criteria were used to evaluate the per-
formance of the CN method in calculating runoff at
different rainfall-intensity and antecedent rainfall
categories.

Further Exploration of Factors Influencing Runoff

Observed rainfall and runoff data were also ana-
lyzed without applying the CN method to obtain a
better understanding of the rainfall-runoff relation-
ship under different rainfall-intensity and antecedent
rainfall categories. This was done to explore factors
that play a major role in the hydrological process in
the tropics, and get insight on how to adjust the CN
parameter.

The 31 observed events in the Gegudeguade water-
shed were divided based on combinations of rainfall
intensity and antecedent rainfall independently. One
category consisted of events with high average five-
day antecedent rainfall (i.e., higher than the median
of 49.40 mm) and low rainfall intensity (i.e., lower
than the median of 8.40 mm/hr). The other category
consisted of events with low five-day antecedent rain-
fall and high rainfall intensity.

The rainfall-runoff events were further divided
into three antecedent rainfall categories representing
dry, average, and wet antecedent wetness conditions.

The “dry” category had low five-day antecedent rain-
fall of 4.10-9.90 mm; the “average” category had five-
day antecedent rainfall of 8.40-13.10 mm; and the
“wet” category had five-day antecedent rainfall of
9.90-17.90 mm. There are eight overlapping rainfall-
runoff events in each category.

RESULTS

Estimating Runoff with the CN Method

The assessment of the performance of the CN
method to estimate surface runoff in the Upper Blue
Nile basin was based on 53 rainfall-runoff events col-
lected from three small watersheds (Figure 3). The
largest amount of rainfall in a single event was
~45 mm. Over the three watersheds, the maximum
measured runoff depth was ~20 mm, whereas the
corresponding maximum simulated surface runoff
depth was ~26 mm. The overall measured and simu-
lated surface runoff showed reasonably good agree-
ment (Table 4). The CN method generally gave lower
surface runoff than what was observed. For the
observed events in the three watersheds, the total
simulated surface runoff was 79% of the measured

FIGURE 3. Comparison between the Observed Surface Runoff and Runoff Simulated Using the Curve Number Method for Individual
Rainfall-Runoff Events in Three Watersheds: Gegudeguade (G), Aletu (A), and Shimbraye (S). The subplot shows the observed vs. simulated

surface runoff. The regression line represents the Gegudeguade data (31 events).

TABLE 4. Comparison between Observed and Simulated Surface Runoff Using the Curve Number Method.

Micro-Watershed (no. of events)

Mean (mm)
Standard Deviation

(mm) Maximum (mm)

NSE PBIASObserved Simulated Observed Simulated Observed Simulated

Gegudeguade (31) 3.15 2.48 4.37 5.17 19.45 25.90 0.72 21
Aletu (9) 2.61 1.79 3.94 2.94 10.55 7.16 0.85 32
Shimbraye (13) 1.79 1.26 2.82 2.51 8.70 7.14 0.87 28
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surface runoff in Gegudeguade, 68% in Aletu, and
72% in Shimbraye. No significant difference was
observed in the accuracy of runoff simulations
between different land-use types (i.e., cropping and
grazing).

An evaluation of simulated and observed surface
runoff using NSE showed reasonable agreement, with
an NSE of more than 0.7. Santhi et al. (2002) suggest
that a NSE value of more than 0.5 is satisfactory for
calibrated SWAT simulations. The PBIAS of 21% for
the Gegudeguade watershed demonstrated satisfac-
tory model performance, but those in Aletu (32%) and
Shimbraye (28%) were unsatisfactory. Moriasi et al.
(2007) suggest that a calibrated model can be consid-
ered satisfactory if the PBIAS value is <25%. It
should be noted that our evaluations were for an
uncalibrated model, and calibration of the model is
assumed to improve the results.

The difference between the simulated and observed
surface runoff (i.e., the distance between the triangles
and circles in Figure 3) was small in most events.
Overall, the surface runoff estimated with the CN
method showed underestimations in all of the

watersheds, but overestimations in only a few events
(Figure 3, subplot).

Evaluating the CN Method for Different Rainfall-
Intensity and Antecedent Rainfall Categories

Based on the mean, PBIAS, and proportional error
of estimate, the CN method performed well during
high rainfall-intensity conditions (Table 5). However,
going by Moriasi et al. (2007), the PBIAS value of 61%
for observed vs. simulated runoff during low rainfall-
intensity events indicated poor performance. The CN
method also performed better at higher rainfall-inten-
sity category according to efficiency criteria such as
modified NSE and the relative efficiency criterion.

