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[1] Despite the general awareness that in Africa many people and large areas are suffering
from insufficient water supply, spatially and temporally detailed information on
freshwater availability and water scarcity is so far rather limited. By applying
a semidistributed hydrological model SWAT (Soil and Water Assessment Tool), the
freshwater components blue water flow (i.e., water yield plus deep aquifer recharge),
green water flow (i.e., actual evapotranspiration), and green water storage (i.e., soil water)
were estimated at a subbasin level with monthly resolution for the whole of Africa. Using
the program SUFI-2 (Sequential Uncertainty Fitting Algorithm), the model was
calibrated and validated at 207 discharge stations, and prediction uncertainties were
quantified. The presented model and its results could be used in various advanced studies
on climate change, water and food security, and virtual water trade, among others.
The model results are generally good albeit with large prediction uncertainties in some
cases. These uncertainties, however, disclose the actual knowledge about the modeled
processes. The effect of considering these model-based uncertainties in advanced
studies is shown for the computation of water scarcity indicators.
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1. Introduction

[2] On a continental and annual basis Africa has abun-
dant water resources but the problem is their high spatial
and temporal variability within and between countries and
river basins [UN-Water/Africa, 2006]. Considering this
variability, the continent can be seen as dry with pressing
water problems [Falkenmark, 1989; Vörösmarty et al.,
2005]. Though of critical importance, detailed information
on water resources and water scarcity is still limited in
Africa [Wallace and Gregory, 2002].
[3] Freshwater availability is a prerequisite for food secu-

rity, public health, ecosystem protection, etc. Thus freshwater
is important and relevant for achieving all development goals
contained in the United Nations Millennium Declaration
(http://www.un.org/millennium/declaration/ares552e.pdf).
Two important targets of the Declaration are to halve, by the
year 2015, the proportion of people without sustainable
access to safe drinking water and to halve the proportion of
people who suffer from hunger. These two targets are closely
related to freshwater availability.

[4] Up to now, studies of freshwater availability have
predominantly focused on the quantification of the ‘‘blue
water’’, while ignoring the ‘‘green water’’ as part of the
water resource and its great importance especially for
rainfed agriculture (e.g., in sub-Saharan Africa more than
95% is rainfed [Rockström et al., 2007]). Two of the few
studies dealing with green water are Rockström and Gordon
[2001] and Gerten et al. [2005]. Blue water flow, or the
internal renewable water resource (IRWR), is traditionally
quantified as the sum of the water yield and the deep aquifer
recharge. Green water, on the other hand, originates from
the naturally infiltrated water, which is more and more being
thought of as a manageable water resource. Falkenmark
and Rockström [2006] differentiate between two compo-
nents of the green water: green water resource (or storage),
which equals the moisture in the soil, and green water flow,
which equals the sum of the actual evaporation (the
nonproductive part) and the actual transpiration (the pro-
ductive part). In some references only the transpiration is
regarded as the green water component [e.g., Savenije,
2004]. As evaporation and transpiration are closely inter-
linked processes and evaporated water has the potential to
be partly used as productive flow for food production, we
prefer to consider the total actual evapotranspiration as the
green water flow.
[5] Spatially and temporally detailed assessments of the

different components of freshwater availability are essential
for locating critical regions, and thus, the basis for rational
decision-making in water resources planning and manage-
ment. There exist already a few global freshwater assess-
ments based on (1) data generalization [e.g., Shiklomanov,
2000; Shiklomanov and Rodda, 2003], (2) general circula-
tion models (GCMs), [e.g., TRIP, Oki et al., 2001; Oki and
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Kanae, 2006], and (3) hydrological models [e.g., WBM,
Vörösmarty et al., 1998, 2000; Fekete et al., 1999; Macro-
PDM, Arnell, 1999; WGHM (WaterGAP 2), Alcamo et al.,
2003; Döll et al., 2003; LPJ, Gerten et al., 2004; WAS-
MOD-M, Widén-Nilsson et al., 2007]. GCMs with their
strength on the atmospheric model component perform
poorly on the soil water processes [Döll et al., 2003]. All
the above mentioned hydrological models are raster models
with a spatial resolution of 0.5� but show different degrees
of complexities. These models either have not been cali-
brated (e.g., WBM) or only one (e.g., WGHM) or few
parameters (e.g., WASMOD-M) have been checked and
adjusted against long-term average runoffs. In WGHM, for
some basins one or two correction factors have been
additionally applied in order to guarantee a maximum of
1% error of the simulated long-term annual average runoff
[Döll et al., 2003]. Intraannual runoff differences, which are
of key importance in many regions have been included in
some studies [e.g., Widén-Nilsson et al., 2007] but not used
for calibration.
[6] The existing global and continental freshwater assess-

ment models have been used for climate and socio-eco-
nomic change scenarios [Alcamo et al., 2007], water stress
computation [Vörösmarty et al., 2005], analysis of seasonal
and interannual continental water storage variations [Güntner
et al., 2007], global water scarcity analysis taking into
account environmental water requirements [Smakhtin et al.,
2004], and virtual water trading [Islam et al., 2007] among
others. Hence it is important that these models pass through a
careful calibration, validation, and uncertainty analysis.
Particularly in large-scale (hydrological) models, the
expected uncertainties are rather large. For this task, several
different procedures have been developed: e.g., Generalized
Likelihood Uncertainty Estimation (GLUE) [Beven and
Binley, 1992], Bayesian inference based on Markov Chain
Monte Carlo (MCMC) [Vrugt et al., 2003], Parameter
Solution (ParaSol) [van Griensven and Meixner, 2006],
and Sequential Uncertainty Fitting (SUFI-2) [Abbaspour
et al., 2007].
[7] In this study, we modeled the monthly subcountry-

based freshwater availability for Africa and explicitly dif-
ferentiated between the different freshwater components:
blue water flow, green water storage and green water flow.
The model of choice was ‘‘Soil and Water Assessment
Tool’’ (SWAT) [Arnold et al., 1998] because of two reasons.
First, SWAT has been already successfully applied for water
quantity and quality issues for a wide range of scales and
environmental conditions around the globe. A comprehen-
sive SWAT review paper summarizing the findings of more
than 250 peer-reviewed articles is written by Gassman et al.
[2007]. The suitability of SWAT for very large scales
applications has been shown in the ‘‘Hydrologic Unit Model
for the United States’’ project (HUMUS) [Arnold et al.,
1999; Srinivasan et al., 1998]. SWAT was recently also
applied in the national and watershed assessments of the
U.S. Department of Agriculture (USDA) Conservation
Effects Assessment Program (CEAP, http://www.nrcs.usda.
gov/Technical/nri/ceap/index.html). The second reason for
choosing SWAT for this exclusive water quantity study was
its ability to perform plant growth and water quality
modeling, a topic we plan to study in the future. An
advantage of SWAT is its modular implementation where

processes can be selected or not. As processes are repre-
sented by parameters in the model, in data scarce regions
SWAT can run with a minimum number of parameters. As
more is known about a region, more processes can be
invoked for by updating and running the model again.
[8] The African model was calibrated and validated at

