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Abstract

Calibration of a hydrological model is a challenging task, especially in basins that are

data scarce. With the incorporation of regional information and integration with sat-

ellite data, the parameters of hydrological models can be estimated for a basin with

scant or no discharge records. The main objective of this study is to calibrate and val-

idate a hydrological model based on a limited amount of in-situ measured and remote

sensing satellite datasets in a data-sparse region. Multiple techniques were applied

for the model calibration: (1) stage-discharge curves using a spatial proximity

approach, (2) Simplified Surface Energy Balance actual evapotranspiration, (3) river

discharge using a physical similarity regionalization approach, and (4) a new hybrid

approach by integrating remote sensing datasets along with field measured river

bathymetry data to estimate the river discharge. To demonstrate the methodology,

we employed the widely used Soil and Water Assessment Tool (SWAT) hydrological

model in Manipur River Basin, India. The sensitivity, calibration, and validation of the

SWAT model were carried out by using the Sequential Uncertainty Fitting Technique.

During calibration, the coefficient of determination (R2) and the Kling Gupta Effi-

ciency (KGE) were found to be in the range of 0.46–0.81 and 0.41–0.83, whereas

during validation R2 and KGE were found to be in the range of 0.40–0.79 and 0.53–

0.77 for the four different techniques. Among all the four techniques applied in this

study, calibration based on (i) stage-discharge curve using spatial proximity approach

and (ii) new hybrid approach by integrating remote sensing datasets and river

bathymetry were found as the better approaches as indicated by the statistical indi-

ces. The performance evaluation of the model through a new hybrid approach by

integrating remote sensing and in-situ measured datasets for rivers with narrow

width represents a promising technique for use in a data sparse region.

K E YWORD S

bathymetry, evapotranspiration, Kling Gupta efficiency, regionalization, sequential uncertainty
fitting technique, soil and water assessment tool

Received: 4 July 2023 Revised: 20 December 2023 Accepted: 29 December 2023

DOI: 10.1002/hyp.15084

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.

Hydrological Processes. 2024;38:e15084. wileyonlinelibrary.com/journal/hyp 1 of 17

https://doi.org/10.1002/hyp.15084

https://orcid.org/0000-0001-7087-1344
mailto:vicky.einstein@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hyp
https://doi.org/10.1002/hyp.15084
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhyp.15084&domain=pdf&date_stamp=2024-02-04


1 | INTRODUCTION

Hydrological models facilitate the user in understanding the interaction

between the several parameters of the complex hydrological system

and assist the user in predicting the spatio-temporal information of the

basin (Pechlivanidis et al., 2011; Sokolowski & Banks, 2010). Hydrolog-

ical models serve as an interface between theory and practice by sim-

plifying the hydrological system that depicts hydrological processes.

This allows users to analyse phenomena at basin, regional, and global

scales that are in synchronous with the hydrological systems. (Babel &

Karssenberg, 2013; Singh et al., 2020; Tessema, 2011). Hydrological

modelling is a useful tool for various purposes such as water resources

planning and management but it is always a challenging task to carry

out hydrological modelling in a data-scarce region due to the deficit in

quantity and quality of data. In general, in-situ measurement of all the

data associated with hydrological processes and systems is not feasible

at basin or sub-basin scale. The field measurements have limitations as

they are time-consuming, cost-heavy and have constraints due to the

systems' higher temporal and spatial heterogeneity.

Hydrological systems have nonlinear complex dynamics that are dif-

ficult to comprehend. (Sokolowski & Banks, 2010). Calibration and vali-

dation are a vital part of the hydrological modelling on a basin scale due

to the higher spatio-temporal variability in the hydrological system. Cali-

bration and validation of model depends upon the availability and the

resolution of the observed datasets. In a gauged basin with the availabil-

ity of observed discharge data of a river, the moisture and nitrogen con-

tent in the soil as well as evapotranspiration can be modelled with good

accuracies (Odusanya et al., 2019). However, hydrological modelling is a

complex task in a scantly gauged region or basin due to distinct features

of the hydro-climatological parameters especially in the tropical and

semi-tropical regions (Ajami et al., 2004; Bardossy, 2007; Singh & Bár-

dossy, 2015; Thomas et al., 2013). Several investigations have been

undertaken by applying the Soil and Water Assessment Tool (SWAT)

hydrological model in different basins in data-scarce locations (Emam

et al., 2017; Liu et al., 2015; Mengistu et al., 2019; Qi et al., 2020; Siri-

sena et al., 2020; Swain & Patra, 2017); the key drawback of these

researches was the spatiotemporal coverage of the data used for cali-

bration and validation. Although all of these earlier studies on SWAT

applications attempted to enhance model performance in catchments

with less data, they did find some variation in model performance.

River discharges are measured at gauging stations. Even yet,

recorded statistics are unreliable, particularly in developing and under-

developed countries, and are subject to proprietary control in devel-

oped countries (Tarpanelli et al., 2013). These defy the bounds of the

research studies related to hydrological modelling which requires river

discharge datasets. In the past decades satellite remote sensing data-

sets have provided an aid in a data scarce region (Ali et al., 2023).

Remote sensing-based data or product offers extensive coverage of

water bodies like rivers, lakes and ponds. In the recent past, several

research studies have indicated the advantages of remote sensing in

terms of its extensive monitoring period and spatial coverage. Both

edges have increased attention in deriving streamflow approximation

from remote sensing (Huang et al., 2020; Sichangi et al., 2016). How-

ever, remote sensing datasets have their own limitation while

estimating the discharge of medium to small size stream due to its

spatial resolutions (Anand et al., 2023; Lou et al., 2022).

There are several hydrologic models (e.g., empirical models,

lumped models, statistical models, physically distributed models) to

compute the availability of water resources. Physically distributed

models aim to illustrate the hydrologic processes in details and can

predict the quality and quantity of water with respect to both time

and space (Odusanya et al., 2019). These predictions are based on

several parameters such as climatic condition, soil, land use land cover,

and topography of the region. There are numerous physical-based

models, such as SHETRAN, which can model sub-surface flow and

transport (Ewen et al., 2000), the Hydrologic Simulation Program For-

tran which can model the nutrient flow in streams (Bicknell

et al., 1997), variable infiltration capacity which can model the energy

and water balances at the macroscopic scale (Liang et al., 1994), and

SWAT which can model and predict the water quality and quantity

and represents land management practices (Arnold et al., 1998).