Conversely, the mean absolute errors, sums of
absolute errors, and standard errors of estimate
between observations and measurements indicated
that the CN method performed better under low rain-
fall-intensity conditions. However, as the absolute
amount of rainfall was lower in low-intensity events,
these results did not strongly affect the overall

TABLE 5. Goodness-of-Fit Calculations Comparing Observed and Simulated Surface Runoff Using the Curve Number Method
at Low and High Rainfall Intensity under Low and High Antecedent Rainfall Categories.

Goodness-of-Fit Indicators

Low Rainfall
Intensity

High Rainfall
Intensity

Low Five-Day
Antecedent Rainfall

High Five-Day
Antecedent Rainfall

Observed Simulated Observed Simulated Observed Simulated Observed Simulated

Mean 2.08 mm 0.80 mm 4.24 mm 3.61 mm 3.35 mm 2.37 mm 2.68 mm 1.92 mm
PBIAS 61.41 14.85 29.30 28.42
MAE 1.45 1.76 1.63 1.42
G 29.08 35.17 32.58 28.45
RMSE 2.02 2.65 2.42 2.03
PEE 3.82 2.71 3.40 4.70
SEE 2.13 2.79 2.56 2.14
Ej 0.08 0.53 0.44 0.41
Erel 0.21 0.37 0.65 0.35

FIGURE 4. The Effect of Five-Day Antecedent Rainfall and Rainfall Intensity on the Rainfall-Runoff Relationship for (a) Events with Low
Five-Day Antecedent Rainfall (below the median of 49.4 mm) and High Rainfall Intensity (above the median of 8.4 mm/hr) in Gegudeguade

Watershed, and (b) Events with High Five-Day Antecedent Rainfall (above the median) and Low Rainfall Intensity (below the median).
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performance of the model. Overall, it appears that
the CN method accurately estimated runoff following
high rainfall-intensity events, but underestimated
runoff at low rainfall-intensity events.

The CN method estimated runoff under both low
and high antecedent rainfall categories equally well
(Table 5). For example, the PBIAS for both antece-
dent conditions was ~30% and the modified NSE ~0.4.
Some goodness-of-fit indicators were better under low
antecedent rainfall category and others under high
antecedent rainfall.

Understanding the Rainfall-Runoff Relationship from
the Field Observations

Analysis of the field data from Gegudeguade shows
that rainfall intensity played a major role in runoff
generation during low antecedent rainfall (Fig-
ure 4a). Events with higher rainfall intensity and low
five-day antecedent rainfall generated more runoff
than events with high five-day antecedent rainfall
but low rainfall intensity. The slope for the best-fit
line of high rainfall intensity and low five-day antece-
dent rainfall is 0.46 (R2 = 0.97), which was statisti-
cally significant (p < 0.01). On the other hand the
slope for the best-fit line of high five-day antecedent
rainfall and low rainfall intensity is 0.1 (R2 = 0.14),
which was not statistically significant (p > 0.01). At
low rainfall intensity but with high five-day

antecedent rainfall, no correlation was found between
rainfall and runoff (Figure 4b).

Further analysis of the observed rainfall and run-
off data for Gegudeguade confirms that an increase
in antecedent rainfall did not result in an increase in
runoff (Figure 5). The slopes of the best-fit line with
the “dry” and “average” five-day antecedent rainfall
categories are both 0.44 (R2 of 0.91 and 0.71 for “dry”
and “average” categories, respectively), whereas the
“wet” five-day antecedent rainfall category has a best-
fit line slope of 0.41 (R2 = 0.65). The slope for the
best-fit lines for “dry,” “average,” and “wet” categories
was statistically significant (p < 0.01).

The Impact of Seasonality on Determining CN Curves

Monsoonal climates commonly have distinct wet
and dry seasons. The CN method is partly able to
account for this by using three curves to represent
the rainfall-runoff relationship for dry, average, and
wet antecedent wetness conditions. In our study, the
average annual CN for the simulation from 1 Jan-
uary 1990 to 31 December 2012 was 81. Taking the
average annual CN to be the same as CN2 (i.e., the
CN value representing the average antecedent wet-
ness condition), the corresponding CN values for dry
conditions (CN1) and wet conditions (CN3) were 64
and 92, respectively. When the rainfall-runoff curves
for these CNs were plotted over the measured and