207 discharge stations across the continent. Uncertainties
were quantified using SUFI-2 program [Abbaspour et al.,
2007]. Yang et al. [2008] compared different uncertainty
analysis techniques in connection to SWAT and found that
SUFI-2 needed the smallest number of model runs to
achieve a similarly good solution and prediction uncertainty.
This efficiency issue is of great importance when dealing
with computationally intensive, complex, and large-scale
models. In addition, SUFI-2 is linked to SWAT (in the
SWAT-CUP software) [Abbaspour et al., 2008] through an
interface that includes also the programs GLUE, ParaSol,
and MCMC.

2. Materials and Methods

2.1. SWAT2005 Model and ArcSWAT Interface

[9] To simulate the water resources availability in Africa,
the latest version of the semiphysically based, semidistrib-
uted, basin-scale model SWAT [Arnold et al., 1998] was
selected (SWAT2005) [Neitsch et al., 2005]. SWAT is a
continuous time model and operates on a daily time step.
Only the hydrologic component of the model was used in
this study. In SWAT the modeled area is divided into
multiple subbasins by overlaying elevation, land cover, soil,
and slope classes. In this study the subbasins were charac-
terized by dominant land-use, soil, and slope classes. This
choice was essential for keeping the size of the model at a
practical limit. For each of the subunits, water balance was
simulated for four storage volumes: snow, soil profile,
shallow aquifer, and deep aquifer. In our case, potential evapo-
transpiration was computed using the Hargreaves method
which requires the climatic input of daily precipitation, and
minimum and maximum temperature. Surface runoff was
simulated using a modification of the SCS Curve Number
(CN) method. Despite the empirical nature, this approach has
been proven to be successful for many applications and a wide
variety of hydrologic conditions [Gassman et al., 2007]. The
runoff from each subbasin was routed through the river
network to the main basin outlet using, in our case, the
variable storage method. Further technical model details are
given by Arnold et al. [1998] and Neitsch et al. [2005].
[10] The preprocessing of the SWAT model input (e.g.,

watershed delineation, manipulation of the spatial and
tabular data) was performed within ESRI ArcGIS 9.1 using
the ArcSWAT interface [Winchell et al., 2007]. In compar-
ison to the ArcView GIS interface AVSWAT2000 [Di Luzio
et al., 2001], ArcSWAT has no apparent limitation
concerning the size and complexity of the simulated area
as it was able to model the entire African continent.

2.2. Calibration and Uncertainty Analysis
Procedure SUFI-2

[11] The program SUFI-2 [Abbaspour et al., 2007] was
used for a combined calibration and uncertainty analysis. In
any (hydrological) modeling work there are uncertainties in
input (e.g., rainfall), in conceptual model (e.g., by process
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simplification or by ignoring important processes), in
model parameters (nonuniqueness) and in the measured
data (e.g., discharge used for calibration). SUFI-2 maps
the aggregated uncertainties to the parameters and aims to
obtain the smallest parameter uncertainty (ranges). The
parameter uncertainty leads to uncertainty in the output
which is quantified by the 95% prediction uncertainty
(95PPU) calculated at the 2.5% (L95PPU) and the 97.5%
(U95PPU) levels of the cumulative distribution obtained
through Latin hypercube sampling. Starting with large but
physically meaningful parameter ranges that bracket ‘most’
of the measured data within the 95PPU, SUFI-2 decreases
the parameter uncertainties iteratively. After each iteration,
new and narrower parameter uncertainties are calculated
[see Abbaspour et al., 2007] where the more sensitive
parameters find a larger uncertainty reduction than the less
sensitive parameters. In deterministic simulations, output
(i.e., river discharge) is a signal and can be compared to a
measured signal using indices such as R2, root mean square
error, or Nash-Sutcliffe. In stochastic simulations where
predicted output is given by a prediction uncertainty band
instead of a signal, we devised two different indices to
compare measurement to simulation: the P-factor and the
R-factor [Abbaspour et al., 2007]. These indices were
used to gauge the strength of calibration and uncertainty
measures. The P-factor is the percentage of measured data
bracketed by the 95PPU. As all correct processes and
model inputs are reflected in the observations, the degree
to which they are bracketed in the 95PPU indicates the
degree to which the model uncertainties are being
accounted for. The maximum value for the P-factor is
100%, and ideally we would like to bracket all measured
data, except the outliers, in the 95PPU band. The R-factor
is calculated as the ratio between the average thickness of
the 95PPU band and the standard deviation of the measured
data. It represents the width of the uncertainty interval and
should be as small as possible. R-factor indicates the
strength of the calibration and should be close to or smaller
than a practical value of 1. As a larger P-factor can be
found at the expense of a larger R-factor, often a trade off
between the two must be sought.

2.3. Database

[12] The model for the continent of Africa was con-
structed using in most cases freely available global infor-
mation. The collection of the data was followed by an
accurate compilation and analysis of the quality and integrity.
The basic input maps included the digital elevation model
(DEM) GTOPO30, the digital stream network HYDRO1k
(http://edc.usgs.gov/products/elevation/gtopo30/hydro/
index.html), and the land cover map Global Land Cover
Characterization (GLCC) (http://edcsns17.cr.usgs.gov/glcc/)
both at a resolution of 1 km from U.S. Geological Survey
(USGS). The soil map was produced by the Food and
Agriculture Organization of the United Nations [FAO,
1995] at a resolution of 10 km, including almost 5000 soil
types and two soil layers. Because of the few and unevenly
distributed weather stations in Africa with often only short
and erroneous time series, the daily weather input (precipi-
tation, minimum and maximum temperature) was generated
for each subbasin based on the 0.5� grids monthly statistics
from Climatic Research Unit (CRU TS 1.0 and 2.0, http://
www.cru.uea.ac.uk/cru/data/hrg.htm). We developed a semi-

automated weather generator, dGen, for this purpose [Schuol
and Abbaspour, 2007]. Information on lakes, wetlands and
reservoirs was extracted from the Global Lakes andWetlands
Database (GLWD) [Lehner and Döll, 2004]. River discharge
data, which is essential for calibration and validation, were
obtained from the Global Runoff Data Centre (GRDC, http://
grdc.bafg.de). More details on the databases are discussed by
Schuol et al. [2008].