According to Odusanya et al. (2019), these physical-based models

may clearly illustrate the physical, biological, and chemical processes

in the basin by means of their underlying physical mechanisms.

In this study, the widely used Soil and Water Assessment Tool

(SWAT) hydrological model was employed in the Manipur River Basin,

India, to demonstrate the methodology using multiple techniques based

on both in-situ measured and remote sensing satellite datasets. Several

studies have been done to estimate the discharge of an ungauged river

basin solely with remote sensing datasets which can be used for model

calibration but they have been limited to rivers with large width

(Kebede et al., 2020; Xueying et al., 2023). In the past, Getirana (2010)

used Envisat-derived water levels with empirical formulas in Amazon

River basin, Sun et al. (2012) used TOPEX derived water levels with

AHG, Paris et al. (2016) used Jason-2 and Envisat derived water levels

with rating curves in the Amazon River basin, Huang et al. (2020) used

Jason-2-derived water levels and Surface Water and Ocean Topogra-

phy (SWOT)-like data with developed empirical equations in Upper

Brahmaputra River, to derive river discharge. This study presents a new

hybrid approach by integrating remote sensing datasets along with field

measured river bathymetry data to estimate the river discharge to cali-

brate the SWAT hydrological model in a river with narrow width.

The main objective of this study is to calibrate and validate the

SWAT hydrological model based on a limited amount of in-situ mea-

sured and remote sensing satellite datasets. Multiple techniques were

applied based on (1) Stage-discharge curves using spatial proximity

approach, (2) Simplified Surface Energy Balance (SSEBop) actual

evapotranspiration derived from MODIS, (3) river discharge using a

physical similarity regionalization approach, and (4) hybrid approach

by integrating remote sensing, water level and river bathymetry.

2 | MATERIALS AND METHODS

2.1 | Study area

To demonstrate the methodology, we selected the Manipur River

basin located in North-Eastern part of India. The Manipur River basin,
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along with the Barak River basin and Yu River basin, drains the North-

Eastern state of Manipur. The Manipur River basin is the largest river

basin in the valley region of Manipur and covers 28% of the state's

total area (Singh et al., 2010). The major section of the Manipur River

basin comprises the valley region of Manipur and plays a critical role

in the socio-economic condition of the region (Anand et al., 2020). In

the past few decades, there has been a significant change in eco-

hydraulic and eco-hydrologic conditions in the basin due to natural

and anthropogenic factors. Observed hydrometric data (such as

streamflow) and its quality in terms of its consistency are missing in

the basin as it is ungauged. The longitudinal and latitudinal extent of

the Manipur River basin is between 24� and 25�250 North and

93�360–94�270 East. The Manipur River basin is hydrologically divided

into nine sub-basins, namely Sekmai, Thoubal, Nambol, Imphal,

Heirok, Kongba, Western, Iril and Khuga. Iril and Thobal rivers are the

largest tributaries of the Manipur River. Loktak Lake, one of the

distinctive ecological units in Manipur, is one of the vital sub-basins of

the Manipur River basin (LDA, 2003; Ramsar Bureau, 2016). The Lok-

tak Lake is located in the central valley and covers 28% of the total

area of the Manipur River basin (Singh et al., 2011). The unique ele-

ment of the lake is the “Phumdis”, herbaceous floating biomass

(LDA, 2003). The Keibul Lamjao National Park, the only floating

national park in the world located on the south-eastern side of the

Loktak Lake, is the only natural habitat of Rucervus Eldii (LDA, 2003).

The total area of the basin is 5020 km2. The elevation varies from

744 to 2689 m above MSL with mild slope in the valley region to

steep slope in the hilly region. The study area is shown in Figure 1.

The Manipur river basin is characterized by a semi-tropical to a

tropical type of climate. In contrast, the hilly regions in the northern

part of the basin experience temperate to a semi-temperate type of

climate (Directorate of Environment, 2013). India's southwest mon-

soon winds drive the climate in this basin. The basin receives an

F IGURE 1 Manipur river basin with the meteorological stations, outlet point and river network.
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annual average rainfall of 1350 mm (Directorate of Environ-

ment, 2013). The monsoon season starts from mid-June, lasts till mid-

October, and accounts for 63% of the annual rainfall in the basin

(Directorate of Environment, 2013). The relative humidity ranges in

the basin between 51% and 81%, and the mean annual temperature

ranges from 12 to 31�C, with May as the hottest and January as the

coldest month, respectively. The basin is mostly dominated by forest

and agriculture. Forest cover mainly consists of moist deciduous and

subtropical pine forests. Rock types are mostly igneous intrusions and

Cretaceous and Tertiary sedimentary formations (NBSS and

LUP, 2001). The major soils of the basin are Haplohumults, Dystro-

crepts, Hapludalfs, and Haplaquepts (NBSS and LUP, 2001).

2.2 | Data acquisition and analysis

The SWAT model was set-up for the Manipur River basin using Land

Use Land Cover (LULC) data, a Digital Elevation Model (DEM), meteo-

rological data and soil data as input variables. The ALOS PALSAR

DEM was used in this study to delineate the watershed. The LULC for

the study area was generated based on Landsat 8 OLI C1 Level

1 image using maximum likelihood classifiers for the year 2017. The

soil data were obtained from the National Bureau of Soil Survey and

Land Use Planning (NBSS and LUP), Govt. of India. Meteorological

data from three different gauging stations were obtained on a daily

time scale. Due to the lack of hydrometric stations in the basin, direct

streamflow was unavailable for the model calibration. In order to cali-

brate the model, various approaches were adopted using the datasets

obtained from multiple organizations. A detailed description of the

adopted approaches has been discussed in the Section 2.8. The details

of the datasets, along with their source and resolution, are shown in

Table 1.