FIGURE 5. Rainfall-Runoff Relationships under Three Average Five-Day Antecedent Rainfall Categories. The left-hand panel, showing 4.1-
9.9 mm of rainfall (“dry” antecedent wetness conditions), has a slope of 0.44 (R2 = 0.91). The middle panel, showing 8.4-13.1 mm of rainfall
(“average” antecedent wetness conditions), has a slope of 0.44 (R2 = 0.91). The right-hand panel, showing 9.9-17.9 mm of rainfall (“wet”

antecedent wetness conditions), has a slope of 0.41 (R2 = 0.65).
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simulated surface runoff, most simulated runoff
events were actually situated over the CN3 curve
(Figure 6). This is perhaps not surprising, consider-
ing the fact that the simulations were all for events
during the wet season. However, the observed surface
runoff was higher than can be computed by any of
these three CNs, which explains why runoff was on
average underestimated by the CN method in the
analysis above (without calibration of the model).

The retention parameter values (S) for the
observed event rainfall-runoff data were calculated
using Equation (3) in SI. These S values were then
used to calculate the corresponding CN values for
each rainfall-runoff event, using Equation (4) in SI.
The calculated CN values for these events ranged
from 83 to 99, with a median of 95. The median CN
that divides the data into two equal numbers of
points located above and below the CN curves is asso-
ciated with CN2 (Hjelmfelt, 1991; Woodward et al.,
2002). Therefore, the CN2 for the observed rainfall-
runoff data is 95, quite different from the CN2 of 81
used in the analysis.

To investigate how measurements would be dis-
tributed if a CN2 of 95 was used, the corresponding
CN values for dry (CN1) and wet (CN3) antecedent

wetness conditions were first determined (88 and 98,
respectively) and the observed events were then
superimposed onto these calculated curves (Figure 7).
With these new curves, most of the observations fall
between the CN1 and CN3 curves, which is in line
with the CN method’s conceptualization that the CN1

and CN3 curves represent extreme runoff situations
(Hjelmfelt, 1991).

DISCUSSION

Previous attempts to estimate surface runoff in the
Upper Blue Nile basin using the CN method have
yielded successful results (e.g., Setegn et al., 2010a,
b; Betrie et al., 2011). However, most of these studies
used total measured streamflow (i.e., base flow + sur-
face runoff) to evaluate the model simulations, and
operated on a larger scale. Moreover, the results of
these studies were after model calibration. These
approaches tell little about surface runoff estimation
using the CN method. Our study tested the perfor-
mance of the CN method in estimating surface runoff

FIGURE 6. Observed vs. Simulated Rainfall-Runoff Plots for Three Watersheds in the Lake Tana Basin: Gegudeguade (G), Aletu (A),
and Shimbraye (S). The rainfall-runoff curves are with Soil and Water Assessment Tool curve number CN2, CN1, and CN3.

FIGURE 7. Observed Rainfall-Runoff Data and Rainfall-Runoff Curves for Three Watersheds in the Lake Tana Basin: Gegudeguade (G),
Aletu (A), and Shimbraye (S). The dots represent rainfall vs. observed runoff combinations. The curves are according to calculated CN1, CN2,

and CN3 based on the observed rainfall and runoff data.
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in three small watersheds without manipulating CN
values. Studies in large watersheds involve different
processes including interflow and bypass flows.
Focusing on small watersheds, we were able to mea-
sure surface runoff and compare it with simulated
surface runoff with the CN method in the SWAT
modeling environment.

In our study, the CN method appears to have per-
formed reasonably well in estimating surface runoff.
No difference in the accuracy of runoff estimations
was found between different land-use types. The NSE
values were more than 0.7 and the PBIAS values
were <32%. Moriasi et al. (2007) suggest that a model
is considered as satisfactory if the NSE value is more
than 0.5, and PBIAS value is <25% for a monthly
time-step simulation. Although the PBIAS values for
our results were higher than this, Moriasi et al.’s
(2007) suggestion is for calibrated models, whereas
the objective of our study was to evaluate the CN
method without any parameter manipulation. Cali-
brating the CN to reflect uncertainties in the soil
data, soil residue cover conditions, and tillage prac-
tices could improve the flow simulations further. The
CN computations from our measured rainfall-runoff
data (Figure 7) suggest that choosing a higher CN
through calibration would have improved the esti-
mates.

