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Summary Accurate knowledge of freshwater availability is indispensable for water
resources management at regional or national level. This information, however, has his-
torically been very difficult to obtain because of lack of data, difficulties in the aggrega-
tion of spatial information, and problems in the quantification of distributed hydrological
processes. The currently available estimates of freshwater availability by a few large
international organizations such as FAO and UNESCO are often not sufficient as they only
provide aggregated rough quantities of river discharge and groundwater recharge (blue
water) at a national level and on a yearly basis. This paper aims to provide a procedure
to improve the estimations of freshwater availability at subbasin level and monthly inter-
vals. Applying the distributed hydrological model ‘‘Soil and Water Assessment Tool’’
(SWAT), the freshwater availability is quantified for a 4-million km2 area covering some
18 countries in West Africa. The procedure includes model calibration and validation
based on measured river discharges, and quantification of the uncertainty in model out-
puts using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2) The aggregated results
for 11 countries are compared with two other studies. It was seen that for most countries,
the estimates from the other two studies fall within our calculated prediction uncertainty
ranges. The uncertainties are, in general, within reasonable ranges but larger in subbasins
containing features such as dams and wetlands, or subbasins with inadequate climate or
landuse information. As the modelling procedure in this study proved quite successful,
its application for quantification of freshwater availability at a global scale is already
underway. There are, however, two limitations in the West African model: (1) not all
the components of the water balance model such as soil moisture or deep aquifer recharge
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could be directly calibrated because of lack of data and (2) the full capabilities of the
SWAT model could not be realized because of the lack of local water and agricultural man-
agement information.
ª 2007 Elsevier B.V. All rights reserved.
Introduction

Freshwater availability at the global scale is an essential
requirement and one of themost important challenges facing
humanity at present and increasingly in the future. Otherma-
jor global concerns, like food security, humanhealth, climate
change, economic development and, last but not least, regio-
nal conflicts are not exclusively but to a considerable extent
related to freshwater availability. There is much ongoing re-
search on these global topics but they are often based on
imprecise estimates of the temporally and spatially unevenly
distributed water resources. Beside the country-based water
resources estimated by Shiklomanov (2000) on the basis of
data generalization of the world hydrological network, most
other studies used either climate or hydrologicalmodels. Glo-
bal runoff estimates performed with existing global climate
models, e.g., Nijssen et al. (2001) and Oki et al. (2001),
amongothers, are, as statedbyDöll et al. (2003), ‘‘quite inac-
curate due to their low spatial resolution, poor representa-
tion of soil water processes, and, in most cases, lack of
calibration againstmeasured discharge’’. More accurate esti-
mations, in terms of the hydrological processes, are based on
global hydrological models, e.g., Alcamo et al. (2003), Arnell
(1999), Vörösmarty et al. (1998), Yang andMusiake (2003) and
Yates (1997), which are all raster models with a spatial reso-
lution of 0.5� (55.7 km at the equator) and driven by monthly
climatic variables (Döll et al., 2003). Probably the most
sophisticated of these models is WaterGAP 2 (Alcamo et al.,
2003; Döll et al., 2003) that combines a hydrological model
with a water use model and calculates surface runoff and
groundwater recharge based on a daily water balance of soil
and canopy (Alcamo et al., 2003). The model is tuned against
observed discharge at 724 gauging stations spread globally by
adjusting the runoff coefficient and, in case this was not suf-
ficient, by applying up to two correction factors, especially in
snow-dominated and semiarid or arid regions (Döll et al.,
2003). The main shortcomings of the freshwater estimates
based onWaterGAP 2 are that (1) while it runs on a daily time
step, themodel is only tuned and validated against long-term
annual discharge, hence, has a poor temporal resolution, (2)
the application of correction factors to the modelled dis-
charges leads to an inconsistent water balance and (3) they
don’t quantify themodel prediction uncertainty, which could
be quite large in distributed models.

Against this background the objective of our modelling
work is to assess the global freshwater availability at a sub-
basin level and monthly intervals. The current work is based
on an application to West Africa, which includes the basins
of the rivers Niger, Volta, and Senegal covering a total area
of 4-million km2. For this purpose, the distributed wa-
tershed model ‘‘Soil and Water Assessment Tool’’ (SWAT,
Arnold et al., 1998) was selected. SWAT is a mechanistic
time-continuous model that can handle very large water-
sheds in a data efficient manner. The model is already used
in the ‘‘Hydrologic Unit Model for the United States’’ (HU-
MUS) (Arnold et al., 1999; Srinivasan et al., 1998), where
the entire US was simulated with good results for river
discharges at around 6000 gauging stations. This study is
now extended within the national assessment of the USDA
Conservation Effects Assessment Project (CEAP, http://
www.nrcs.usda.gov/Technical/nri/ceap/ceapgeneralfact.
pdf). A more recent large-scale SWAT application included
the work of Gosain et al. (2006) where 12 large river basins
in India were modelled with the purpose of quantifying the
climate change impact on hydrology. SWAT is recognized
by the US Environmental Protection Agency (EPA) and
has been incorporated into the EPA’s BASINS (Better
Assessment Science Integrating Point and Non-point
Sources) (Di Luzio et al., 2002). We used SWAT2000 (Nei-
tsch et al., 2002) for this project, which is linked with Arc-
View GIS (Di Luzio et al., 2001). A new version of the
program, ArcSWAT (Winchell et al., 2007), is now available
with a link to ArcGIS 9.1 with capabilities to handle larger
watersheds. We are currently applying ArcSWAT to the
whole of Africa. The interfaces facilitate pre- and post-
processing (e.g., watershed delineation, manipulation of
the spatial and tabular data), though the model itself re-
mains independent of GIS. Another reason for choosing
SWAT is its ability to perform water quality modelling,
which we also plan to study next.