2.4. Model Setup

[13] The ArcSWAT interface was used for the setup and
parameterization of the model. On the basis of the DEM and
the stream network, a minimum drainage area of 10,000 km2

was chosen to discretize the continent into 1496 subbasins.
The geomorphology, stream parameterization, and overlay
of soil and land cover were automatically done within the
interface. To mitigate the effect of land cover change over
time, and to decrease the computational time of the very
large-scale model, the dominant soil and land cover were
used in each subbasin. The simulation period was from
1968 to 1995 and for these years we provided daily
generated weather input. The first 3 years were used as
warm-up period to mitigate the unknown initial conditions
and were excluded from the analysis. Lakes, wetlands, and
reservoirs, which affect the river discharge to a great extent,
were also included in the model. As detail information was
lacking, only 64 reservoirs with storage volumes larger than
1 km3 were included (Figure 1). In this study, wetlands on
the main channel networks as well as lakes were treated as
reservoirs. The parameterization was mostly based on
information from GLWD-1 [Lehner and Döll, 2004].

2.5. Model Calibration Procedures

[14] Model calibration and validation is a necessary,
challenging but also to a certain degree subjective step in
the development of any complex hydrological model. The
African model was calibrated using monthly river dis-
charges from 207 stations. These stations were unevenly
distributed throughout the continent (Figure 1) and covered,
in most cases, only parts of the whole analysis period from
1971 to 1995. For this reason it was inevitable to include
different time lengths (minimum of 3 years) and time
periods at the different stations in the calibration procedure.
Consistently at all stations, using a split-sample procedure,
the more recent half of the discharge data were used for
calibration and the prior half were used for validation. In
order to compare the monthly measured and simulated
discharges, F, a weighted version of the coefficient of
determination (slightly modified [Krause et al., 2005])
was selected as efficiency criteria:

F ¼
jbjR2 if jbj � 1

jbj�1
R2 if jbj > 1

8<
: ð1Þ

where the coefficient of determination R2 represents the
discharge dynamics, and b is the slope of the regression line
between the monthly observed and simulated runoff.
Including b guarantees that runoff under- or over-predic-
tions are also reflected. A major advantage of this efficiency
criterion is that it ranges from 0 to 1, which compared to
Nash-Sutcliff coefficient with a range of �1 to 1, ensures
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that in a multisite calibration the objective function is not
governed by a single or a few badly simulated stations.
[15] In order to obtain some knowledge of the uncertainty

associated with the selected calibration method, three inde-
pendent calibrations were performed, each having a differ-
ent objective function. In the first procedure the objective
function was formulated as the n-station-sum of F:

g ¼
Xn
i¼1

Fi ð2Þ

[16] In the second procedure, each station was weighted
(w) depending on the contributing area A in km2 and the
number of monthly observations s used for calibration at a
certain station i and the upstream stations j:

g ¼
Xn
i¼1

wi � Fið Þ ð3Þ

Figure 1. Location of the reservoirs included in the model and the four model areas used in the third
calibration procedure. Also shown are the discharge stations and their associated weights in the
calibration.
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where

wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai �

Pn
j¼1

Aj

 !
� si

si þ
Pn
j¼1

sj

vuuuuuuut ð4Þ

[17] The idea behind this weighting is that a runoff station
with a long data series and a large watershed without further
stations upstream provides more information for calibration
and should have a larger weight than a station in a densely
gauged area or a station with a short time series. The
weights ranged from 1 to 61 for the furthest downstream
station on the river Congo at Kinshasa (Figure 1).
[18] In the third calibration procedure the region was

divided into four modeling zones and each zone was
calibrated independently. The four model areas basically
delineated the large river basins in the continent (Figure 1)
and included: Area 1, Niger, Chad, and North Africa with
an area of 11.8 million km2 and 106 stations; Area 2, Nile
with an area of 6.1 million km2 and 27 stations; Area 3,
Congo with an area of 4.8 million km2 and 38 stations; and
Area 4, Zambezi, South Africa, and Madagascar with an
area of 5.1 million km2 and 36 stations. The zoning was
based on the intracontinental variations in the climate as
well as the dominant land covers and soil types.
[19] The choice of the parameters initially included in the

calibration procedures was based on the experience gained
in modeling West Africa [Schuol et al., 2008] for which a
detailed literature-based preselection as well as a sensitivity
analysis has been performed. Some of the selected SWAT
parameters (e.g., curve number) are closely related to land
cover, while some others (e.g., available water capacity,
bulk density) are related to soil texture. For these parameters
a separate value for each land-cover/soil-texture was

selected, which increased the number of calibrated param-
eters substantially. The percentage of land cover and soil
texture distribution within Africa and the four subregions is
listed in Table 1. In the course of the iterative SUFI-2
calibration, not only the parameter ranges were narrowed,
but also the number of parameters was decreased by
excluding those that turned out to be insensitive.
[20] To account for the uncertainty in the measured dis-

charge data, a relative error of 10% [Butts et al., 2004] and
an absolute measured discharge uncertainty of 0.1 m3 s�1

were included when calculating the P-factor. The absolute
uncertainty was included in order to capture the dry periods
of the many intermittent streams.

3. Results and Analysis

3.1. Model Calibration

[21] The three calibration procedures produced more or
less similar results for the whole of Africa in terms of the
values of the objective function F, the P-factor, and the
R-factor (Table 2). The final parameter ranges in the three
procedures, although different, were clustered around the
same regions of the parameter space as shown in Table 3.
This is typical of a nonuniqueness problem in the calibration
of hydrologic models. In other words, if there is a single
model that fits the measurements there will be many of them
[Abbaspour, 2005; Abbaspour et al., 2007]. Yang et al.
[2008] used four different calibration procedures, namely
GLUE, MCMC, ParaSol, and SUFI-2, for a watershed in
China. All four produced very similar final results in terms
of R2, Nash-Sutcliffe (NS), P-factor and R-factor while
converging to quite different final parameter ranges. In this
study also, where only SUFI-2 was used with three different
objective functions, all three methods resulted in different
final parameter values.