2.3 | SWAT hydrological model

SWAT is an open-source physical-based semi-distributed ecohydrolo-

gical model (Arnold et al., 1998). SWAT works on a three-phase sys-

tem in which the basin is divided into sub-basins and sub-basins into

their smallest units, known as hydrological response units (HRUs)

(Arnold & Fohrer, 2005). Using various methods, the model can com-

pute nutrient, water, and sediment flow within a watershed (Arnold &

Fohrer, 2005). In SWAT, the land phase equation governs the hydro-

logical cycle. A detailed description of SWAT is given in the manual

(Neitsch et al., 2002). SWAT is based on the water balance equation

(Equation 1) (Arnold & Fohrer, 2005).

SWt ¼ SWoþ
Xn
j¼0

Pday�Qsur �Ea�Wsep�Qgw

� �
, ð1Þ

where SWt is the quantity of water content in the soil after t days

(mm); SW0 is the initial quantity of water content in the soil on jth day

(mm); Pday is the quantity of precipitation on jth day (mm); Qgw is the

quantity of return flow on jth day; Ea is the quantity of

evapotranspiration on jth day (mm); Qsur is the quantity of surface run-

off on jth day (mm); Wsep is the quantity of percolation going into the

vadose zone on jth day, and t is the amount of time in days.

Sensitivity analysis and calibration were carried out in the Soil

and Water Assessment Tool-Calibration and Uncertainty Program-

ming (SWAT-CUP). Sampling methods applied to carryout sensitivity

analysis were one-factor-at-a-time (OAT) and Latin hypercube (Abbas-

pour, 2015). There are several algorithms embedded in SWAT-CUP to

carryout calibration: Sequential Uncertainty Fitting Technique (SUFI-

2), Markov Chain Monte Carlo, Generalized Likelihood Uncertainty

Estimation, particle swarm optimization and Parameter Solution

(Abbaspour, 2015). In this study, SUFI-2 was applied to carryout cali-

bration and validation of the model as SUFI-2 is the only algorithm in

SWAT-CUP which is global.

2.4 | Routing method in SWAT

For the calculation of concentration-time in the watershed Manning's

equation is applied (Neitsch et al., 2011). In SWAT, two options are

available for routing that is, the variable storage routing method and

the Muskingum routing method (Neitsch et al., 2011). In order to com-

pute all the essential geometric parameters of the channel, SWAT

uses channel's depth at the top of the bank (dbankfull), the width of

water up to bankfull depth (Wbankfull), Manning's coefficient (n),

TABLE 1 Input dataset with its source and resolution.

Data Resolution Source

Digital Elevation

Model (DEM)

12.5 m ALOS PALSAR, Alaska Satellite

Facility

Land use Land

covera
30 m Landsat 8, Earth resource

observation and science

Meteorological

data

Daily Directorate of Environment

Manipur

Soil dataa 1:500000 National Bureau of Soil Survey &

Land Use Planning (NBSS &

LUP)

Manipur river

water level

Monthly National Hydro Electric Power

Corporation (NHPC) Power

Station Loktak Project

(January 2008–December

2018)

Manipur river

water level and

discharge

Daily Loktak Development Authority

(April 2000–March 2002)

Multispectral data 5.8 m LISS-IV, Resourcesat 2A,

National Remote Sensing

Centre (NRSC), Indian Space

Research Organization (ISRO)

Manipur River

cross-section

1 m Field survey using echo-sounder

Evapotranspiration Monthly SSEBop (2004–2018)

Dhansiri River

discharge

Monthly Inland Waterways Authority of

India (IWAI) (2016)

aResampled to 12.5 m.
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longitudinal channel's slope (chslp) and main channel's length (len) as

an input in .rte file (Neitsch et al., 2011). For the purpose of flood

routing, SWAT assumes the cross-section of the channel to be trape-

zoidal, with the side slope of the flood plain as 1:2 and the main chan-

nel as 1:4. In this study, the Muskingum routing method embedded in

SWAT was applied. Conceptually the Muskingum routing method

used in SWAT is derived from the Muskingum Cunge method

(Cunge, 1969), which uses the matched diffusivity concept. The rout-

ing equation is (Equations 2–9):

Out2 ¼C1In2þC2In1þC3Out1, ð2Þ
where

C1 ¼ �2KθþΔt
2K 1�θð ÞþΔt

, ð3Þ

C2 ¼ 2KθþΔt
2K 1�θð ÞþΔt

, ð4Þ

C3 ¼2K 1�θð Þ�Δt
2K 1�θð ÞþΔt

, ð5Þ

where K is storage constant for reach (s), In2 is final inflow (m3s�1), In1

is initial inflow (m3s�1), Out2 is final outflow (m3s�1), Out1 is initial out-

flow (m3s�1), θ = weighting factor.

The following clause is recommended in SWAT to avoid a nega-

tive outflow calculation and ensure numerical stability.

2Kθ <Δt<2K 1�θð Þ, ð6Þ

K¼ a1Kbankfullþa2K0:1bankfull, ð7Þ

where a1 and a2 are weighted quantities defined by the user. The

value of Kbankfull and K0.1bankfull is computed using the formula given by

(Cunge, 1969). K is storage constant, defined as routing step length

divided by the wave celerity.

K¼1000Lk
Ck

, ð8Þ

where Lk is the length of the channel and Ck is the celerity of the

flood wave

Ck ¼ ∂Q
∂A

¼5
3
vc, ð9Þ

where vc is the flow velocity in the channel.

2.5 | Evapotranspiration in SWAT

Evapotranspiration plays a vital role in water balance. There are sev-

eral methods to estimate Potential Evapotranspiration (PET), but it is

complex to determine the Actual Evapotranspiration (AET). It is often

deduced from the PET through a cause that demonstrates the

intensity of stress experienced by plants. In SWAT, there are three

options to compute PET: the Hargreaves method, the Priestley-Taylor

method, and the Penman-Monteith method. In this study, the Pen-

man-Monteith method was adopted. Wind speed, air temperature,

relative humidity, and solar radiation are required as input in the Pen-

man-Monteith method (Equation 10).