One of the important outputs of the model used in this
study is the monthly sub-country values for both the ‘‘blue
water’’ and the ‘‘green water’’ resources. Currently, the
definition of blue water is generally accepted as ‘‘the sum
of the river discharge and the deep groundwater recharge’’.
This is in essence the water resources by the traditional
hydrological and engineering definition. There exist slightly
different definitions for the term green water. In this study
we refer to the definition given by Falkenmark and Rocks-
tröm (2006), who differentiate between the green water
‘‘resource’’ and the green water ‘‘flow’’, although we pre-
fer the term ‘‘storage’’ instead of ‘‘resource’’ in this defini-
tion. According to their definition, ‘‘green water storage is
the moisture in the soil’’. This part of the water is a renew-
able resource because it can potentially generate economic
returns, as it is the source of the rainfed agriculture. The
green water flow is composed of the actual evaporation
(the non-productive part) and the actual transpiration (the
productive part), commonly referred to together as the ac-
tual evapotranspiration. Applying the SWAT model, this
study will quantitatively determine the volumes of the dif-
ferent components of water resources with consideration
of the spatial and temporal variations. The results will con-
tribute to a better understanding of the paradigm of blue
and green water resources and consequently benefit the
water resources planning and management.

Another important aspect of this paper is its contribution
to the ongoing research on calibration and uncertainty anal-
ysis of large-scale distributed watershed models. Distrib-
uted watershed models are increasingly being called upon
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to investigate alternative management strategies in the
areas of landuse changes, water availability/distribution,
construction of waterworks, and pollution control. For this
reason it is important that these models are carefully cali-
brated and their prediction uncertainty quantified before
being used for decision making. To fulfil this demand, in re-
cent years, researchers have come up with various uncer-
tainty analysis techniques for watershed models. These
include Bayesian inference methods such as Markov Chain
Monte Carlo (Vrugt et al., 2003), Generalized Likelihood
Uncertainty Estimation (GLUE) (Beven and Binley, 1992),
and Parameter Solution (ParaSol) (van Griensven and Meix-
ner, 2006), among many others. In this study, we use the
program SUFI-2 (Abbaspour et al., 2004, 2007), which com-
bines calibration and uncertainty analysis. This program is
linked to SWAT in the calibration package SWAT-CUP (SWAT
Calibration Uncertainty Procedures), which includes GLUE
and ParaSol as well. Using SUFI-2, it was possible to handle
a large number of parameters and measured data from
many gauging stations simultaneously. In a comparison
study Yang et al. (submitted for publication) found that
SUFI-2 required much fewer simulations than other methods
while producing similar Nash–Sutcliff and R2 values when
the best calibration and validation results were compared
with measured data.
Materials and methods

The SWAT simulator

SWAT (Arnold et al., 1998) belongs to the group of deter-
ministic, distributed hydrological models. It is a continuous
time model and operates on a daily time step at basin scale.
The main components of SWAT include weather, hydrology,
sedimentation, crop growth, nutrients, pesticides, agricul-
tural management, and stream routing. In this study, how-
ever, we focus only on the hydrologic component of
SWAT, while in a later study we aim to include agricultural
management to study water quality.

In SWAT the spatial heterogeneity of the watershed is ta-
ken into account, considering information from the eleva-
tion map (DEM), the soil and landuse maps. The computed
runoff from each subbasin is routed through the river net-
work to the main basin outlet by using, in our case, the Mus-
kingum method.

The hydrologic model is based on the water balance for
the four storage volumes snow, soil profile, shallow aquifer,
and deep aquifer, and considers precipitation, interception,
evapotranspiration, surface runoff, infiltration, percola-
tion, and subsurface runoff. Depending on data availability,
the potential evapotranspiration (PET) can be computed
using different methods and we selected the Hargreaves
method. Based on the PET and additional soil and landuse
parameters, the actual plant transpiration and the actual
soil evaporation are estimated separately. The surface run-
off from daily rainfall amounts is modelled using a modifica-
tion of the SCS curve number method taking into account
landuse, soil type and antecedent soil moisture. The soil
profile can be subdivided into multiple layers (two layers
in this study) and the model considers infiltration, evapora-
tion, plant uptake, interflow as well as up- and downward
redistribution processes for each layer. A more detailed
description of the model can be found in Arnold et al.
(1998) and Neitsch et al. (2002).

The daily weather generator algorithm dGen

One of the most fundamental inputs to hydrological models
like SWAT is weather data. SWAT requires daily data for pre-
cipitation and minimum/maximum temperature. It assigns
to each subbasin the data of the nearest climate station.
In many areas of the world, including West Africa, the gaug-
ing station network is not very dense, and data duration is
quite short and includes many missing and often erroneous
data. The weather generator program WXGEN (Sharpley
and Williams, 1990) is incorporated in SWAT to simulate
missing data. This program was developed for the contigu-
ous US and fills data gaps or extends time series of daily data
based on monthly statistics. The monthly statistics are,
however, based on long series of daily data. Hence, the pro-
gram is not useful if there are no daily data available, or the
existing data are from a station far away from a specific
subbasin.

In this study, the monthly climate statistics provided by
the Climatic Research Unit (CRU) were used to generate
the daily data required to run SWAT. CRU provides complete
monthly global data at 0.5� grids for the time-period 1901–
1995 (Mitchell and Jones, 2005; New et al., 2000). Using the
CRU monthly values for precipitation, minimum and maxi-
mum temperature and the number of wet days per month,
Schuol and Abbaspour (2007) developed a semi-automated
daily weather generator algorithm dGen, to obtain the re-
quired daily inputs. dGen is based on SIMMETEO (Geng
et al., 1986), a procedure that works based on monthly cli-
matic summaries unlike many other generators that use dai-
ly measured values. Researches have shown that the
performance of SIMMETEO is rather similar to the generators
based on daily measured values (Hartkamp et al., 2003; Sol-
tani and Hoogenboom, 2003), indicating the potential appli-
cability of the monthly CRU data.

To use dGen, the 0.5� climate grids are first overlaid with
the subbasin shape-file of the SWAT model and then the val-
ues are aggregated in order to obtain one value per month
for each subbasin. This step is performed using an auto-
mated procedure in ArcGIS 9.1. Schuol and Abbaspour
(2007) showed that in data scarce regions simulations using
generated weather data were superior to simulations using
the available poor quality measured data.
The conceptual basis of SUFI-2

The program SUFI-2 was used for calibration and uncertainty
analysis. In SUFI-2, parameter uncertainty accounts for all
sources of uncertainties such as uncertainty in driving vari-
ables (e.g., rainfall), conceptual model, parameters, and
measured data. The degree to which all uncertainties are
accounted for is quantified by a measure referred to as the
P-factor, which is the percentage of measured data brack-
eted by the 95% prediction uncertainty (95PPU). The 95PPU
is calculated at the 2.5% and 97.5% levels of the cumulative
distribution of an output variable obtained through Latin-
hypercube sampling. As all forms of uncertainties are re-
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flected in themeasurements (e.g., discharge), the parameter
uncertainties generating the 95PPU account for all uncertain-
ties. Breaking down the total uncertainty into its various com-
ponents is of some interest, but quite difficult to do, and as
far as the authors are aware, no reliable procedure yet exists.
Another measure quantifying the strength of a calibration/
uncertainty analysis is the so called R-factor, which is the
average thickness of the 95PPU band divided by the standard
deviation of themeasured data. SUFI-2, hence seeks to brack-
et most of the measured data (large P-factor, maximum
100%) with the smallest possible value of R-factor (minimum
0).