Table 1. Soil Texture and Land Cover Distribution Within the Modeled African Basin and the Four Subareas

Abbreviation Africa, % Area 1, % Area 2, % Area 3, % Area 4, %

Land cover
Barren or sparsely vegetated BSVG 32.7 58.6 35.6 ��� 0.6
Dryland cropland and pasture CRDY 4.3 0.3 3.9 5.9 12.5
Cropland/grassland mosaic CRGR 1.3 ��� ��� ��� 7.3
Cropland/woodland mosaic CRWO 2.4 1.8 2.6 5.1 0.7
Deciduous broadleaf forest FODB 3.2 ��� ��� 11.8 6.2
Evergreen broadleaf forest FOEB 8.6 0.9 ��� 46.7 0.6
Mixed forest FOMI 0.1 ��� ��� 0.9 ���
Grassland GRAS 5.9 6.7 2.1 0.0 14.0
Mixed grassland/shrubland MIGS 0.6 1.3 ��� ��� ���
Savannah SAVA 30.0 26.9 30.2 27.1 39.5
Shrubland SHRB 9.4 3.4 22.3 ��� 16.5
Water bodies WATB 1.5 ��� 3.0 2.4 2.1
Herbaceous wetland WEHB 0.0 ��� 0.2 ��� ���

Soil
Clay C 8.7 0.8 17.5 20.8 4.7
Clay-loam CL 11.3 17.8 10.6 3.4 4.8
Loam L 29.9 42.9 30.0 9.7 19.0
Loamy-sand LS 5.0 4.3 0.0 14.4 3.4
Sand S 2.6 3.7 4.7 ��� 0.0
Sandy-clay-loam SCL 19.0 11.8 17.1 32.4 25.0
Sandy-loam SL 23.5 18.6 19.7 19.2 43.2
Silt-loam IL 0.1 ��� 0.4 ��� ���
Silty-clay IC 0.0 0.0 ��� ��� ���
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[22] In the following, we used the results of the third
approach, because dividing Africa into four different hy-
drologic regions accounted for more of the spatial variabil-
ity and resulted in a slightly better objective function value.
[23] In order to provide an overview of the model

performance in different regions, the P-factor (percent data
bracketed) and the R-factor (a measure of the thickness of
the 95PPU band) at all the stations across Africa are shown
for both calibration and validation in Figure 2. In addition,
the efficiency criteria, F, calculated based on the observed
and the ‘‘best’’ simulation (i.e., simulation with the largest
value of the objective function), and also the NS coefficient
are shown at each station. Overall, in calibration (valida-

tion), at 61% (55%) of the stations over 60% of the
observed data were bracketed by the 95PPU and at 69%
(70%) of the stations the R-factor was below 1.5. The F
value was at 38% (37%) of the stations higher than 0.6 and
the NS was at 23% (21%) of the stations higher than 0.7. In
general, the model performance criteria were quite satisfac-
tory for such a large-scale application. Some areas of poorly
simulated runoffs were the Upper Volta, the East African
Lakes region, and the Zambezi and Orange basin in the
South of Africa. The reasons for this might be manifold and
are not always clearly attributable. Of great importance are
(1) over- or under-estimation in precipitation; (2) difficulties
in simulating the outflow from lakes and wetlands;
(3) insufficient data on the management of the reservoirs;
(4) the effect of smaller lakes, reservoirs, wetlands, and
irrigation projects that were not included; (5) simplifications
by using dominant soil types and land cover classes in the
subbasins; and (6) various water use abstractions, which
were not included.

3.2. Quantification of Blue and Green Water
Resources and Their Uncertainty Ranges

[24] Using the calibrated model, the annual and monthly
blue water flow (water yield plus deep aquifer recharge),

Table 2. Final Statistics for the Three Calibration Procedures

F P-factor R-factor

Cal. Val Cal. Val Cal. Val.

Procedure 1 0.44 0.47 55.4 55.6 1.56 1.48
Procedure 2 0.44 0.46 58.9 58.5 1.65 1.49
Procedure 3 0.48 0.48 60.8 59.3 1.52 1.43

Table 3. SWAT Model Parameters Included in the Final Calibration Procedures and Their Initial and Final Rangesa

Parameter Name Initial Range
1st Proc.

Final Range
2nd Proc.

