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Understanding the spatial variability of 
soil erosion at the watershed scale is an 
important component of many soil loss 
and soil conservation assessments. The 
Universal Soil Loss Equation (USLE) and 
its variations—Modified Universal Soil Loss 
Equation and Revised Universal Soil Loss 
Equation (RUSLE)—are commonly used to 
estimate soil loss due to runoff in watershed 
assessments. Both the USLE and the RUSLE 
equations are written as follows:

A = RKLSCP, (1)

where A is the soil loss (t ha–1 y–1); R is the 
rainfall erosivity factor (MJ mm ha–1 h–1 y–1); 
K is the soil erodibility factor (t ha h [ha MJ 
mm]–1); L is the slope length factor; S is the 
slope steepness factor; C is the cover man-
agement factor; and P is the supporting prac-
tice factor.
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Abstract: A geographic information system-based (GIS) method for estimating the length-
slope (LS) factor of the Revised Universal Soil Loss Equation using national-scale datasets 
was developed and validated. The method was applied to approximately two-thirds of the 
Mississippi River basin, focusing on agricultural subwatersheds in the Midwest. The results 
were validated by comparing the GIS-based statistical distributions of LS-factor values with 
the distribution of LS-factors calculated from the Natural Resources Inventory database at 
the eight-digit watershed level. The GIS-based approach was shown to produce statistical 
distributions of LS-factor values very similar to those described by the Natural Resources 
Inventory database of field measurements, providing for the first time strong support for 
using GIS-based methods to represent the spatial heterogeneity and magnitude of LS-factors. 
Development and validation of the GIS-based approach is an important step toward con-
ducting large-scale erosion potential assessments that have soil conservation implications in 
natural resources management, agronomy, and agrochemical exposure risk assessments.
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The L and S terms of the equation are 
often lumped together as “LS” and referred 
to as the topographic factor, which is consid-
ered to be more difficult to estimate than the 
other factors in the USLE equation (Wilson 
1986). The advance of geographic informa-
tion systems (GIS) has made it possible to use 
digital elevation models (DEM) to calculate 
LS factors across the landscape. Moore and 
Wilson (1992) presented a simplified equa-
tion for calculating the combined LS-factor 
over two-dimensional terrain. Their equation 
was shown to be equivalent to the RUSLE 
equations for the LS-factor (McCool et al. 
1989) and was readily implemented in a GIS. 
Another approach presented by Desmet and 
Govers (1996) used upslope contributing area 
in calculating the slope length component 
of the LS-factor. They used a multiple-flow 
direction algorithm developed by Quinn 
et al. (1991) to calculate upslope contrib-

uting areas and applied that to the RUSLE  
LS-factor equations presented by McCool 
et al. (1987, 1989). Fu et al. (2006) adopted 
this same contributing area approach to LS-
factor calculation in their application of the 
RUSLE and a sediment delivery model to 
evaluate the impacts of no-till practices on 
erosion and sediment yield. An additional 
important contribution of the work of 
Desmet and Govers (1996) was a method 
for dealing with complex catchments with 
multiple land uses. Their approach was to 
calculate upslope contributing areas inde-
pendently for adjacent land uses that may 
be considered hydrologically independent. 
They proposed that surface runoff is rarely 
generated from an upland forest adjacent to 
a cultivated field and should not be consid-
ered as part of the upslope contributing area. 
Furthermore, they argued, land units are often 
separated by roads, ditches, or other drainage 
systems that isolate them hydrologically from 
their neighbors. Other methods have sought 
to address the potential shortcomings of the 
aforementioned approaches, such as account-
ing for areas of deposition on the landscape 
that impact slope length (Hickey 2000; 
Van Remortel et al. 2001). This approach 
explicitly addresses the deposition issues by 
evaluating changes in slope.