The concept behind the uncertainty analysis of the SUFI-
2 algorithm is depicted graphically in Fig. 1. This Figure
illustrates that a single parameter value (shown by a point)
leads to a single model response (Fig. 1a), while an uncer-
tain parameter (shown by a line) leads to the 95PPU illus-
trated by the shaded region in Fig. 1b. As parameter
uncertainty increases, the output uncertainty also increases
(not necessarily linearly) (Fig. 1c). Hence, SUFI-2 starts by
assuming a large parameter uncertainty (within a physically
meaningful range), so that the measured data initially falls
within the 95PPU, then decreases this uncertainty in steps
while monitoring the P-factor and the R-factor. In each
step, previous parameter ranges are updated by calculating
the sensitivity matrix (equivalent to Jacobian), and equiva-
lent of a Hessian matrix, followed by the calculation of
Figure 1 A conceptual illustration of the relationship
between parameter uncertainty and prediction uncertainty.
covariance matrix, 95% confidence intervals of the parame-
ters, and correlation matrix. Parameters are then updated
in such a way that the new ranges are always smaller than
the previous ranges, and are centred around the best simu-
lation (for more detail see Abbaspour et al., 2004, 2007).
The goodness of the fit and the degree to which the cali-
brated model accounts for the uncertainties are assessed
by the above two measures. An ideal situation would lead
to a P-factor of about 100% and an R-factor near zero. When
acceptable values of R-factor and P-factor are reached,
then the parameter uncertainties are the desired parameter
ranges. Further goodness of fit can be quantified by the R2

and/or Nash–Sutcliff (NS) coefficient between the observa-
tions and the final best simulation.

If initially a set of parameter ranges cannot be found
where the 95PPU brackets most of the data, for example,
if the situation in Fig. 1d occurs with the parameter uncer-
tainties at physically meaningful limits, then the problem is
not one of parameter calibration and the conceptual model
must be re-examined.
Description of the modelled area

The modelled basin in West Africa (Fig. 2) covers an area of
4-million km2, which equals about one-seventh of Africa.
Since the late sixties, West Africa suffers from an ongoing
drought and it is estimated that the flow of West African riv-
ers declined in some places by more than 50% compared to
the previous wet period mainly due to a continuous reduc-
tion in precipitation (Servat et al., 1997). Within these vul-
nerable regions the decrease of perennial rivers often goes
together with increasing social conflicts (between and with-
in countries) over water availability and supply (Ashton,
2002). Using the reported water availability estimates from
FAO (1995) and population prediction figures, Yang et al.
(2003) estimated that by the year 2030 four countries in
West Africa (Burkina Faso, Niger, Nigeria and Togo) will
experience water scarcity (defined as available water less
than 1500 m3 capita�1 year�1. For these reasons, a proper
assessment of the actual water availability and seasonal
and yearly variations in West Africa is of great importance
to various studies that are based on these values. In addi-
tion, it is also an interesting case study from a technical
modelling and calibration point of view as it covers a large
climatic and landuse variety in a region with comparably
scarce data, which is typical for a large part of the world.

The largest basins within the area are those of the rivers
Niger (2.2 million km2 including the arid sections), Volta
(0.4 million km2), and Senegal (0.4 million km2). The Niger
is the third-longest river in Africa (about 4100 km) and 11
nations share the total basin which is characterized by a
great variability in climate, topography and land cover (Sha-
hin, 2002). The springs of the Niger are in the very wet Fou-
ta–Djallon highlands (>2000 mm year�1) at the Guinea–
Sierra Leone border, an area that is less than 300 km from
the Ocean. The river flows north-east, traverses the interior
plateau and just before the great Niger Inland Delta (NID) in
Mali the important tributary Bani River joins. The Inland
Delta at the arid southern edge of the Sahara is one of the
largest riverine floodplains in the world. It depends fully
on the upstream supply and covers an area of up to



Figure 2 The modelled area in West Africa including the location of the Niger Inland Delta and of the reservoirs with a storage
capacity greater than 1 km3. The shading represents elevation.
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80,000 km2 (450 km length) of which 10,000–45,000 km2 are
potentially inundated by a crowded network of channels,
swamps and lakes (Shahin, 2002). The Inland Delta is of
great importance for the hydrology of the Niger as seepage
and evaporation within the wetland result in a flow loss of
more than 50% and in addition the peak discharge is delayed
by about two months (Fig. 3). After the Inland Delta the riv-
er flows to the east before it bends to the south-east. The
large potential contributing area from the north-east (about
1 million km2) is extremely dry and is of almost no impor-
tance for the Niger water supply. The Benue River is the
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Figure 3 Observed discharge within, up- and downstream of
the Niger Inland Delta for three selected years with available
data.
most important tributary of Niger and joins it at about
600 km from the river mouth which lies in a great delta.
The natural river flow is influenced by quite a few reser-
voirs, of which the biggest ones are the Kainji, the Shiroro,
the Lagdo and the Selingue with 15.0, 7.7, 7.0 and 2.2 km3

storage capacities, respectively.
The second most important river in West Africa is the

1800-km long Senegal River. The Bafing is the main sup-
plier of the Senegal River with its source at the wet Fouta
Djallon highland in which the rivers Niger and Gambia also
originate. After the confluence with Bakoye, the river is
called Senegal and flows north-west bound through areas
with constantly decreasing precipitation. Of great impor-
tance is the Manatali dam with a reservoir storage capacity
of 11.3 km3.