Final Range

3rd Proc. Final Range

Area 1 Area 2 Area 3 Area 4

CN2__BSVG* �0.50–0.15 �0.45– (�0.05) �0.40–0.00 ��� �0.40– (�0.10) ��� ���
CN2__CRDY* �0.50–0.15 �0.25–0.05 �0.05–0.10 �0.45–(�0.10) ��� �0.20–0.15 �0.10–0.10
CN2__FODB* �0.50–0.15 �0.45– (�0.05) �0.35–0.00 ��� ��� �0.30–0.00 �0.45– (�0.05)
CN2__FOEB* �0.50–0.15 �0.30–0.05 �0.20–0.10 �0.45–0.10 ��� �0.25–0.10 ���
CN2__GRAS* �0.50–0.15 �0.40–0.00 �0.35– (�0.05) �0.38–0.02 ��� ��� �0.40– (�0.10)
CN2__SAVA* �0.50–0.15 �0.50– (�0.20) �0.50– (�0.30) �0.50–(�0.35) �0.25–0.00 �0.45–(�0.20) �0.10–0.15
CN2__SHRB* �0.50–0.15 �0.45–0.05 �0.35– (�0.10) ��� �0.45– (�0.10) ��� �0.35–0.15
CN2__CRWO* �0.50–0.15 ��� ��� 0.00–0.17 �0.45–0.05 �0.45–0.15 ���
CN2__MIGS* �0.50–0.15 ��� ��� �0.40–0.10 ��� ��� ���
CN2__FOMI* �0.50–0.15 ��� ��� ��� ��� �0.45–0.10 ���
CN2__CRGR* �0.50–0.15 ��� ��� ��� ��� ��� �0.45–0.00
S_AWC__C* �0.50–0.50 �0.40–0.00 �0.50– (�0.05) ��� �0.25–0.40 �0.48–0.00 �0.20–0.50
S_AWC__CL* �0.50–0.50 �0.40–0.10 �0.20–0.15 0.00–0.45 �0.45–0.20 �0.25–0.30 �0.45–0.00
S_AWC__L* �0.50–0.50 �0.25–0.30 0.15–0.50 �0.15–0.40 �0.30–0.15 �0.05–0.20 �0.30–0.10
S_AWC__LS* �0.50–0.50 �0.50–0.20 �0.30–0.50 ��� �0.30–0.25 ��� �0.20–0.45
S_AWC__SCL* �0.50–0.50 �0.35–0.05 �0.20–0.30 �0.10–0.25 �0.50– (0.20) �0.40–0.25 �0.35–0.00
S_AWC__SL* �0.50–0.50 �0.20–0.40 �0.20–0.50 �0.20–0.15 �0.15–0.30 �0.30–0.20 0.00–0.45
S_AWC__S* �0.50–0.50 ��� ��� �0.20–0.45 ��� ��� ���
S_BD__C* �0.50–0.50 �0.40–0.20 �0.25–0.15 ��� �0.04–0.23 �0.35–0.10 �0.10–0.40
S_BD__CL* �0.50–0.50 �0.25–0.40 �0.25–0.20 �0.30–0.30 �0.05–0.10 �0.25–0.45 �0.45–0.30
S_BD__L* �0.50–0.50 �0.05–0.35 �0.05–0.40 �0.10–0.40 �0.10–0.35 �0.45–0.25 �0.25–0.15
S_BD__LS* �0.50–0.50 �0.40–0.25 �0.45– (�0.05) ��� ��� �0.32–0.10 �0.40–0.35
S_BD__SCL* �0.50–0.50 �0.15–0.40 �0.20–0.30 �0.35–0.25 �0.45–0.20 �0.45–0.00 �0.35–0.25
S_BD__SL* �0.50–0.50 �0.30–0.35 �0.20–0.25 �0.25–0.10 �0.20–0.40 �0.45–0.25 �0.10–0.45
S_BD__S* �0.50–0.50 ��� ��� �0.40–0.20 ��� ��� ���
ESCO 0.00–1.00 0.10–0.60 0.35–0.70 0.25–0.55 0.10–0.50 0.20–0.65 0.10–0.60
GW_DELAY 0–100 1–30 20–40 25–42 0–30 30–60 10–80
GW_REVAP 0.02–0.20 0.03–0.17 0.08–0.16 0.05–0.13 0.02–0.13 0.02–0.09 0.03–0.17
GWQMN 0–1000 20–300 25–300 175–350 200–750 125–400 5–100
RCHRG_DP 0.00–1.00 0.35–0.65 0.35–0.60 0.40–0.55 0.25–0.65 0.25–0.50 0.10–0.55
REVAPMN 0–500 225–500 200–500 275–500 200–400 225–375 125–350
SURLAG 0.0–10.0 2.0–8.0 2.0–4.5 ��� ��� ��� ���

aCN2, SCS runoff curve number; S_AWC, soil available water storage capacity; S_BD, moist soil bulk density; ESCO, soil evaporation compensation
factor [�]; GW_DELAY, groundwater delay time (lag between the time that water exits the soil profile and enters the shallow aquifer) [days]; GW_REVAP,
groundwater ‘revap’ coefficient (regulates the movement of water from the shallow aquifer to the root zone [�]; GWQMN, threshold depth of water in the
shallow aquifer required for return flow [mm H2O]; RCHRG_DP, deep aquifer percolation fraction [�]; REVAPMN, threshold depth of water in the
shallow aquifer for ‘revap’ or percolation to the deep aquifer [mm H2O]; SURLAG, surface runoff lag coefficient [days] CN2, S_AWC and S_BD have
different parameter values depending on the land cover or the soil texture type. For the abbreviations please refer to Table 1. Asterisk means relative change
of the parameter value.
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green water flow (actual evapotranspiration), and green
water storage (soil water) were calculated for each subbasin
and summed up for different countries or regions and also
the whole continent. We compared our model results with
other studies for blue water flow only, as to the best of our
knowledge, the green water flow and storage were not
explicitly quantified in the other models. Figure 3 shows
the estimated annual blue water for the whole African
continent averaged over the period 1971–1995 and the
results of ten other existing data-based (DB) or model-based
(M) assessments. A direct one-to-one comparison of these

values is not possible due to the different time periods and
study-specific assumptions. The intent of this comparison is
to give an overview of the differences in the existing
numbers that are used in various advanced studies. The
variation in different estimates indicates the uncertainty
associated in such calculations, which is captured almost
entirely in our prediction uncertainty as shown in Figure 3.
[25] On the country basis, the simulated long-term annual

(averaged over 1971–1995) blue water flow availability in
mm a�1 was compared with two other global assessments:
the FAO estimates [FAO, 2003] and the annual (averaged

Figure 2. The P-factor (a, b), the R-factor (c,d), the weighted coefficient of determination F (e, f), and
the Nash-Sutcliff coefficient (g, h) of the calibration (a, c, e, g) and validation (b, d, f, h) at all 207
stations.
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over 1961–1995) simulation from WaterGAP 2.1e model
(Figure 4). The latter has been produced for the 2005
Environmental Sustainability Index calculation [Esty et
al., 2005]. For the sake of clarity in illustration, the very
high FAO values for Liberia (2077 mm a�1) and Sierra
Leone (2206 mm a�1) were not included in the figure
(limited y axis range). Also not shown in the figure are
the values for six African countries for which WaterGAP
produced negative values (as it considers evaporation losses
from lakes and wetlands even though they depend on inflow
from other countries). In general, the large differences
between FAO and WaterGAP estimates indicate the uncer-

tainty in the country-based blue water estimates. Overall, a
large number of these estimates fell within our prediction
uncertainties. Although the calculated uncertainties may
appear large, we maintain that the actual uncertainty may
indeed be even larger because the coverage of the measured
data in the 95PPU was in some areas relatively small (small
P-factor). To decrease model uncertainty, a better descrip-
tion of the climate data, reservoir management, and water
use would be essential.
[26] In Table 4 the annual average water availability in

each country is shown in km3 a�1. The subbasin-based
precipitation and the 95PPU ranges for the blue water flow,