Our results suggest that the CN method performs
better in high rainfall-intensity situations, but under-
estimates runoff in low rainfall-intensity situations
when used in tropical regions. One probable explana-
tion is that the SWAT model updates the CN daily
based on estimated soil moisture conditions, and sur-
face runoff is estimated at a daily time step. In

practice, events can happen within hours and the
effect of antecedent soil moisture on surface runoff will
be immediate and high. In these conditions, the CN
method in SWAT cannot keep track of the soil moisture
content sufficiently well because of difference in time
step, and could underestimate surface runoff in low
rainfall-intensity situations. Perhaps more impor-
tantly, water may runoff the rocky and surface-crusted
soil found in some parts of the watersheds even in low
rainfall-intensity situations (Figure 8), before the
model would recognize sufficient soil moisture to pro-
duce runoff (cf. Steenhuis et al., 2009). Future
research could explore how to better represent tropical
soils and/or modify the CN method to account for such
low infiltrability, which is common in tropical soils.

There was no observable difference in the perfor-
mance of the CN method under low and high antece-
dent rainfall categories. An increase in five-day
antecedent rainfall did not result in an increase in run-
off generation. This contradicts the CN method’s origi-
nal conceptualization that runoff increases as five-day
antecedent rainfall increases, and suggests that five-
day antecedent rainfall alone is not a good indicator to
use to adjust the CN for different antecedent wetness
conditions. In the Gegudeguade watershed, rainfall
intensity proved to be a better indicator of the an-
tecedent wetness condition than the average five-day
antecedent rainfall. Liu et al. (2008) has also shown
that when the rainy monsoon progresses the same
storm in the beginning of the rainy phase produces less
runoff than at the end of rainy phase. Other research
in the Ethiopian highlands (e.g., Bayabil et al., 2010;
Tilahun et al., 2015) also showed that formations of
saturated areas at the valley bottom of the watersheds
play a dominant role in generating surface runoff.
They suggested that saturated excess principles could
better help to understand the hydrological processes in
the Ethiopian highlands. Other factors such as rainfall
duration, rainfall amount, and evaporation may also
have an effect on the antecedent wetness conditions.
However, data on these factors may not be readily
available for hydrological modeling purposes. The
approach implemented in SWAT — determining the
retention parameter directly from the soil moisture
content or plant evapotranspiration — might address
these issues, which could partly explain the relatively
good agreement between measured surface runoff and
surface runoff estimated with the CN method within
SWAT environment.

Our findings demonstrate that process understand-
ing is needed to truly trust the application of the CN
method. However, the fact that the CN method
worked better in high rainfall-intensity conditions
suggests that it can be useful for water management
in tropical regions. The average runoff amount in low
rainfall-intensity conditions is small, resulting in only

FIGURE 8. Photo Showing Rocky Surfaces in the Shimbraye
Watershed. The picture also shows the location of the weir and the
boundary of the watershed. Photo was taken on July 22, 2012, and

photo credit goes to Yihun Dile.
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small errors in the estimates of absolute runoff,
despite the current problems with underestimation.
For water management applications such as irriga-
tion, it is the highest rainfall-intensity events, gener-
ating a large amount of runoff, that count as they help
to fill reservoirs and ponds. We therefore conclude
that the CN method is useful to estimate surface run-
off for water management purposes in the tropics at
the watershed scale, although there is scope for
improvement in runoff estimates at low rainfall inten-
sities. Such a modification of the CN method should be
based on an understanding of the hydrological pro-
cesses determining the rainfall-runoff relationships in
different landscape settings (Steenhuis et al., 2009).

CONCLUSIONS

Based on our analysis, the CN method can simulate
surface runoff at the watershed scale in tropical
regions with a satisfactory level of accuracy. We found
that the CN method performed equally well in simulat-
ing surface runoff during both low and high antecedent
rainfall conditions characteristic of monsoonal cli-
mates. Another common feature of monsoonal climates
is high rainfall intensity. The CN method could satis-
factorily simulate runoff for high rainfall-intensity
events; however, at low rainfall intensity, runoff was
underestimated. A possible explanation could be low
infiltrability due to crust formation or rocky surfaces,
common in tropical soils, and formation of saturated
areas at the valley bottom of the watershed (Bayabil
et al., 2010; Tilahun et al., 2015). Therefore, a modifi-
cation of the CN method to account for low soil infiltra-
bility and saturated areas in the valley bottom of the
watershed could be developed in the future to further
improve the accuracy of the CN method at low rainfall
intensities in tropical watersheds.

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: The curve number (CN) method within
SWAT: A theoretical background.
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