The basin of the 1600 km long river Volta is shared by five
riparian countries. The Black and the White Volta are the
two main upper branches and originate from the open pla-
teaus of Burkina Faso, an area with Sahelian climate and
an annual precipitation of below 500 mm. The Volta flows
mainly southward through areas with steadily increasing
precipitation and has a strong seasonal runoff pattern.
The Akosombo Dam, about 60 km upstream of the river
mouth, forms the Lake Volta, which has a surface area of
8500 km2 and a storage volume of 150 km3.

Data compilation

The West African SWAT model was constructed using glob-
ally and in most cases freely available information.
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(i) Digital elevation model (DEM) was constructed from
the US Geological Survey’s (USGS) public domain
geographic database HYDRO1k (http://edc.usgs.
gov/products/elevation/gtopo30/hydro/index.html),
which is derived from their 3000 digital elevation model
of the world GTOPO30. HYDRO1k has a consistent cov-
erage of topography at a resolution of 1 km.

(ii) Digital stream network was also taken from the USGS’
HYDRO1k database. It is derived from the flow accu-
mulation layer for areas with an upstream drainage
area greater than 1000 km2.

(iii) Soil map was produced by the Food and Agriculture
Organization of the United Nations (FAO, 1995).
Almost 5000 soil types at a spatial resolution of
10 km are differentiated and some soil properties
for two layers (0–30 cm and 30–100 cm depth) are
provided. Further soil properties (e.g., particle-size
distribution, bulk density, organic carbon content,
available water capacity, and saturated hydraulic
conductivity) were obtained from Reynolds et al.
(1999) or by using pedotransfer functions imple-
mented in the model Rosetta (http://www.ars.usda.
gov/Services/docs.htm?docid=8953).

(iv) Landuse (or land cover) map was constructed from the
USGS Global Land Cover Characterization (GLCC)
database (http://edcsns17.cr.usgs.gov/glcc/glcc.
html). This map has a spatial resolution of 1 km and
24 classes of landuse representation. The parameter-
ization of the landuse classes (e.g., leaf area index,
maximum stomatal conductance, maximum root
depth, optimal and minimum temperature for plant
growth) is based on the available SWAT landuse clas-
ses and literature research.

(v) Monthly weather statistics at a resolution of 0.5� were
obtained from the Climatic Research Unit (CRU,
http://www.cru.uea.ac.uk/~timm/data/index-table.
html) data-sets TS 1.0 (wet days per month) and TS
2.0 (precipitation per month, average minimum and
maximum temperature). Daily weather values were
generated based on CRU data using the dGen
described above. Daily station data provided by the
National Climatic Data Centre (NCDC, 1994, 2002)
were used for verification of the generated rainfall
and temperature values (Schuol and Abbaspour,
2007).
Table 1 Properties of the West African reservoirs which are inc

Name River Year Long (�)

Akosombo Volta 1981 0.11
Kossou Bandama 1972 �5.68
Kainji Niger 1968 4.56
Byuo Sassandra 1980 �6.98
Lagdo Benoue 1972 13.97
Manantali Bafing 1988 �10.34
Jebba Niger 1984 4.75
Shiroro Kaduna/Dinya 1984 6.91
Kompienga Kompienga 1987 0.63
Selingue Sankarani 1982 �8.17
Ayame I Bia 1959 �3.21
(Taabo) Bandama 1979 �5.15
(vi) Wetlands and reservoir data were mainly extracted
from the Global Lakes and Wetlands Database (GLWD,
Lehner and Döll, 2004). Beside the location, it com-
prises also some attribute data (e.g., storage capacity
of the reservoirs) which was also complemented by
internet research.

(vii) River discharge data were obtained for calibration
purposes from the Global Runoff Data Centre (GRDC,
http://grdc.bafg.de).

Model setup

The model parameterization was derived using the ArcView
GIS interface for SWAT (Di Luzio et al., 2001), which pro-
vides a graphical support for the disaggregation scheme
and thus facilitates the data handling. The first step is to di-
vide, based on the DEM and the stream network, the whole
watershed into subbasins. Requiring a minimum drainage
area of 10,000 km2 and including some additional outlets
at available discharge gauging stations, resulted in a total
of 292 subbasins. The parameterization of the stream
reaches and the subbasin geomorphology (e.g., area, slope,
elevation distribution, stream length) is done automatically
by the interface. The next step is the landuse and soil input,
overlay, and characterization for each subbasin which is
again performed with the help of the interface. It would
be possible to further differentiate HRUs (areas with a un-
ique soil–landuse combination) within each subbasin but
due to the large-scale nature of the problem and the conse-
quently long computational time, we decided to consider
only the dominant landuse and soil type within each
subbasin.

The simulation time-period was from 1966 to 1995,
where the first five years (1966–1970) were used as warm
up period and not included in the analysis.

SWAT allows inclusion of wetlands and reservoirs in the
model but their parameterization was quite difficult be-
cause of the limited available information. While initially
reservoirs and wetlands were neglected in the model setup,
we later included the largest reservoirs (storage volume
greater than 1 km3, Table 1) and the Niger Inland Delta
and parameterized them based on the following available
information. The values for the storage volume and the res-
ervoir surface area filled to the emergency spillway as well
as the year since they became operational were obtained
luded in the SWAT model

Lat (�) Surface area (km2) Storage volume (km3)

7.63 7490.7 150.00
7.55 1566.0 27.68

10.43 1414.0 15.00
6.64 988.9 8.30
8.88 585.9 7.70

13.14 477.0 11.27
9.25 360.0 1.00
9.97 312.0 7.00

11.16 220.0 2.00
11.50 172.7 2.17
5.73 160.2 1.10
6.30 143.1 2.32

http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html
http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html
http://www.ars.usda.gov/Services/docs.htm?docid=8953
http://www.ars.usda.gov/Services/docs.htm?docid=8953
http://edcsns17.cr.usgs.gov/glcc/glcc.html
http://edcsns17.cr.usgs.gov/glcc/glcc.html
http://www.cru.uea.ac.uk/~timm/data/index-table.html
http://www.cru.uea.ac.uk/~timm/data/index-table.html
http://grdc.bafg.de