λE¼Δ⨯ Hnet�Gð Þþρair ⨯Cp ⨯ eoz �ez
� �

=ra
Δþ γ ⨯ 1þ rc=rað Þ , ð10Þ

where λE denotes latent heat flux density (MJ m�2d�1), Hnet denotes

net radiation (MJ m�2d�1), Δ denotes slope of saturation vapour pres-

sure–temperature curve (kPa �C�1), ρair denotes air density (kg m�3), E

denotes the depth rate evaporation (mm d�1), Cp denotes specific heat

at constant pressure (MJ kg�1 �C�1), G denotes heat flux density to

the ground (MJ m�2d�1), γ denotes psychrometric constant (kPa �C�1),

ra denotes aerodynamic resistance (s m�1), rc denotes plants canopy

resistance, ez denotes water vapour pressure of air at height z (kPa),

and ez
o denotes saturation vapour pressure at height z (kPa).

2.6 | Estimation of discharge and Manning's
roughness coefficient based on remote sensing
datasets

Estimating the discharge of rivers is complex; therefore, they are cal-

culated based on hydraulic parameters derived from the field-based

survey or remotely sensed datasets using mathematical equations.

Using Manning's fundamental open channel flow, the channel (river)

discharge can be computed as (Manning, 1891) (Equation 11).

Q¼1
n
⨯A⨯R2=3 ⨯ S

1=2, ð11Þ

where S is the friction slope, R is the hydraulic radius, A is the wetted

area and n is the Manning's roughness coefficient.

Channel irregularity, vegetation cover, degree of meandering of

the stream, the consequence of obstruction, and the materials

involved are the various parameters influencing the channel's resis-

tance (Coon, 1998). Numerous methods have been already proposed

to estimate channel's resistance: assigning a proper value from Table 2

(Chow, 1959), by visual interpretation and ground survey (Dudley

et al., 1998). In this study, Resourcesat 2A LISS IV with a 5.8 m high

spatial resolution satellite imagery was implemented along with the

colour composite approach with visual interpretation to estimate the

channel's resistance at the outlet. The channel roughness coefficient

was estimated through visual image interpretation of multi-spectral

satellite imagery using the formula (Equation 12)

n¼ noþn1þn2þn3þn4ð Þ⨯n5: ð12Þ

Since Manning equation is an empirical equation, the values for

Manning constant are derived from observations. The equation is

practically tested; are best suited for uniform, steady-state open

ANAND ET AL. 5 of 17
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channel flow. The comprehensive methodology to estimate the coeffi-

cient of roughness of a channel from multi-spectral satellite imagery

can be found in the literature by Sichangi et al. (2018) which is

adapted from the methodology given by Chow (1959).

2.7 | Statistical indices for model performance and
uncertainty

The coefficient of determination (R2) (Equations 13 and 14) and Kling-

Gupta efficiency (Gupta et al., 2009) (Equations 15–17) were used to

evaluate the SWAT model performance during the calibration and val-

idation (Abbaspour, 2015). In the process of evaluating the uncer-

tainty of the model, we applied two indictors including P-factor and

R-factor (Wu & Chen, 2015).

i. Coefficient of determination (R2):

R2 ¼

P
i

Pn,i�Pm
� �

Pt,i�Pt
� �" #

P
i

Pn,i�Pn
� �2P

i
Pt,i�Pt
� �2

2

: ð13Þ

g¼
X
j

wjR
2
j : ð14Þ

ii. Kling-Gupta efficiency (KGE):

KGE¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�1ð Þ2þ α�1ð Þ2þ β�1ð Þ2

� �
,

r
ð15Þ

β¼ μs
μm

,α¼ σs
σm

, ð16Þ

g¼
X
j

wjKGEj, ð17Þ

where n denotes observed data, P denotes a variable, t denotes simu-

lated data and bar signifies mean values, i denotes the ith measured or

simulated data, r denotes the coefficient of linear regression between

simulated and observed variables, μs denotes the mean of simulated

records, μm denotes the mean of observed records,σs denotes the

standard deviation (SD) of simulated records and σm denotes SD of

the observed data, wj is the weight of the jth variable, and g is the

objective function for more than one variable.

The R-factor and the P-factor are the two indices which represent

the degree of uncertainty associated with the hydrological model. The

R-factor is the ratio of the average thickness of the 95% prediction

uncertainty (PPU) to the standard deviation of the observed data. In

contrast, the P-factor shows the percent of observed data bracketed

by the 95% prediction uncertainty.

TABLE 2 Reference values to
estimate the coefficient of roughness
(Chow, 1959).

Channel condition Sub-class Values

Material involved Earth no 0.025

Rock 0.025

Fine gravel 0.024

Course gravel 0.027

Degree of irregularity Smooth n1 0.000

Minor 0.005

Moderate 0.010

Severe 0.020

Variation of channel cross-section Gradual n2 0.000

Alternating occasionally 0.005

Alternating frequently 0.010–0.015

Relative effect of obstructions Negligible n3 0.000

Minor 0.010–0.015

Appreciable 0.020–0.030

Severe 0.040–0.060

Vegetation Low n4 0.005–0.010

Medium 0.010–0.025

High 0.025–0.050

Very high 0.050–0.100

Degree of meandering Minor n5 1.000

Appreciable 1.150

Severe 1.300
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2.8 | Calibration approaches

The SWAT hydrological model was setup for Manipur river basin

using DEM, landuse and soil data. After setting up the model following

four approaches was adopted to calibrate the model and performance

was compared.

1. Calibration based on stage-discharge curves using spatial proximity

approach

Due to the lack of direct streamflow data in the basin, rating

curves were generated based on the stage-discharge data collected

during the hydrographic survey carried out by the Loktak Develop-

ment Authority (LDA) at Arong, which is approximately 6 kilometres

upstream from the outlet point. The stage-discharge data collected

from the LDA was gauged three times a day at an interval of 4 h

between 2000 and 2002. Based on stage-discharge data, initially, an

attempt was made to generate a single rating curve for the entire sea-

son, but due to the poor performance and higher variability in dis-

charge during the dry and wet seasons, two separate rating curves

were generated for the dry and the wet season. The rating curves

were generated using power regression. Later the observed discharge

at the outlet point was generated using the regionalization method (i.

e., spatial proximity approach) based on the stage data obtained from

the National Hydroelectric Power Corporation (NHPC) Power Station

Loktak Project and the generated rating curve at Arong, which is six

kilometres upstream of the outlet point.