Figure 2. (continued)
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green water flow, and the green water storage were aggre-
gated to obtain country- and then continental-based values.
The uncertainties (95PPU) in green water flow estimates
were generally smaller than those of the blue water flow or
green water storage because of its sensitivity to fewer
parameters. It should be noted that the modeled green water
storage was solely calibrated indirectly as there were no soil
moisture observations. This study explored the possibility

of using data from remote sensing satellites, but so far only
found monitored surface soil moisture (top few centimeters)
in areas without forest or sand dunes. The relationship
between these values and that of the root zone soil moisture
is still unclear [Wagner et al., 2003, 2007].
[27] Next to the above annual continental and country-

based estimates, this study also provides monthly time
series of freshwater components for each subbasin with
valuable information on both spatial and temporal distribu-
tions. Such information has not been available at this detail
for the whole continent. In Figures 5a–5c the long-term
average annual freshwater components are shown in each
subbasin. These figures show the local (subcountry) differ-
ences especially in large countries with partly (semi-)arid
climate. In areas like North Africa, the south of Chad (Chari
basin), or the Limpopo basin in the South-East of Africa,
with scarce blue water availability, there are considerable
green water resources sustaining ecosystems, rain-fed agri-
culture and ultimately people’s lives.
[28] Despite the spatial distribution, the intra- and inter-

annual variability of the freshwater availability is of great
importance. Figure 6 shows the coefficient of variation
(CV) of the 1971–1995 annual values in each subbasin
for the blue water flow, the green water flow and the green
water storage. In general the CV, which is an indicator for
the reliability of a freshwater source, varied noticeably
within the continent and was the lowest for the green water
flow, while it was the largest for the blue water flow. The
reason for this is that the supply of water for evapotranspi-
ration is limited by soil’s capacity to deliver water to the

Figure 3. The SWAT 95PPU range of the 1971 to 1995
annual average blue water flow availability for the African
continent compared with 10 other existing assessments.

Figure 4. Comparison of the SWAT 95PPU ranges of the annual average (1971–1995) blue water flow
availability in the African countries with the results from the FAO assessment and the WaterGAP model.
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roots. This capacity is within a narrow range between soil’s
field capacity and wilting point. The interannual variability
of the blue water flow is especially large in the Sahel, at the
Horn of Africa, and in the Southern part of Africa, areas
which are known for recurring severe droughts.
[29] The intra-annual variability, presented by the 1971–

1995 average monthly 95PPU bands of the blue water flow,
the green water flow and the green water storage is shown
in Figure 7 for three countries as an example. These
countries, all with different climatic conditions, are Niger
in Western Africa, Zimbabwe in the Southern Africa, and
Gabon in Central Africa with an annual average precipita-
tion of 185 mm, 256 mm, and 463 mm, respectively. In
order to see the relation between the freshwater components

and the water input, the figures also include the average
monthly precipitation. All values are shown in mm or mm
month�1 and thus can be directly compared. The trends in
blue water flow in different countries become clearly
apparent. Niger and Zimbabwe, in particular, show large
uncertainties for the wet months. It should be noted that the
reported uncertainties in the average monthly values com-
bine both modeling uncertainties as well as natural variabil-
ity. Hence the reliability of the water resources decreases as
the uncertainties increase. The green water storage can
potentially benefit the agriculture in months with little or
without precipitation. In Niger the soil water storage is
depleted for about half of the year, while in Gabon this
volume persists much longer within the (much shorter) dry

Table 4. Average Precipitation (Model Input) and the 95PPU Ranges for the Components of Freshwater Availability in the African

Countries

Country Area, 103 km2 Precipitation, km3 a�1 Blue Water Flow, km3 a�1 Green Water Flow, km3 a�1 Green Water Storage, km3

Algeria 2321.0 198.6 2.1–8.8 181.5–200.1 9.8–13.8
Angola 1252.4 1232.3 150.0–287.3 893.8–1024.1 49.4–71.1
Benin 116.5 116.4 13.7–29.6 84.6–96.1 4.4–6.8
Botswana 580.0 226.9 2.4–11.1 201.5–234.2 6.9–13.5
Burkina Faso 273.7 201.3 19.0–42.5 153.1–173.1 6.6–10.0
Burundi 27.3 32.3 1.5–4.5 22.2–24.6 1.2–2.1
Cameroon 466.3 751.8 210.5–296.9 443.0–492.0 23.9–36.4
Cent. Af. Rep. 621.5 809.8 143.2–243.8 545.4–615.5 29.6–42.8
Chad 1168.0 397.3 26.9–57.6 325.8–363.2 16.7–24.0
Congo 345.4 554.6 102.1–178.5 361.0–411.1 19.3–30.0
D.R. Congo 2337.0 3526.9 424.8–825.2 2525.9–2841.9 160.7–255.9
Djibouti 21.6 6.1 0.1–0.8 4.8–6.3 0.1–0.2
Egypt 982.9 36.3 0.0–0.3 34.8–37.1 0.5–0.7
Equat. Guinea 27.1 52.9 14.9–22.9 29.4–33.4 1.5–2.8
Eritrea 121.9 38.1 2.3–7.1 29.1–33.9 0.6–1.3
Ethiopia 1132.3 877.5 99.1–211.9 627.7–707.2 19.9–38.4
Gabon 261.7 462.6 128.8–198.3 257.4–295.4 12.5–21.8
Gambia, The 10.7 8.2 1.3–2.7 5.4–6.3 0.2–0.4
Ghana 240.0 277.6 28.5–61.4 208.2–234.8 9.7–16.3
Guinea 246.1 398.6 135.7–190.9 210.6–234.3 12.8–18.9
Guinea-Bissau 33.6 50.4 20.7–29.8 22.0–25.0 1.4–2.0
Ivory Coast 322.2 418.5 63.6–108.5 301.1–332.7 16.1–24.2
Kenya 584.4 383.8 6.0–28.3 308.4–331.6 9.7–15.2
Lesotho 30.4 22.0 0.6–2.7 18.3–21.2 0.6–1.4
Liberia 96.3 213.7 73.4–97.7 115.9–125.1 6.3–9.0
Libya 1620.5 76.6 0.1–0.7 72.1–79.7 2.6–3.8
Madagascar 594.9 864.4 219.1–374.2 502.8–566.4 32.8–57.8
Malawi 119.0 130.9 12.2–23.5 51.2–58.0 1.5–2.6
Mali 1256.7 366.3 47.7–92.1 267.7–297.8 8.5–12.6
Mauritania 1041.6 89.9 2.3–7.2 78.7–87.4 1.0–1.7
Morocco 403.9 113.6 1.9–10.2 98.0–113.2 6.4–9.4
Mozambique 788.6 769.5 87.1–186.6 522.1–630.0 25.8–47.8
Namibia 825.6 237.6 3.0–19.0 204.5–243.4 6.3–13.2
Niger 1186.0 185.3 3.3–9.4 165.5–186.6 5.3–8.8
Nigeria 912.0 1004.0 263.1–387.6 605.2–677.2 35.2–49.6
Rwanda 25.2 30.1 1.3–4.5 25.0–27.3 1.4–2.5
Senegal 196.9 124.1 20.4–35.9 85.3–97.4 3.6–5.7
Sierra Leone 72.5 166.5 76.3–98.7 70.0–76.8 4.1–6.0
Somalia 639.1 190.6 1.2–7.8 174.5–190.8 4.6–7.3
South Africa 1223.1 578.8 11.3–37.4 521.7–568.9 16.6–29.7
Sudan 2490.4 1020.7 45.1–138.3 830.9–930.7 28.3–44.4
Swaziland 17.2 14.5 0.4–1.9 11.8–14.0 0.3–0.9
Tanzania 945.0 977.5 111.4–208.3 599.3–666.4 24.0–35.0
Togo 57.3 63.8 8.7–17.0 45.8–51.0 2.2–3.3
Tunisia 155.4 44.7 1.0–5.1 37.3–44.2 2.7–4.3
Uganda 243.0 283.6 7.7–28.0 206.9–228.1 6.7–14.1
W. Sahara 269.6 9.3 0.0–0.0 8.7–9.7 0.1–0.2
Zambia 754.8 727.5 115.6–204.9 479.5–559.8 25.1–38.8
Zimbabwe 390.8 256.0 20.7–51.7 193.9–234.5 8.4–16.0
Africa 30222 19865 3301–4476 14449–15348 785–996
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period. This information is quite helpful in planning crop-
ping season and helps to model scenarios of changing
cropping seasons and patterns and its impacts on green
and blue water flow and storage.
[30] It should be pointed out that for large countries,