36 J. Schuol et al.
from GLWD-1 (Lehner and Döll, 2004). In addition, it was
assumed that the volume at the principal outlet equals
75% and the surface area equal 90% of the emergency spill-
way values. In order to simulate the outflow, SWAT also
needs a definition of the starting and the ending month of
the non-flood season, which was obtained based on a rough
analysis of the existing runoff hydrographs and precipita-
tion patterns within the reservoir region. It was further as-
sumed that the reservoirs were controlled and the
management goal was to guarantee at least a certain out-
flow during the whole year. We also defined the minimum
daily outflow for each month depending on the average to-
tal runoff and an analysis of the downstream gauging sta-
tions. The number of days to reach the target storage
was set to 90. In SWAT, a wetland is handled as an
impoundment within the subbasin and wetlands on the main
channel network are treated as reservoirs. For this reason
we included at the downstream end of the Niger Inland Del-
ta an artificial reservoir and parameterized it in such a way
that the basic simulated outflow pattern resembles the ob-
served one. Especially the minimum daily outflows for the
different months were adjusted to the long-term observed
average. After this, the model setup was complete allowing
initial simulations.
Model application

After setting up the model, the important and challenging
next step is the calibration and validation procedure. For
this purpose we initially calibrated the model based on an-
nual river discharge, and then based on monthly values at
64 stations within the West Africa basin. Only very few of
the available stations have data for every month of the
25-year simulation period and therefore it was inevitable
to include different time-periods for calibration at different
stations. The available data were always split into equal
time-periods for calibration (more recent data) and valida-
tion (prior data). Furthermore only stations with at least
three years of monthly available data were included. The
initial annual calibration helped to identify the important
processes and parameters, but the main calibration is done
using monthly data.
Table 2 The 10 most sensitive parameters based on the approac

Parameter name Definition

CN2 SCS runoff curve number [–]
ESCO Soil evaporation compensation factor [–]
GWQMN Threshold depth of water in the shallow aqu

for return flow to occur [mm H2O]
SOL_AWC Soil available water storage capacity [mm H2

GW_REVAP Groundwater ‘revap’ coefficient [–]
RCHRG_DP Deep aquifer percolation fraction [–]
SOL_Z Soil depth [mm]
SURLAG Surface runoff lag coefficient [days]
SOL_K Soil conductivity [mm/h]
CH_K2 Effective hydraulic conductivity in the main
The objective function was formulated as the 64-station-
average of the Nash–Sutcliff (NS) coefficients between the
monthly measured (Qm) and the simulated (Qs) discharges.
The NS coefficient was selected as it is one of best available
fit estimators and one of the most preferred evaluation
methods for monthly comparison in hydrological and espe-
cially SWAT studies (Coffey et al., 2004).

g ¼ 1

64

X64
i¼1

1�
Pn

i¼1ðQm � Q sÞ2Pn
i¼1ðQm � QÞ2

 !
ð1Þ

As already mentioned, it is not feasible to include all (thou-
sands) parameters in the calibration procedure and there-
fore a pre-selection and aggregation is inevitable. The
initial pre-selection is based on literature research and pre-
vious SWAT studies (among others: Lenhart et al., 2002; Mu-
leta and Nicklow, 2005; White and Chaubey, 2005). Further
information on sensitive parameters were obtained applying
a combination of Latin-hypercube and one-factor-at-a-time
sampling strategy (van Griensven et al., 2006). This global
sensitivity analysis approach has the advantage of being
quite fast compared to similar procedures and as a result
one does not obtain an absolute measure of the sensitivity
but rather a ranked order of the parameters. We assessed
the sensitivity at each of the 64 runoff stations and aver-
aged the rank. Table 2 shows the 10 most sensitive param-
eters according to this analysis.

Within the modelled basin we have seven different
landuse classes and seven different soil texture classes
(Table 3). Many important SWAT parameters like the curve
number, the available water capacity or the bulk density
are closely related to texture and the parameter values
change accordingly. For this reason a combined calibration
of them is not advisable. Based on these analyses, we deter-
mined 55 parameters (13 global parameters, 2 parameters
with a separate value for each landuse and 4 parameters
with a separate value for each texture, i.e., available water
storage capacity for sandy loam soils and for sandy clay
loam soils) which were included in the more in-depth sensi-
tivity analysis as part of the SUFI-2 calibration procedure.
The parameter disaggregation noticeably increased the to-
tal number of parameters to be calibrated. To decrease
the number of parameters, we on the one hand included
h of van Griensven et al. (2006)

Avg. sens. rank –
incl. obs. values

Avg. sens. rank –
without obs. values

1 1
2 2

ifer required 5 3

O/mm soil] 6 5
9 6
9 7
9 7
3 8

13 9
channel [mm/h] 10 11



Table 3 Soil texture and land use distribution within the
modelled basin

Texture % area Landuse % area

Clay 0.8 Barren or sparsely
vegetated

15.9

Clay–loam 2.0 Dryland cropland
and pasture

0.5

Loam 25.1 Cropland/woodland
mosaic

4.5

Loamy–sand 6.3 Evergreen broadleef
forest

2.3

Sand 8.7 Grassland 13.5
Sandy–clay–loam 31.4 Savannah 56.8
Sandy–loam 26.0 Shrubland 6.6
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only the ‘‘dominant’’ texture and landuse types (Fig. 3),
and on the other hand neglected the apparently insensitive
ones.

Similar to other studies, e.g., Butts et al. (2004), we
included a measured discharge uncertainty of 10% in the
analysis of the P-factor. Many streams in West Africa are
intermittent and in order to capture the dry periods, we al-
lowed an additional absolute measured discharge uncer-
tainty of 0.1 m3/s.
Table 4 The 16 SWAT model parameters included in the final ca

Parameter name Definition

CN2_GRAS Curve number for grassland (–)
CN2_SAVA Curve number for savannah (–)
SOL_BD_SCL Moist soil bulk density (g/cm3)
SOL_AWC_L Soil available water storage capacity for the

texture type ‘‘loam’’ (mm H2O/mm soil)
SOL_AWC_SCL Soil available water storage capacity – textu

‘‘sandy–clay–loam’’ (mm H2O/mm soil)
SOL_AWC_SL Soil available water storage capacity – textu

‘‘sandy-loam’’ (mm H2O/mm soil)
ALPHA_BF Baseflow alpha factor (days)
ESCO Soil evaporation compensation factor (–)
SURLAG Surface runoff lag coefficient (days)
GWQMN Threshold depth of water in the shallow aqu

required for return flow (mm H2O)
REVAPMN Threshold depth of water in the shallow aqu