2. Calibration based on SSEBop actual evapotranspiration derived

from MODIS

Several attempts have been made to calibrate the hydrological

model based on the satellite remote sensing evapotranspiration data-

sets. Bennour et al. (2022) have used Global Land Evaporation

Amsterdam Model (GLEAM) and Water Productivity Open Access

Portal, whereas, Immerzeel and Droogers (2008) and Emam

et al. (2017) have used moderate resolution imaging spectroradi-

ometer (MODIS) remote sensing evapotranspiration datasets to cali-

brate the hydrological model. In this study, the simulated

evapotranspiration of SWAT hydrological model was compared with

the SSEBop actual evapotranspiration data derived from MODIS on

monthly time step. The model performance was evaluated based on

Kling-Gupta efficiency (KGE) and coefficient of determination. The

evapotranspiration datasets were downloaded from the portal and it

was mosaic. The evapotranspiration was extracted from SSEBop

evapotranspiration datasets in ArcGIS and later it was summarized at

sub-basin scale using zonal statistics tool. The extracted evapotranspi-

ration was used to calibrate the SWAT hydrological model.

3. Calibration based on river discharge using physical similarity

regionalization approach

In ungauged basins the hydrological parameters can be predicted

through regionalization approach (e.g., Bardossy, 2007; Emam

et al., 2017). Generally, the basins with similar physical characteristics

shows similar hydrological responses, hence the parameters can be

optimized and transferred from similar watersheds, this transforma-

tion is known as regionalization. There are several kinds of approaches

for such transformation which includes spatial proximity (Emam

et al., 2017), physical similarity (Mengistu et al., 2019) and regression

methods (Bastola et al., 2008). Several other approaches have also

been used such as ratio method to predict discharge in an ungauged

basin, use of satellite altimetry data, multispectral satellite imagery-

based river flow width as a substitute for river records.

In this study, Dhansiri River discharge data was used as a surro-

gate to ungauged Manipur River. Based on the physical similarity the

area ratio method was applied as a compensation factor to the dis-

charge of Dhansiri River in order to calibrate the hydrological model

for Manipur River. The model performance and uncertainty were eval-

uated based on R-factor and P-factor. A high P-factor and a low R-fac-

tor quantify the minimum uncertainty associated with the model

(Abbaspour et al., 2004). Nevertheless, equilibrium should be attained

between the R-factor and P-factor.

4. Calibration based on water level and river bathymetry

The observed discharge of the Manipur River was computed at

the outlet point using water level data obtained from the NHPC

Power Station Loktak Project and the cross-sectional profile of the

river. The cross-sectional profile of the river was mapped using an

echo-sounder-based bathymetric survey. The actual cross-sectional

profile of the river bed is shown in Figure 2a. In order to generate a

regular geometric profile, multiple linear regressions were applied for

the right bank, left bank and the central section of the river (Figure 2),

later the channel geometry was generated and computed in AUTO-

CAD environment (Figure 2b). The observed discharge was generated

based on the river depth and the cross-sectional profile by using Man-

ning's equation. The coefficient of roughness was computed based on

the high resolution multi-spectral satellite imageries.

3 | RESULTS

Manipur River basin is an ungauged basin, so there is a severe scarcity

of data and its reliability. In order to calibrate the SWAT hydrological

model in the Manipur River basin four independent techniques; based

on: the stage-discharge method, regionalization of river discharge,

remotely sensed actual evapotranspiration data (AET), river bathyme-

try, and Manning's approach were applied.

3.1 | Calibration based on stage-discharge curves
using spatial proximity approach

The coefficient of determination (R2) values of the generated stage-

discharge curves was found to be 0.793 and 0.918 during the wet and

the dry seasons, respectively. The coefficient of determination was

found to be higher in the dry season compared to that of the wet

ANAND ET AL. 7 of 17
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season, mainly due to the fewer fluctuations of the flow in the dry

season. In the north-eastern part of India, nestled in the Himalayan

ranges, the rate of fluctuations in precipitation is very high due to the

higher turbulence of the wind caused by the altitude of the Himalayan

mountain ranges, which simultaneously leads to the high fluctuations

in the streamflow in the rivers. The rating curve for the two different

seasons is shown in Figure 3.

Model calibration was carried out between the years 2009–2015,

and the validation was carried out between the years 2016–2018 on

a monthly time scale, whereas the year 2008 was used as the warm-

up period for the model. The sensitive variables were selected

through sensitivity analysis based on the OAT technique. Then, by

global sensitivity analysis, the sensitiveness of indices was found and

classified as low, medium and high (Table 4). Global sensitivity shows

that the initial SCS runoff curve number for moisture condition II

(CN2), baseflow alpha-factor (Alpha_BF), and soil water capacity of

the first soil layer (SOL_AWC) are the most sensitive parameters while

calibrating the model using streamflow data obtained from the rating

curve. Studies carried out in the different parts of the world also

strengthen the significance of these parameters (Emam et al., 2017;

Vilaysane et al., 2015). Sensitive parameters along with their fitting

values are shown in (Table 4). Good agreement was detected between

the simulated and observed streamflow at monthly time steps with

R2 = 0.81, KGE = 0.77 during the calibration and R2 = 0.73,

KGE = 0.70 during the validation period. Due to the spatial proximity

approach, the peak value was not simulated well during the monsoon

season. It can also be noted that the model performance was found to

be better during calibration than validation because there was a

higher uncertainty involved in the year 2017 due to the higher

amount of precipitation. The calibration and validation results can be

seen in Figure 4. R-factor was found to be on the lower side, with its

value around 0.1 indicating the lower model uncertainty, but the P-

factor value ranging around 0.5 indicates the errors are marginally not

bracketed by the 95 PPU. Overall indices signify the model can be

used for further eco-hydrological studies.