Much of the previous work described 
included some comparison of the com-
puted values for LS with values obtained 
using other methods. Desmet and Govers 
(1996) compared the LS values calculated 
using their GIS-based approach with values 
obtained using the manual approach of Foster 
and Wischmeier (1974). They compared sev-
eral different variations of the automated 
GIS method with the manual approach and 
determined that the GIS method generally 
predicted LS values 10% to 50% greater than 
the manual approach. They suggested that 
part of the reason for the high values obtained 
from the DEM method was because conver-
gent flow was more realistically identified. 
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A study which compared several different 
GIS-based approaches to LS calculation was 
performed by Yitayew et al. (1999). They 
found that the average LS factor over a  
4.5 ha (11.12 ac) watershed varied by as much 
as 100% depending upon the methodology 
employed. Yitayew et al. did not explicitly 
compare any of the GIS-based LS estimates 
with “ground-truth” values of LS. They did, 
however, compare the GIS-based erosion 
predictions using RUSLE with observed 
sediment yield in the watershed. Their find-
ings showed that erosion was underpredicted 
by the GIS methods in high runoff years 
and overpredicted in low runoff years. Van 
Remortel et al. (2001) reported that the LS 
values generated using their approach agreed 
with recommended ranges for the RUSLE 
equation but that there had been no ground-
truthing at the time of publication.

This paper builds upon previous work, 
making several modifications to previously 
presented LS-factor algorithms with a focus 
on the calculation of upslope contributing 
areas. A statistical comparison of the GIS-
based LS-factors against field observations 
reported in the National Resources Inventory 
(NRI) database provides new evidence to 
support the applicability of GIS-based meth-
ods in capturing the spatial heterogeneity 
and magnitude of the LS-factor.

Materials and Methods
The procedure for a GIS-based approach to 
LS-factor calculation involves consideration 
of two key landscape characteristics: upslope 
contributing area and slope. While this study 
evaluates different algorithms for calculating 
slope, the emphasis is on the development of 
a method for computing upslope contribut-
ing areas.

Upslope Contributing Area. The form of 
the USLE topographic factor for a slope seg-
ment was shown by Foster and Wischmeier 
(1974) to be calculated as follows:
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segment; λ is the length from the lower 
boundary of the jth segment to the upslope 
boundary (m); and m is the length exponent 
of the USLE LS-factor.

Desmet and Govers (1996) derived an 
equation for the length component of the 

LS-factor for a two-dimensional surface. For 
use with a grid-based DEM, the equation is 
based on the upslope contributing area of 
each grid cell and may be written as follows:
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where L
i,j
 is the L-factor for grid cell (i,j); 

S
i,j
 is the slope factor for grid cell (i,j);  

A
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 is the contributing area at the inlet of a 
grid cell with coordinates (i,j) (m2); D is the 
grid cell size (m); x

i,j
 is the (sinαi,j + cosαi,j); 

αi,j is the aspect direction for the grid cell 
with coordinates (i,j); and m is the slope 
length exponent of the RUSLE LS-factor.

The most critical parameter to identify in 
equation three is the upslope contributing 
area. Computation of upslope contributing 
area can be based on either single-direction 
or multiple-direction flow algorithms. One 
disadvantage of the single-direction method 
is that it can only account for parallel or 
convergent flow. On complex topography, 
divergent flow can commonly occur, which 
can have a significant impact on upslope 
contributing area. Desmet and Govers 
(1996) concluded that a multiple-direc-
tion flow algorithm was the best approach 
for the development of an LS model and 
chose the algorithm developed by Quinn 
(1991) for their application. Tarboton (1997) 
developed an alternative multiple-direction 
flow algorithm for calculating upslope con-
tributing area at each grid cell. Tarboton 
compared his multiple-direction flow algorithm  
(d-infinity) with a single-direction and 
several other multiple-direction flow algo-
rithms, including the Quinn et al. (1991) 
method used by Desmet and Govers. Based 
upon statistical tests and examination of 
influence and dependence maps applied to 
difficult DEM surfaces, Tarboton suggested 
that his method performed as well or better 
than the other flow direction methods eval-
uated. For this reason and since the source 
code for Tarboton’s method was readily 
available, the d-infinity method was adopted 
for this study.