‘revap’ or percolation to the deep aquifer (m
GW_REVAP Groundwater ‘revap’ coefficient: regulates t

movement of water from the shallow aquifer
root zone (–)

GW_DELAY Groundwater delay time: lag between the tim
water exits the soil profile and enters the sh
aquifer (days)

RCHRG_DP Deep aquifer percolation fraction (–)
MSK_CO1 Calibration coefficient that controls impact o

storage time constant for normal flow (–)
MSK_CO2 Calibration coefficient that controls impact o

storage time constant for low flow (–)
a Ranges vary depending on the hydrologic soil group within one lan
b Relative change of the parameter value.
Results and discussion

Model calibration and uncertainty measures

Table 4 has a listing of the parameters in the last iteration
of SUFI-2 and their uncertainty ranges. Based on the two
SUFI-2 stopping criteria – the P-factor and the R-factor –
it was decided that a further reduction in parameter uncer-
tainty is not reasonable. In average 62% (out of a perfect
100%) of the measured monthly runoff values at the 64 cal-
ibration stations could be bracketed by the 95PPU and the
average R-factor was 0.88 (out of a perfect 0, but quite rea-
sonable around 1). Fig. 4 shows detailed pictures of these
two criteria for both, the calibration and the validation
periods. Dark squares mark stations with more than 80% of
the measured data bracketed and the check-mark signifies
an R-factor below one, which signifies a narrow 95PPU band.
Ten stations fulfil these strong requirements for the calibra-
tion period and 8 fulfil them for the validation period. A
somewhat less stringent model quality requirement – P-fac-
tor > 60% and R-factor < 1.3 – is fulfilled for more than half
of the stations for both the calibration and the validation
period.

The goal of the optimization procedure was to maximize
the average of the NS-coefficients at the calibration sta-
tions. The NS of the ‘‘best’’ simulation (the ‘‘best’’ param-
eter set) of the last iteration step are shown in Fig. 5. One
libration and their initial and final ranges

Initial parameter range Final parameter range

35–76/40–87a 43–57/49–65a

33–72/38–84/41–90a 46–55/54–65/57–70a

�0.50–0.50b �0.35–0.05b
soil �0.50–0.50b �0.03–0.25b

re type �0.50–0.50b �0.30–0.10b

re type �0.50–0.50b 0.10–0.40b

0.00–1.00 0.25–0.80
0.00–1.00 0.15–0.50
0.0–10.0 0.3–3.0

ifer 0–1000 150–700

ifer for
m H2O)

0–500 30–200

he
to the

0.02–0.20 0.03–0.09

e that
allow

0–100 10–50

0.00–1.00 0.40–0.65
f the 0.0–10.0 3.0–7.0

f the 0.0–10.0 1.0–3.5

d use type.



Figure 4 Measured monthly runoff data bracketed by the 95% prediction uncertainty and the R-factor of the monthly (a)
calibration and (b) validation at all 64 stations.
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Figure 5 Nash–Sutcliff coefficient of the ‘‘best’’ simulation of the monthly runoff for (a) the calibration and (b) the validation
period at all 64 stations.
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Figure 6 Extracts of the monthly calibration and validation results for five selected stations showing the 95% prediction
uncertainty intervals along with the measured discharge.
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Figure 7 Comparison of the computed 95PPU intervals for the annual average (1971–1995) of the internal renewable water
resources (IRWR) for selected countries with the results from the FAO assessment and the Water GAP model in (a) km3 year�1 and (b)
mm year�1.
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quarter of the included stations have a NS greater than 0.7
– which can be regarded as very good for such a large-scale
study. Only 12 out of the 64 stations have a negative NS for
the calibration and 8 for validation periods, which indicates
a poor model performance for these stations. Actually, a NS
below zero indicates that the mean value of the observed
discharge would have been a better prediction than the
model result. Poorly simulated stations are mainly located
at the Upper Volta and at rather small Niger tributaries.
Especially in the Volta catchment we clearly underesti-
mated the average runoff. The reasons might be manifold
– from underestimated precipitation to the dominant soil
type which is different from the three most frequent types
and therefore whose attributes are not explicitly calibrated.

After inclusion of the large reservoirs, and especially of
the wetland, the model improved significantly. This is
apparent in the good model performance at the Niger sta-
tions downstream of the wetland (Figs. 4 and 5) capturing
the striking observed peaks, discharge decrease, and delay
within the Niger Inland Delta (Fig. 3).
While we could show comparisons of the observed runoff
with the ‘‘best’’ simulated runoff as it is done in many other
studies, we believe that this is not appropriate as it is the
result of only one of many similarly good simulations. More
meaningful is it to show the 95% model prediction uncer-
tainty (95PPU) intervals of the last iteration. In Fig. 6 we
show the 95PPU of the discharge simulation together with
the observed discharges at five representative stations lo-
cated at different rivers and with relatively large catch-
ments: Gouloumbou/River Gambia, Bakel/River Senegal,
Mbasso/River Comoe, Nawuni/River White Volta and Malan-
ville/River Niger. For reasons of clarity we extracted in each
case five years of the calibration and five years of the vali-
dation period. Apart from the Nawuni station the results
look for both the calibration and the validation period sim-
ilarly good and the inter- and intra-annual variations are ni-
cely represented. The timing of the annual peaks fits in
general quite well but the uncertainty interval at peaks is
in many cases – for example in the wet year 1985 at the
Mbasso station – extremely large. While the general trend
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Figure 8 Average (1971–1995) monthly 95PPU intervals of the internal renewable water resources (IRWR, blue water) and the
actual evapotranspiration (AET, green water flow) for eight selected countries in West Africa.
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of the simulated discharge at the Nawuni station at the Riv-
er Volta is fairly consistent with the observed one, the
underestimation of discharge especially for wet years is
quite large.