3.2 | Calibration based on SSEBop actual
evapotranspiration derived from MODIS

The selection of SSEBop evapotranspiration products derived from

MODIS was based on free availability, spatiotemporal coverage, and

F IGURE 2 (a) Actual cross-sectional profile of the river. (b) Approximated geometric cross-sectional profile of the river.
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resolution. SSEBop has been validated globally using data from

ground observation sites (Senay et al., 2013). In the study carried out

by Chen et al. (2016) found that, the uncertainties from input vari-

ables and parameters of the SSEBop model led to monthly ET esti-

mates with relative errors less than 20%. This uncertainty of the

SSEBop model lies within the error range of other surface energy bal-

ance (SEB) models, suggesting systematic error or bias of the SSEBop

model is within the normal range. In this study, the SWAT hydrologi-

cal model was spatially calibrated and validated at the sub-basin

scale. The sub-basins located in the northern, eastern and one sub-

basin in the southern part of the basin is dominated by forest. Among

those, the sub-basin in the southern part was selected to optimize

the relevant parameters since it is covered with dense evergreen for-

est. Prior to the calibration and validation of the model, parameter

sensitiveness was determined based on the OAT method. In the

sensitivity analysis, firstly, the sensitive variables identified in the rat-

ing-curve approach were kept the same and parameters related to

the evapotranspiration phenomenon were added, that is, initial SCS

runoff curve number for moisture condition II (CN2), soil evaporation

compensation factor (ESCO), plant uptake compensation factor

(EPCO) and maximum canopy storage (CANMAX). The vertical circu-

lation of plant water uptake within the rooting zone is governed by

the plant uptake compensation factor (EPCO), whereas soil evapora-

tion is controlled by the soil evaporation compensation factor

(ESCO), which is governed by soil characteristics. To meet the evapo-

rative demand, more water is extracted from the lower levels as the

ESCO value decreases. The quantity of water which can be trapped

in a fully developed canopy and which affects the evapotranspiration,

runoff, and infiltration is demonstrated by the maximum canopy stor-

age (CANMAX).

F IGURE 3 (a) Rating curve for the dry season. (b) Rating curve for the wet season.

F IGURE 4 Calibration (2009–2015) and validation (2016–2018) of the model using stage-discharge curve.
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The model was calibrated between the years 2006–2014 and val-

idated between 2015 and 2018, whereas the time interval 2004–

2005 was used as a warm-up period. During the calibration and vali-

dation period the model returned a good degree of agreement with

R2 = 0.67, KGE = 0.41 and R2 = 0.79, KGE = 0.53 respectively. The

scatter plot graph for the calibration and validation is shown in

Figure 5.

From the model performance, it was observed that the actual

evapotranspiration predicted by the SWAT model in the post-mon-

soon season was lower than the SSEBop data, but the temporal vari-

ability was predicted well by the model (Figure 6). The key parameters

which play a vital role in the actual evapotranspiration variability are

wind speed and relative humidity (Petkovi�c et al., 2015). During the

winter months after the monsoon season, from November to Febru-

ary, the evapotranspiration was low due to the lower average temper-

ature and precipitation. The model performance was found to be

satisfactory based on the coefficient of determination (R2) and KGE.

3.3 | Calibration based on river discharge using
physical similarity regionalization approach

An attempt was made to calibrate the SWAT hydrological model for

Manipur River using stream flow data of the Dhansiri River. This study

F IGURE 5 (a) Calibration. (b) Validation of model based on SSEBop AET derived from MODIS (MOD 16).

F IGURE 6 Actual evapotranspiration SWAT versus SSEBop.

10 of 17 ANAND ET AL.
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used an observed river discharge dataset obtained from the Inland

Waterways Authority of India (IWAI) (IWAI, 2016). Since both the

Manipur River basin and Dhansiri River basin are closer in spatial

proximity (Figure 7), they may have physically similar characteristics

(Table 3); therefore, the observed river discharge of the Dhansiri River

was used to calibrate the hydrological model for Manipur River basin.

Rather than directly using the observed discharge of Dhansiri River,

the area-ratio method was applied to the dataset. Rainfall data of Imp-

hal and Dimapur rain gauge stations which lie in the center of Manipur

River and Dhansiri River basins were compared. Imphal receives an

average annual rainfall of 1350–1400 mm, and Dimapur receives

an average annual rainfall of 1450–1500 mm. Since the average

annual rainfall difference is around 5%, the rainfall compensating fac-

tor was ignored. A constant value of 0.59 obtained through area-ratio

was multiplied to the observed discharge dataset as an area-ratio

compensating factor.

The model was calibrated between the time periods 2007–2011

and validated between the 2012 and 2014 on monthly time steps,

whereas the model was provided with a one-year warm-up period. Ini-

tially, the same sensitive parameters with the same ranges were

selected, which were used for the calibration using the rating curve

method. In addition to that, as a routing parameter the Manning value

for the main channel (CH_N2) was added. From the sensitivity

analysis the initial SCS runoff curve number for moisture condition II

(CN2), the Manning value for the main channel (CH_N2), and the soil

water capacity of the first soil layer (SOL_AWC) were found to be the

most sensitive parameters. The significance of these parameters has

been accounted for by other researchers. The flow parameters such

as CH-N2 and CN2 play a significant role in the SWAT model calibra-

tion in areas which experience tropical to temperate type of climates

(Emam et al., 2017; Vilaysane et al., 2015). Sensitive parameters are

enlisted in Table 4. The model returned R2 = 0.46, KGE = 0.64 and

R2 = 0.40, KGE = 0.63 during calibration and validation respectively.

Scatter plots for calibration and validation are shown in Figure 8. From

the model performance statistics, the two discharges show slightly

low coefficient of determination, but still the statistical measure KGE

shows better performance. This may happen as the concurrent over-

estimation and underestimate of discharge might raise the KGE score.

These compensating flaws could favour bias and variability factors,

maintaining the performance criteria's overall high score. This may

result in a higher criterion score overall without raising the model's

relevance.