Approaches to Constraining Upslope 
Contributing Area. One of the more chal-
lenging aspects of LS-factor models based 
on upslope contributing areas is how to 
account for landscape features that constrain 
contributing upslope area. The landscape fea-
tures of interest are those that result in the 
termination of a continuous slope length. In 

the USLE, the theoretical terminus of a con-
tinuous slope length is the point at which 
soil deposition becomes dominant over ero-
sion or gully erosion becomes dominant 
over sheet and rill erosion. Several landscape 
characteristics that are observable from GIS 
datasets may result in a zone of deposition. 
A change in slope leading to a concave sur-
face is, perhaps, the landscape characteristic 
most explicitly related to deposition. This is 
a concept used by Hickey (2000) and Van 
Remortel et al. (2001) in their algorithm for 
calculating LS. The difficulty in this approach 
is in identifying the thresholds for changes 
in slope that indicate deposition. However, 
there are other directly observable landscape 
characteristics that we may use as surrogate 
indicators of deposition. These include resi-
dential/urban development, roads, stream 
channels, and land cover boundaries.

Features in urban and residential areas, 
including sidewalks, landscaping, curbs, 
drainage ditches, and stormwater systems 
physically alter the natural hydrologic flow 
paths of the landscape. Runoff flowing into a 
residential/urban area will tend to be diverted 
to a channelized flow system rather than 
following a natural flow path downslope. 
Based on this argument, we restricted the 
calculation of upslope contributing areas 
(and LS-factor) from continuous residen-
tial and urban land areas of greater than  
1 ha (2.47 ac) as indicated by the nationally 
available, 30 m (98.4 ft) resolution National 
Land Cover Dataset (US Geological Survey 
[USGS] 1992).

In a similar way to residential/urban 
development, roads (ranging from interstate 
highways to farm roads) modify the natu-
ral hydrologic flow paths of the landscape. 
Both major roads and rural roads will have 
stormwater systems or drainage ditches that 
divert runoff to channelized flow systems or 
streams. These road features constrain the 
calculation of upslope contributing area by 
breaking the natural hill slope and transition-
ing sheet and rill erosion to gully erosion 
and concentrated flow. For this reason,  
we restricted the calculation of upslope  
contributing areas (and LS-factor) from road 
features based on the detailed roads data  
layer included in a national GIS dataset, 
ArcGIS 8.1 StreetMap (Environmental 
Systems Research [ESRI] 2001).

The calculation of a slope length for use in 
the RUSLE should terminate once a stream 
channel is encountered. For this application, 
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we chose to use the DEM as the basis for 
identifying streams. We selected a drainage 
area threshold of 10 ha (24.71 ac), based on 
contributing area from a D-8 flow direc-
tion grid, to represent streams (a D-8 flow 
direction grid assumes that all flow from a 
source cell moves to a single adjacent cell). 
This threshold corresponded well to a vec-
tor dataset of streams (medium-resolution 
National Hydrography Dataset [USGS 
1999a]) in a portion of our study area.

Land cover boundaries also have a critical 
impact on upslope contributing area calcu-
lation. This was discussed by Desmet and 
Govers (1996) and Van Oost et al. (2000). 
They proposed that when the landscape is 
considered as a single parcel of uniform land 
cover, unrealistically long slope lengths may 
be calculated based on the assumption that 
runoff is generated and available for sediment 
transport on all upslope areas. As previously 
discussed, this is often not the case, as certain 
land uses may not generate surface runoff, 
and many landscape units (such as cultivated 
fields) may be hydrologically isolated from 
their surroundings by drainage ditches and 
diversions. Furthermore, changes in vegeta-
tion that occur at boundaries of land cover 
units are frequently zones of soil deposi-
tion. This argument is made obvious by 
acknowledgement of the use of vegetated 
buffers to control the loss of soil, pesticides, 
and nutrients from downslope boundaries of 
agricultural fields. This study evaluates the 
calculation of LS-factors based on both the 
“single-parcel” assumption (i.e., the land-
scape is a homogeneous land cover) and the 
“multiple-parcel” assumption (i.e., the land-
scape is heterogeneous and processes occur 
at land cover boundaries that act to isolate 
parcels hydrologically and encourage zones 
of soil deposition). The presumption is that 
the single-parcel approach will result in a 
more “conservative” (higher) estimation of 
LS-factor values while the multiple-parcel 
approach will result in a more realistic but 
lower estimation of LS-factor.