The 95PPUs are the combined outcome of the uncer-
tainties in the conceptual model, the parameters and also
the input data. In SUFI-2 these uncertainty sources are not
separately evaluated but attributed as a total model
uncertainty to the parameters and are visualized through
the final parameter ranges and hence through the model
output ranges. Each hydrological model suffers from con-
ceptual model uncertainties and this is particularly true
for large watershed models where many processes (natural
or man-made) may not be represented in the models. In
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Figure 8 (continued)
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this study, these regions are clearly identified through the
quantification of the two uncertainty measures: R-factor
and P-factor (e.g., Nawumi station on White Volta River,
Fig. 6). Studies that show only one best model output have
to be treated with caution. The use of ‘‘best parameter
set’’ or the ‘‘best simulation’’ in other studies could lead
to misleading results. For this reason, we believe that the
scientific robustness of any modelling results requires
showing the effect of the uncertainties. In general, the
model performance, as represented by the P-factor and
the R-factor, is quite reasonable in all stations. Large
uncertainties are, however, seen in regions with reser-
voirs, wetlands, or regions with inadequate climate or
landuse representations.
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Figure 9 Average (1971–1995) monthly 95PPU intervals of the soil water (SW, green water storage) for eight selected countries in
West Africa.
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Country-based quantification of blue and green
water resources

Although by now the paradigm of blue and green water has
been widely accepted by the water resource and manage-
ment communities, a quantitative determination of the vol-
umes of the different water components at the country
level with monthly interval has not been available in the lit-
erature. In order to avoid confusion, we will first introduce
and define some commonly used terminologies in the water
resources literature.

The term internal renewable water resources (IRWR) is
calculated as the sum of water yield (SWAT parameter
WYLD: total amount of water leaving the area and
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entering the main channels during a time period) and
deep aquifer recharge (SWAT parameter DA_RCHG: the
amount of water from the root zone that recharges the
deep aquifer). By definition, this is the internal blue
water. Actual evapotranspiration (AET) is the amount of
water released to the atmosphere through a combination
of evaporation from soil and water bodies and transpira-
tion from vegetation. Soil water (SW) is the amount of
water in the soil profile at the end of a time-period.
We also adhere to the definition of Falkenmark and Rocks-
Table 5 The average precipitation (model input) and the 95PPU
selected countries in West Africa

Country Area
(103 km2)

Precipitation
(km3 year�1)

B
(

Burkina Faso 274.2 201.9 1
Benin 112.6 116.4
Guinea 245.9 390.6 9
Senegal 196.2 123.5 1
Ivory coast 322.5 415.1 4
Ghana 239.5 273.8 1
Togo 56.8 65.4
Sierra-Leone 71.7 159.1 5
Liberia 111.4 211.6 6
Gambia 11.3 8.3
Guinea-Bissau 36.1 44.9 1

Figure 10 The average (1971–1995) runoff coefficient for th
tröm (2006) who differentiate between the green water
storage and green water flow. In the above, IRWR and
AET constitute water flow, while SW is water storage. It
is important to differentiate between flow and storage
so that proper terms are added together in calculating
fresh water resources.

Often, the degree of the detail and accuracy of the
above variables is not sufficient for a rigorous analysis of
the issues concerned and for providing a reliable informa-
tion basis for water resources planning and management.
intervals for the components of freshwater availability in 11

lue water
km3 year�1)

Green water flow
(km3 year�1)

Green water
storage (km3)

0.5–34.6 153.8–175.9 5.6–9.1
9.0–27.3 82.4–95.1 3.4–5.8
4.2–188.1 208.2–232.5 9.9–16.0
0.7–30.4 87.4–99.6 3.8–5.8
0.2–100.3 300.1–335.5 6.3–25.2
7.7–51.9 208.1–232.2 9.4–15.4
6.0–16.9 45.8–51.9 2.0–3.1
9.3–98.4 68.3–74.8 2.9–4.6
0.4–101.7 113.6–123.0 6.0–7.9
0.8–2.4 5.4–6.3 0.2–0.3
0.3–23.1 22.3–25.3 1.2–1.9

e Western Africa sub-continent model at a subbasin level.



Figure 11 Average (1971–1995) regional differences of the annual precipitation, the blue water and the green water flow (GWF)
as well as the average green water storage (GWS) in Burkina Faso.
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With the current modelling work, we are able to provide an
improved information basis in this regard.

In Fig. 7 the computed annual average (from 1971 to
1995) of the IRWR is presented for selected countries within
the modelled area. The units are given in both km3 year�1

and mm year�1. For some of the countries the modelled
area does not cover the entire land surface of the country,
especially, the coastal region. Hence, a number of small
watersheds (below the threshold of 10,000 km2) were not
included in the model. In these cases we linearly extrapo-
lated the IRWR for the modelled area to the total area. Re-
sults for countries with a significant land area in another
major watershed (e.g., Nigeria, Mali, and Niger) are not
shown, but could be estimated for certain regions. For the
purpose of comparison and model verification, in Fig. 7 we
also show the results of two other global IRWR assessments:
(1) WaterGAP 2.1e (long-term average 1961–95, no water
use), where the results were produced for the 2005 Environ-
mental Sustainability Index calculation (Esty et al., 2005),
and (2) FAO (2003), where long-term averages are reported
from multiple sources and years. The calculated 95PPU of
the IRWR cover the WaterGAP and FAO values in most coun-
tries. In general, the WaterGAP results, which are also mod-
el results, are closer to our estimates and only for Liberia
there seems to be an obvious incongruity. The smaller esti-
mate might be due to a variety of reasons, but the most
probable is that the country area covered in this study
equals only to two-third of the total area and the regions
missed are located at the sea with above-average rainfall
and runoff. In addition we had no observed runoff data with-
in Liberia, which could be used for calibration and valida-
tion and the dominant landuse is quite different from the
major landuse classes within the modelled basin. In general
the 95PPU intervals are large but looking at the difference
between the WaterGAP and the FAO single-value estimates,
the ranges seem to be quite realistic representation of the
existing uncertainties.

In Fig. 8 we present the monthly average (from 1971 to
1995) 95PPU of the IRWR and the AET (green water flow)
aggregated for eight selected countries. For a better in-
ter-country comparison we give the values in mm per month
and show also the monthly precipitation. In general, the
uncertainty ranges of the average monthly IRWR are quite
large and this is especially true for the wet months. The spa-
tial heterogeneity of the annual IRWR pattern across the
countries is quite significant. Also, it can be seen that in
the months after the rainy period there is still a remarkable
contribution to the total IRWR from the baseflow and
groundwater recharge components. In contrast to the IRWR,
the uncertainty ranges of the average monthly AET are
clearly smaller. This is in part due to the fact that only
one parameter (ESCO) controls AET, while all calibrated
model parameters affect IRWR. Interestingly, the uncer-
tainty ranges of the AET are not larger for higher volumes
as it is the case for the IRWR.