variations can be substantial across subbasins. For example,
in Niger the country-based annual average blue water flow
availability is 3 to 8 mm a�1 but some subbasins in the
south of the country provide about 10 times more. While
not shown in further detail, the model can provide monthly
information of the freshwater components for each of the

1496 subbasins in Africa and they will be published in a
special report.

4. Implications of the Model Results

4.1. Blue Water Scarcity Indicators Considering
Uncertainty

[31] The model results of the temporal and spatial varia-
tions of the freshwater availability components and their
uncertainty bands can be used in global and national water
planning and management, in advanced studies concerning

Figure 5. The 1971 to 1995 annual average (a) blue water flow, (b) green water flow, and (c) green
water storage in all 1496 modeled subbasins in Africa.
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the water and food security, virtual water flow, and effects
of land-use and climate change [UNESCO, 2006]. This
study briefly presents the use of the model results for water
scarcity analysis. While there exist a large number of water
scarcity indicators, one of the most widely used and
accepted is the water stress threshold, defined as 1700 m3

capita�1 a�1 [Falkenmark and Widstrand, 1992]. This
scarcity index does not indicate that water is scarce for
domestic purposes, but rather for irrigation and thus for
food production [Rijsberman, 2006]. Yang et al. [2003]

have found that below a threshold of about 1500 m3

capita�1 a�1 the cereal import in a country inversely
correlates to its renewable water resources. Below this value
different degrees of water stresses (extreme stress: <500 m3

capita�1 a�1, high stress: <1000 m3 capita�1 a�1) can be
defined [Falkenmark et al., 1989]. A value between 1700
and 4000 m3 capita�1 a�1 is considered as just adequate
[Revenga et al., 2000]. Vörösmarty et al. [2000] have found
in a global study that the number of people exposed to high
water stress (defined as withdrawal-to-availability-ratio

Figure 6. Coefficient of variation (CV) of the average of the 95PPU ranges (Avg.) of the 1971 to 1995
modeled annual values of the (a) blue water flow, (b) green water flow, and (c) green water storage in
each subbasin.
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larger than 0.4) is three times larger if the analysis is based
on geospatial data at a resolution of 50 km instead of using
national estimates. According to Rijsberman [2006] one of
the limitations of water scarcity indicators are the annual,
national averages that hide important scarcity at monthly
and regional scales.
[32] We computed the water availability per capita and

water stress indicators not only for each country but also for
each of the 1496 subbasins. The population estimates were
taken from the Center for International Earth Science
Information Network’s (CIESIN) Gridded Population of
the World (GPW, version 3, http://sedac.ciesin.columbia.
edu/gpw). The data are for the year 2005 and has a spatial
resolution of 2.5 arc-min, which we aggregated for each
subbasin. In order to address uncertainty of future water
stress estimates, Alcamo et al. [2007] computed and com-
pared globally three different indicators of water stress
(withdrawals-to availability ratio greater than 0.4, water avail-
ability per capita less than 1000 m3 a�1, and consumption-
to-Q90 ratio greater than 1). Although there was a large
overlap in the estimated areas with severe water stress, in

many regions the three indicators disagreed. Overall, using
the water availability per capita indicator resulted in the
lowest values of affected area and number of people with
severe water stress. In this study we address uncertainty by
calculating the per capita water availability by using the
lower (L95PPU), the upper (U95PPU) and the average
(Avg) 95PPU values of the blue water flow during the
simulation time period.
[33] Looking at the water scarcity on a country basis, the

use of the L95PPU blue water flow values led to 29
countries with water stress (<1700 m3 capita�1 a�1), while
the use of the U95PPU values led to merely 16 affected
countries (Table 5). Taking the average of the 95PPU range
resulted in 20 vulnerable countries. In countries where both
L95PPU and U95PPU result in the same conclusion, the
risk situation is quite clear. However, in countries such as
Burkina Faso, Ethiopia, Ghana, Sudan, and Zimbabwe
where only the use of the L95PPU blue water flow values
signalizes water scarcity, the situation demands more
detailed studies. One can conclude that in many of these
countries, and in fact in larger countries in general, it might

Figure 7. Average (1971–1995) monthly 95PPU ranges of (a, d, g) the blue water flow, (b, e, h) the
green water flow, and (c, f, i) the green water storage in the countries Niger (Figures 7a–7c), Gabon
(Figures 7d–7f), and Zimbabwe (Figures 7g–7i).
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be of great importance to analyze the water scarcity in a
spatially distributed manner on a subcountry level rather
than consider the country as a whole.
[34] The computed blue water flow availability per capita

in each of the 1496 subbasins considering the extremities of
the 95PPU range is shown in Figure 8. In critical regions
like the Sahel, the South and the East of Africa, the use of
the L95PPU and the U95PPU, respectively, lead to quite
different assessments of the water scarcity-affected regions
and ultimately to the number of the affected people living
there.