As a final check against excessively long 
slope length calculations, all GIS approaches 
evaluated in this study imposed a cap of 333 
m (1,000 ft) on slope lengths calculated from 
the DEM. Imposing this cap resulted in com-
puted slope lengths of greater than 333 m 
being reduced down to the cap. The 333-m 
value was chosen based on recommendations 
by McCool et al. (1997) that a practical upper 
limit for slope lengths is around 333 m.

Slope Factor. There have been various 
suggestions in the literature regarding how 
to represent the slope-factor of the USLE/
RUSLE in GIS-based calculations. Moore 
and Wilson (1992) proposed a simplified 
approach to the combined L and S factor. 
The WATEM program described in Van 
Oost et al. (2000) provided several options 
for calculating the slope component of LS, 
including the original equations devel-
oped by Wischmeier and Smith (1978), the 
RUSLE equations of McCool et al. (1989), 
an approach based on a power function of 
the slope gradient developed by Govers 
(1991), and a function developed by Nearing 
(1997). The RUSLE equations for the slope 
factor are used in the USDA RUSLE 2 pro-
gram, which is considered by USDA to be 
the best available tool for predicting soil ero-
sion. As such, the RUSLE methodology for 
slope factor calculation was adopted for this 
study. These equations are written as follows:

S = 10.8 × sin(b) + 0.03, where slope < 9%, (4)
S = 16.8 × sin(b) – 0.50 where slope ≥ 9%,

where b is the slope angle in radians.
Within a GIS, different algorithms are 

available for calculating slope at a grid cell. 
In this study, two different slope algorithms 
were evaluated. The first one is the ESRI 
method, which uses the eight surround-
ing cells to estimate the slope at a central 
cell based on a curve-fitting approach. This 
method assumes that the surface is con-
tinuous and differentiable and will tend to 
dampen the effects of anomalies within the 
DEM. The second slope algorithm evaluated 
was the TauDEM method. The TauDEM 
method calculates the slope based on the 
elevation difference between the central 
cell and the cell in the steepest downslope 
direction. This method may be more rep-
resentative of a local slope but may tend to 
exaggerate slopes, especially where DEM 
anomalies exist.

Data Sources and Software. The calcula-
tion of the LS-factor required the following 
datasets. (1) DEM: The source for the DEM 
was the USGS Elevation Derivates for 
National Applications (USGS 2003). The 
data layer used from the Elevation Derivates 
for National Applications dataset was the  
30-m (98.4 ft) resolution filled DEM.  
(2) Flow Accumulation: The Elevation 
Derivates For National Applications flow 
accumulation layer (based on a D-8 flow 

direction algorithm) was used for the iden-
tification of streams. (3) Land Cover: The 
30-m resolution, 21-class National Land 
Cover Dataset 1992 (USGS 1999b) was 
used to identify the residential/urban areas as 
well as to distinguish landscape parcels in the  
multiple-parcel approach. (4) Roads: The 
ESRI ArcGIS StreetMap (ESRI 2001) vector 
roads dataset was used to represent roads for 
the study area. This vector layer was converted 
to a 30 m resolution raster dataset and used in 
the constraint of upslope contributing areas 
during calculation of the LS-factor.

A data processing script written using 
ArcObjects within ArcGIS 9.1 was used to 
generate the LS-factor datasets from the source 
datasets. In addition to the ESRI ArcObjects 
raster processing methods, the TauDEM 
3.1 functions for calculating d-infinity flow 
direction, d-infinity flow accumulation, and 
d-infinity slope were used.

Results and Discussion
The approach presented in the previous  
section was applied to 40 agriculturally  
significant HUC4 watersheds in the central 
United States (figure 1). HUC4 is a term used 
to describe a 4-digit hydrologic unit defined 
by the USGS. Hydrologic units are a method 
used to define nested watersheds within 
the United States. The current method for 
accounting of watersheds includes 2-, 4-, 6-, 8-
, 10-, and 12-digit hydrologic unit codes, with 
watersheds becoming progressively smaller as 
the number of digits in the hydrologic unit 
increases. There are 221 HUC4 watersheds 
in the United States. An example 30-m  
(98.4 ft) resolution LS-factor dataset is shown 
for HUC 0512 in figure 1.