The uncertainty range of the SW (green water storage)
within the uniform 1-m thick soil layer in different countries
is shown in Fig. 9. The 95PPU ranges (averaged over
25 years) are in general narrower than that of the IRWR
and the annual pattern is similar to the precipitation pat-
tern. The graphs show the differences in the long-term aver-
age and the maximum soil water in different countries, as
well as the periods where plant-available soil–water is neg-
ligible. As an example, Senegal has insignificant green water
resource in half of the year. A direct validation of the mod-
elled soil water was not possible as suitable soil water
observations for the region of interest were not available.

In the present modelling framework we were able to cal-
culate the ranges for both blue and green water components
of freshwater availability per sub-country basis. The next
question is how to appropriately present the quantity of to-
tal water resources availability in a country. It has widely
been agreed that the water resource data containing only
blue water component are not appropriate for representing
the total water resource (Rockström and Gordon, 2001; Ger-
ten et al., 2005; Falkenmark and Rockström, 2006). Green
water must be taken into account as it is crucially important
for sustaining ecosystem services and rainfed agriculture.
There is, however, an ambiguity as to what constitutes
the green water of a country. As this definition may differ
in different studies, the present work provides enough de-
tail for various definitions and interpretations of green
water, and hence, totals water resources in general. In
Table 5, we present for 11 countries the average annual pre-
cipitation together with the 95PPU intervals of the average
annual blue water (IRWR) and the green water flow (AET), as
well as the long-term average green water storage (SW). It
is seen that the sum of green water flow and the internal
blue water (minus the water used for irrigation, which was
not considered in this study for being negligible in the
region) are roughly equal to the total precipitation. There-
fore, ultimately, the ‘‘total potential water resource’’ of
a country is the amount of precipitation falling on that
country. The ‘‘total actual water resource’’, however, is
smaller than the potential as not all the precipitation can
be beneficially used for generating economic return, e.g.,
precipitation that falls on desert areas. For this reason, to
better quantify the actual water resources one could use a
more practical spatial resolution in assessing the water
resources as adapted in this study.

With the modelling approach outlined here, we are able
to show a more detailed regional picture. For example,
Fig. 10 shows the runoff to rainfall ratio (runoff coefficient)
for the Western Africa sub-continent at a subbasin level.
Also, in Fig. 11, it is shown that for a larger country like
Burkina Faso, the intra-country differences can be very dis-
tinctive, while the use of country averages of the freshwa-
ter availability in advanced studies may be deceptive.
Conclusions

Based on globally available data only, we successfully
implemented and calibrated the SWAT model for water
quantity investigations in the 4-million km2 area in West
Africa. Considering the scale and especially also the data
scarcity, the results are very satisfying and provide notable
insight into the freshwater availability and the associated
uncertainties in this vulnerable region. An important
improvement in the model setup was the change from
the use of the poor quality measured weather data to
the use of daily generated data based on monthly climate
grids. Furthermore the applied parameter optimization and
uncertainty analysis procedure SUFI-2, with the multi-site,
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was very efficient not only in terms of localizing an opti-
mum parameter range but also in terms of the necessary
number of simulations. A program using a relatively small
number of simulations to perform calibration and uncer-
tainty analysis was essential for such a computationally
extensive model.

While we successfully included the major wetland (Ni-
ger Inland Delta) and the largest reservoirs, there are still
many other influencing processes which were neglected
(e.g., further reservoirs, water use, irrigation) or simpli-
fied (e.g., assigning the dominant soil and landuse to rep-
resent the whole subbasin, and using generated daily
precipitation and temperature) due to the limited avail-
able information. Given all uncertainties in the model in-
put, the parameters, and especially in the conceptual
model, the presentation of the results as the 95% predic-
tion uncertainty is quite logical. Expressing freshwater
availability as one number could be quite misleading. In
addition to annual averages, we also provide monthly
information on the blue water, the green water flow,
and the green water storage at subbasin level. These vari-
ables are necessary for many advanced studies, e.g., food
security, virtual water flow, and strategic water planning
and management. As only river discharges were calibrated
and validated, we emphasize that other outputs presented
in this study, such as soil moisture, have to be treated
with the appropriate care. However, we believe that the
estimated uncertainties are a reliable representation of
the real situation.

This study is part of a larger project to assess the global
freshwater availability. The West Africa study showed that
the model SWAT and the selected calibration procedure is
applicable to very large areas and provides reliable results.
In the next step, the ArcGIS version of SWAT (Olivera et al.,
2006; Winchell et al., 2007) will be used to develop a conti-
nental model.
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Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T.,
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Döll, P., Kaspar, F., Lehner, B., 2003. A global hydrological model
for deriving water availability indicators: model tuning and
validation. J. Hydrol. 270 (1–2), 105–134.

Esty, D.C., Levy, M., Srebotnjak, T., de Sherbinin, A., 2005.
Environmental Sustainability Index: Benchmarking National
Environmental Stewardship. Yale Center for Environmental Law
& Policy, New Haven.

Falkenmark, M., Rockström, J., 2006. The new blue and green
water paradigm: Breaking new ground for water resources
planning and management. J. Water Resour. Plann. Manage.:
ASCE 132 (3), 129–132.

FAO (Food and Agriculture Organization), 1995. The digital soil map
of the world and derived soil properties. CD-ROM, Version 3.5,
Rome.

FAO (Food and Agriculture Organization), 2003. Review of the world
water resources by country. Water Report No. 23, Rome.

Geng, S., Devries, F., Supit, I., 1986. A simple method for
generating daily rainfall data. Agr. Forest Meteorol. 36 (4),
363–376.

Gerten, D., Hoff, H., Bondeau, A., Lucht, W., Smith, P., Zaehle, S.,
2005. Contemporary ‘‘green’’ water flows: simulations with a
dynamic global vegetation and water balance model. Phys.
Chem. Earth 30, 334–338.

Gosain, A.K., Rao, S., Basuray, D., 2006. Climate change impact
assessment on hydrology of Indian river basins. Curr. Sci. 90 (3),
346–353.

Hartkamp, A.D., White, J.W., Hoogenboom, G., 2003. Comparison
of three weather generators for crop modelling: a case study for
subtropical environments. Agr. Syst. 76 (2), 539–560.
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