4.2. Model-Based Uncertainty and Natural Variation
in Green Water Storage

[35] Irrigation, water transfer, and virtual water transfer
on a regional, national, and international level are common
measures to deal with regional blue water scarcity. A better
use of the green water, through a more efficient rainfed
production, can also partially overcome regional water short
falls in countries like Nigeria or South Africa. For the
rainfed agriculture, the average (1971–1995) number of
months per year where soil water is available (defined as
>1 mm m�1) is of utmost importance. This is presented on a
subbasin level in Figures 9a and 9b. Because of the model-
inherent uncertainties and natural variability, the border of
the areas where rainfed agriculture can be realized can shift
remarkably. The standard deviation (SD) of the months per
year without depleted green water storage is shown for the
1971–1995 period in Figures 9c and 9d. The areas with a
high SD (e.g., the Sahel regions in Chad and Niger, Horn of
Africa, South of Africa) indicate unreliable green water
storage availability which often leads to reduced crop yield

and thus potentially to frequent famines. These areas must
develop irrigation systems or alternative cropping practices
for a sustainable agriculture.

5. Summary and Conclusion

[36] In this study the well-established semidistributed
model SWAT, in combination with the GIS interface ArcS-
WAT and SUFI-2 calibration procedure, was successfully
applied to quantify the freshwater availability for the whole
African continent at a detailed subbasin level and monthly
basis with uncertainty analysis. Only globally readily avail-
able data sets and information were used for the model setup
as well as the model calibration and validation. Within the
multisite and multivariable SUFI-2 parameter optimization
and uncertainty analysis procedure, three different approaches
were performed, which provided valuable insight into the
effect of the calibration procedure on model results. The final
model results for the freshwater availability components,
blue water flow, green water flow, and green water storage
were presented at different spatial (continent, countries, and
subbasins) and temporal (annual and monthly) resolutions.
Particular attention was paid to clearly quantify and display
the 95% prediction uncertainty of the outputs, which turned
out to be quite large in some cases. The effect of considering
these uncertainty estimates in advanced studies was shown
for the computation of water scarcity indicators for each of
the 1496 subbasins.
[37] Many of the difficulties and limitations within this

continental modeling study were data related and resulted
from, among others, (1) limited and unevenly distributed
rain gauges and discharge stations with varying time series

Table 5. Country-Based Per Capita Blue Water Flow (BW) Availability Considering the L95PPU and the U95PPU Value of the Annual

Average (1971–1995) BW and the Population in the Year 2005

Country BW-L95PPU, m3/cap/a BW-U95PPU, m3/cap/a Country BW-L95PPU, m3/cap/a BW-U95PPU, m3/cap/a

Algeria 63 268 Libya 23 113
Angola 9407 18022 Madagascar 11778 20114
Benin 1619 3508 Malawi 948 1823
Botswana 1336 6297 Mali 3529 6817
Burkina Faso 1440 3210 Mauritania 733 2359
Burundi 194 602 Morocco 60 323
Cameroon 12895 18189 Mozambique 4400 9429
Cent. Af. Rep. 35471 60388 Namibia 1497 9369
Chad 2763 5906 Niger 236 674
Congo 25528 44629 Nigeria 2001 2947
D.R. Congo 7381 14339 Rwanda 147 493
Djibouti 85 955 Senegal 1749 3076
Egypt 1 4 Sierra Leone 13815 17864
Equat. Guinea 29537 45367 Somalia 142 954
Eritrea 530 1614 South Africa 239 789
Ethiopia 1280 2737 Sudan 1245 3816
Gabon 93095 143289 Swaziland 345 1820
Gambia, The 833 1766 Tanzania 2907 5433
Ghana 1290 2776 Togo 1411 2770
Guinea 14438 20308 Tunisia 98 507
Guinea-Bissau 13052 18774 Uganda 266 972
Ivory Coast 3504 5976 W. Sahara 11 91
Kenya 176 825 Zambia 9912 17565
Lesotho 307 1507 Zimbabwe 1591 3974
Liberia 22363 29754 Africa 3613 4899

Underlined cells indicate water stress (< 1700 m3 cap�1 a�1). The shading of the country name cells correspond to the estimated water stress based on the
average 95PPU value of the blue water flow availability.
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lengths, (2) limited globally available knowledge of the
attributes and especially the management of the reservoirs,
and (3) lack of data on soil moisture and/or deep aquifer
percolation, which made a desirable calibration/validation
of these components impossible. Technical modeling prob-
lems in need of further research and improvement were
related to the inclusion of the lakes and their outflow to
rivers. These resulted in poorer model results in the area of
the great lakes of East Africa. This study did not include
water use and especially irrigation in the model. Compared

to other continents like Asia, this was thought to be of lesser
importance in this study.
[38] Some interesting further development would be to

(1) make use of the model results in advanced studies on
climate change, water and food security, as well as virtual
water trade, which, as it has been pointed out by Yang and
Zehnder [2007], are in great need of the estimates of
spatially and temporally differentiated freshwater compo-
nents; (2) further improve the African model as new data
becomes available (e.g., remote sensing data); and (3) model

Figure 8. Water scarcity in each modeled African subbasin represented by the modeled 1971 to 1995
annual average blue water flow availability per capita (using population of 2005) using (a) the lower
(L95), (b) the upper (U95), and (c) the average (Avg.) value of the 95PPU range.
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the freshwater availability in the other continents, in order
to finally obtain a global picture.
[39] Overall, this study provided significant insights into

continental freshwater availability on a subbasin level and
with a monthly time step. This information was very useful
for developing an overview of the actual water resources
status and helped to spot regions where an in-depth analysis
may be necessary. As shown, the inherent uncertainties need
to be considered, before general conclusions are drawn.

[40] Acknowledgments. This work was supported by grants from the
Swiss National Science Foundation (project 200021-100076).
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