Comparison of Length-Slope Factor 
Algorithms. The four GIS methods (single-
parcel/ESRI slope, single-parcel/TauDEM 
slope, multiple-parcel ESRI slope, and  
multiple-parcel/TauDEM slope) were com-
pared by calculating the percentiles of the 
LS values within each HUC8 in the study 
area. For each HUC8, the 5th, 10th, 25th, 
50th, 75th, 90th, and 95th percentiles of LS 
for agricultural land covers were calculated. 
The analysis was restricted to agricultural 
land covers since those are the areas of 
greatest interest for the application of this 
dataset to agrochemical exposure assessments. 
Agricultural areas were identified from the 
National Land Cover Dataset. The National 
Land Cover Dataset land uses characterized 
as agricultural were orchard, pasture/hay, row 
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Figure 1
Analysis extent of 40 HUC4 watersheds and an example of a length-slope factor dataset  
calculated using the multiple-parcel ESRI slope algorithm approach.

<0.1
0.1–0.2
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>1.0

LS factor
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Table 1
Mean and standard deviation of HUC8 length-slope (LS) values by percentile for geographic 
information system-based LS methods.

	 LS

 single parcel/ single parcel/ multiple parcel/ multiple parcel/
Percentile TauDEM slope ESRI slope TauDEM slope ESRI slope

5th	 0.05	(0.06)	 0.06	(0.07)	 0.05	(0.05)	 0.06	(0.07)
10th	 0.11	(0.15)	 0.13	(0.17)	 0.10	(0.14)	 0.12	(0.15)
25th	 0.39	(0.57)	 0.37	(0.53)	 0.36	(0.48)	 0.35	(0.46)
50th	 1.03	(1.53)	 0.98	(1.52)	 0.90	(1.15)	 0.85	(1.10)
75th	 2.19	(3.04)	 2.14	(3.15)	 1.80	(1.99)	 1.70	(1.93)
90th	 3.95	(4.97)	 3.92	(5.25)	 3.08	(2.92)	 2.93	(2.87)
95th	 5.51	(6.43)	 5.51	(6.85)	 4.19	(3.63)	 3.99	(3.61)
Note:	Standard	deviations	are	in	parentheses.

crop, small grains, and fallow. These statistics 
were calculated for 375 HUC8 watersheds 
within the study area. The mean and standard 
deviation of each percentile was then calcu-
lated for all the HUC8s for each of the four 
LS methods (table 1).

The results in table 1 show that the multiple-
parcel methods result in lower LS values for 
all the percentiles, particularly for the higher 
percentiles. This is not unexpected and may 
be attributed to the longest slope length val-
ues associated with the single-parcel methods 
being more significantly constrained with the 
multiple-parcel approach. Smaller differences 
between the ESRI slope method results and the 
TauDEM slope method results are observed. 
In both the single-parcel and the multiple-
parcel approaches, the TauDEM slope method 

results in a slightly broader distribution of  
LS values (greater extremes). This can be 
attributed to the greater smoothing of slopes 
that the ESRI algorithm produces as a result 
of its curve-fitting approach. Near the middle 
of the distributions (25th to 75th percentiles), 
the ESRI algorithm produces slightly lower 
LS values.

Comparison of Geographic Information 
System-Based Length-Slope Factor Values 
with Field Observations. An important 
objective of this study was to gain an under-
standing of how the GIS-based LS-factor 
values compare with those observed in the 
field. The dataset chosen to represent field 
observations was the NRI database (USDA 
NRCS 2000). The NRI database contains 
information on land use, soil characteristics, 

cropping practices, and erosion character-
istics for sampling points throughout the 
United States. Included in the NRI data-
base are input parameters to the USLE, 
including slope length and slope. While the 
precise location of the NRI sample points 
is confidential, the point locations may be 
approximated based on their HUC8, county, 
and Major Land Resource Area attributes. 
Within the 40 HUC4s that were evalu-
ated for this study, there are 131,802 sample 
points in the NRI that include USLE attri-
butes (based on the 1997 sampling). The 
number of points reported represents 375 of 
the 376 HUC8s within the 40 HUC4s eval-
uated. One HUC8 was not included due to 
processing constraints because of its size. All 
131,802 points are on agricultural land uses. 
The number of sample points per HUC8 
ranged from 8 to 1,567 with a median num-
ber of 287 points. While the NRI database 
provides an excellent statistical sample of LS-
factors in a region, it is impossible for such a 
sample to capture the full range in conditions 
that can be found over such a large area.