3.4 | Calibration based on water level and river
bathymetry

The model was calibrated between the time periods 2009–2015 and

validated between 2016 and 2018 on a monthly time scale, whereas

the year 2008 was used as a warm-up period for the model. Similar to

the previous approach, the sensitive parameters used in the rating

curve-based calibration approach were imported with the same

ranges. In order to obtain the best fit, several iterations were carried

out by changing the ranges of the variables and by combining the

other routing parameters. An extra routing parameter was added in

the calibration and validation in terms of the Manning's value for the

main channel (CH_N2). The most sensitive parameters, along with

the fitting values, are shown in Table 4. SOL-AWC, HRU-SLP and

TABLE 3 Properties of the recipient and donor basins.

Factor Recipient Donor

Precipitation

(mm)

1350–1400 1450–1500

Dominant LULC Wetland, forest,

agriculture

Wetland, forest,

agriculture

Elevation (m) 694–2642 81–3006

Annual average

temperature

(�C)

12–31 18–25

Slope (degree) 0–66 0–78

Area (km2) 5020 8515

Soil Haplohumults,

dystrocrepts,

hapludalfs,

haplaquepts

Dystrochrepts,

haplumbrepts,

entrocrepts,

udorthents

F IGURE 7 Location of the recipient basin (Manipur river basin)
and the donor basin (Dhansiri river basin) showing the land features in
the false colour composite (FCC).
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ALPHA_BF were found to be the most sensitive variables among all.

During the calibration and validation period the model returned a

good degree of agreement with R2 = 0.79, KGE = 0.83 and

R2 = 0.62, KGE = 0.77 respectively. It can also be noted that the

model performance was found to be better during calibration than

validation because there was a higher uncertainty involved in the year

TABLE 4 SWAT parameters with their fitting value and level of sensitivity for four different calibration approaches.

S. No. Parameters Description

Calibration based on
rating curve

Calibration based on

SSEBop actual
evapotranspiration

Calibration based on

regionalization
(physical similarity)

Calibration based on
river bathymetry

Fitted
value Sensitivity

Fitted
value Sensitivity

Fitted
value Sensitivity

Fitted
value Sensitivity

1 CN2 Initial SCS Initial SCS runoff

curve number for

moisture

condition II

�21.87 High �43.25 High 1 High �19.5 Medium

2 ALPHA_BF

Baseflow

Baseflow alpha

factor

0.99 High 0.96 Low 0.99 Medium 0.99 High

3 GW_DELAY

Groundwater

Groundwater delay �3.25 Medium �7.75 Medium 14.75 Low �12.5 Low

4 HRU_SLP

Average

Average slope

steepness

0.61 Low 0.68 Low 0.57 Medium 0.68 High

5 ESCO Soil Soil evaporation

compensation

factor

0.2 Medium 0.59 High 0.3 Medium 0.65 Medium

6 SOL_AWC Soil

water

Soil water capacity

of the first soil

layer

6.98 High 24.8 Medium 1.04 High 5.62 High

7 CH_N2 Manning Manning value for

main channel

– – – – 30.62 Medium 36.12 Low

8 EPCO Plant uptake

compensation

factor

– – 0.57 High – – – –

9 CAN_MX Maximum canopy

storage

– – 0.64 High – – – –

F IGURE 8 (a) Calibration. (b) Validation of model based on regionalization approach.

12 of 17 ANAND ET AL.
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2017 due to the higher amount of precipitation. The model perfor-

mance statistics indicate better agreement during the calibration

period than the validation period. The scatter plot indicating the

degree of agreement for calibration and validation is shown in Fig-

ure 9. Though the P-factor value was found to be low with its value

ranging around 0.55, the R-factor statistics associated with the model

indicate a lower degree of uncertainty.

4 | DISCUSSION

The calibration of hydrological models is subjective in nature and the

knowledge of the expert in relation to calibration problems and basin

hydrology cannot be replaced by any automatic algorithm related to

calibration. Findings of this study shows that among the four different

calibration approaches, model performance was very good for calibra-

tion based on (i) stage-discharge curve using spatial proximity

approach and (ii) water level and river bathymetry, good for calibration

based on the SSEBop actual evapotranspiration, and satisfactory for

calibration based on the river discharge using the physical similarity

regionalization approach. During calibration, the coefficient of deter-

mination (R2) and the Kling Gupta Efficiency (KGE) were found to be

in the range of 0.46–0.81 and 0.41–0.83 respectively, whereas during

validation R2 and KGE were found to be in the range of 0.40–0.79

and 0.53–0.77 for all the four different techniques. Among the four

calibration techniques used, three were based on streamflow, whereas

the one was based on evapotranspiration, both are the components

of water balance. Initial SCS runoff curve number for the moisture

condition-II was the most sensitive parameter in both calibrations

based on streamflow and evapotranspiration. When the model was

calibrated based on streamflow datasets, baseflow alpha factor and

soil water capacity of first soil layer were found to be the most

sensitive parameters. Soil evaporation compensation factor, plant

uptake compensation factor and maximum canopy coverage were

found to be more sensitive when the calibration was done using

evapotranspiration datasets. Several restrictions were encountered in

this study in obtaining the satisfactory result. Due to inadequate rain-

fall-runoff data and gauging locations, multiple sites calibration of the

model at sub-basin scale was not possible. The use of high-resolution

DEM using stereo-pair satellite imagery could have increased the

accuracy of streamflow estimation of the SWAT model both in terms

of its spatial and temporal variability.

The calibration using rating curve based on spatial proximity

approach fetched a very good result in terms of model performance.

Though the model performance was good, however, during the high

flow season the model performance was found to be unsatisfactory as

it was unable to match the observed peak flow. The poor performance

on the SWAT model in capturing the high streamflow fluxes may be

associated with three major reasons. Firstly, the lower accuracy and

higher uncertainty of generated rating curve in the wet season with

comparatively lower coefficient of determination as compared to the

dry season. Secondly, the poor depiction of high streamflow fluxes

can be uncertainty associated with the rainfall measurement and fill-

ing the missing data using weather generator tool. Thirdly, it may be

attributed to weakness of regionalization approach using spatial prox-

imity, since the rating curve used in this study to compute the stream-

flow at the outlet using stage data was located six kilometres

upstream of the outlet point. A similar kind of trend was observed by

Odusanya et al. (2022) while calibrating the hydrological model for

ungauged Ogun River Basin using the streamflow of Oueme River

Basin. However, an attempt was made to eliminate the drawback due

to spatial proximity by introducing a new approach with the integra-

tion of remote sensing datasets with river bathymetry obtained from

echo-sounder. The discharge was derived integrating remote sensing

F IGURE 9 (a) Calibration. (b) Validation of model based on water level and river bathymetry approach.
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datasets (Kebede et al., 2020; Sichangi et al., 2018; Xiong et al., 2021)

and river bathymetry. The results obtained from this new integrated

approach produced slightly better result with higher Kling-Gupta effi-

ciency, p-factor and lower r-factor.

The calibration based on physical similarity of the basin fetched

inferior result when it was compared with the other three approaches

applied in this study. The main reasons behind the higher uncertainty

and under performance of the model can be the slightly higher

amount of rainfall in the Dhansiri River basin, steep topography in the

Dhansiri River basin as compared to the Manipur River basin,

the minor variation in the geometry of the main channel, and Man-

ning's roughness at the outlet point. Secondly, it can be due to uneven

distribution of rainfall especially in the southern part of Dhansiri River

which receives comparatively higher amount of rainfall. For determin-

ing the physical similarity between the Manipur River basin and Dhan-

siri River basin, only the meteorological estimates of Imphal and

Dimapur weather stations (both the basins lie in the valley regions of

the respective basins) were compared. But the upper reaches of the

Dhansiri River basin receive higher amount of rainfall compared to

the lower valley reaches. But no comparison was done with rainfall

received in the upper reaches of the Dhansiri River basin as this area

does not have any ground weather station. One of the main reasons

behind the absence of weather gauge station in the upper reaches is

the area is dominated by dense forest and they are mostly inhabitant.

These uncertainties in the rainfall estimations may have led to poor

model performance of the model during calibration with streamflow

of Dhansiri River based physical similarity approach. Similar kind of

drawbacks has been observed while using the physical similarity-

based regionalization approach for Oueme River basin and Ghareshoo

area of Iran (Mosavi et al., 2021; Odusanya et al., 2022).

The calibration based on SSEBop datasets derived from MODIS

fetched better result as compared to calibration using streamflow data

based on physical similarity. Values of both SSEBop evapotranspira-

tion and evapotranspiration simulated varied as per seasonal variabil-

ity, but the evapotranspiration simulated from SWAT was having

higher variability as compared to that of SSEBop evapotranspiration

derived from MODIS. The main reason could be the SWAT considers

actual land surface conditions (slope, soil and LULC) and climate data

(wind speed, temperature and relative humidity) for the estimation of

evapotranspiration estimation, whereas the SSEBop evapotranspira-

tion derived from MODIS is solely based on vegetation and climate

remote sensing data (leaf area index, enhanced vegetation index, land

surface temperature and fraction of photosynthetically active radia-

tion) (Khan et al., 2018; Parajuli et al., 2022). The computation of

evapotranspiration is highly dependent on the growth of the crop, but

it is infeasible to compute the crop growth on a monthly time scale.

Since the SSEBop evapotranspiration derived from MODIS was on

the higher side as compared to that of evapotranspiration simulated

by SWAT during dry season led higher estimation on annual basis by

SSEBop product. The evapotranspiration simulated by SWAT was

higher during the growing season of crop but lesser during the cold

and dry seasons, whereas SSEBop evapotranspiration derived from

MODIS did not vary as per the cropping seasons. It can be observed

that evapotranspiration simulated are more accurate than that of SSE-

Bop evapotranspiration product as it can represent variability as per

cropping patterns (Parajuli et al., 2022). The major limitation of this

study is the availability of long time series data. The hydrological

model calibration and validation was carried on monthly temporal

scale, however there is scope of study which can carried out daily

temporal scale streamflow datasets. The multi-site calibration and vali-

dation was not feasible due to the lack of observed stage and stream-

flow data at sub-basin scale.

5 | CONCLUSIONS

For the evaluation of performance of calibration of hydrological model

using various approaches, the SWAT hydrological model was setup in

the data scarce Manipur River basin. Multiple calibration techniques

were applied based on a stage-discharge curve using spatial proximity

approach, MODIS (MOD 16) actual evapotranspiration, river dis-

charge using a physical similarity regionalization approach, water level,

and river bathymetry. Among the four techniques applied in this

study, calibration based on (i) stage-discharge curve using spatial prox-

imity approach and (ii) water level and river bathymetry was found to

be a better approach as compared to (iii) SSEBop actual evapotranspi-

ration and (iv) river discharge using physical similarity regionalization

approach in Manipur River basin as indicated by the statistical indices.

The degree of agreement was low due to the level of uncertainty in

the SSEBop AET, probably because of the uncertainty associated with

the climate and retrieving algorithm. In the case of river discharge

using the physical similarity technique, the lower degree of agreement

can be probably because of the geometric profile of the main stream

at the outlet and variation in topography of the donor basin. The find-

ings of this study clearly indicate that the hybrid approach by integrat-

ing remote sensing datasets along with field measured river

bathymetry data to estimate the river discharge to calibrate the SWAT

model can be used for the streams with narrow width where remote

sensing datasets have limitations due to its spatial resolution. In this

study, regionalization based on physical similarity was applied. How-

ever, there is further scope to apply regionalization approaches to

transfer the sensitive parameters from the donor basin to the target

basin. In the case of the ET based calibration approach, this study dis-

cusses only the SWAT model run on Penman-Monteith and SSEBop

evapotranspiration product; there is the future scope of a study which

can be done based on other algorithms such as Priestly-Taylor and

Hargreaves and other available datasets such as GLEAM. The findings

of this study suggest that the SWAT model can be efficiently cali-

brated using (i) stage-discharge curve based on spatial proximity

approach, and (ii) water level and river bathymetry can be used as a

potential decision support tool for the advanced studies on basin

hydrology, eco-hydrology and eco-hydraulic in an ungauged basin.
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