For comparison with the GIS-based 
LS-factor values, percentiles of LS val-
ues within each HUC8 were calculated 
based on the NRI sample points. The NRI 
expansion factor (x-factor) associated with 
each sample point was used to weight each 
point appropriately. The x-factor describes 
the area in acres that the point represents. 
The same RUSLE-based equations used in 
the GIS-based method were used to calcu-
late the LS-factor for the NRI points. For 
each HUC8, pairs of LS percentiles (GIS-
based/NRI-based) were generated for the 
5th, 10th, 25th, 50th, 75th, 90th, and 95th 
percentiles. These pairs of points were then 
plotted and regression equations were calcu-
lated to assess the relationship between the 
GIS and NRI methods. Points were plotted 
for only a single percentile on a graph (e.g., 
50th, 90th) and for all percentile pairs plot-
ted together. These pairs were generated for 
each of the four GIS-based LS-factor meth-
ods evaluated. Figures 2a through 2d show 
plots of the 50th percentile pairs plotted 
for the single-parcel/ESRI slope method, 
single-parcel/TauDEM slope method, mul-
tiple-parcel/ESRI slope method, and the 
multiple-parcel/TauDEM slope method 
respectively. In these plots, each point repre-
sents the 50th percentile GIS-based LS value 
versus NRI-based LS value for each of the 
375 HUC8s evaluated. Figures 3a through 
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Figure 2
Comparison of 50th percentile length-slope (LS) by HUC8 for (a) single-parcel method TauDEM 
slope algorithm, (b) single-parcel method ESRI slope algorithm, (c) multiple-parcel method, 
TauDEM slope algorithm, and (d) multiple-parcel method, ESRI slope algorithm.
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3d show the same plots for the 90th percen-
tile LS values.

Reviewing figures 2 and 3 suggests  
several characteristics of the GIS-based 
method compared to the NRI method. First, 
r2 values of the regressions range from 0.77 
to 0.86, indicating that a strong correlation 
exists between the GIS-based LS-factors and 
the NRI-based LS-factors. Second, in all 
cases, the slope of the regression line (forced 
through a y-intercept of 0) is greater than 
1.0, indicating that the GIS-based method 
results in higher estimates of the LS-factor 
than the NRI method. The single-parcel 
approaches result in a significantly higher 
bias in LS-factor values, with slopes in the 
1.49 to 1.78 range, while the multiple-par-
cel approaches result in much less bias, with 
slopes in the 1.13 to 1.22 range. The data 
also suggests that the GIS-based methods 
have greater bias for the higher LS values 
(90th percentile) than the lower LS values 

(50th and all percentiles). The differences 
in fits between the GIS-based LS and the 
NRI-based LS values for the two different 
slope methods (ESRI and TauDEM) are less 
clear. We saw in table 1 that the TauDEM 
method results in slightly more extreme 
slope values and resulting higher LS values 
than the ESRI methods. However, data 
in table 2 suggests that the TauDEM slope 
method results in less bias than the ESRI 
method in 90th percentile LS factors for the 
single-parcel approach. The multiple-par-
cel results in table 2 corroborate the data in  
table 1, suggesting that the TauDEM slopes 
result in slightly higher bias in the 90th per-
centile LS factors.

An evaluation of the full distribution of 
LS-factor values for the GIS methods and 
the NRI database was performed for a large, 
agriculturally significant HUC8 in north-
western Illinois (HUC 07090005). Within 
this HUC8, there were 969 NRI sample 

points included in the construction of the 
distribution. The GIS methods each con-
tained 4.8 million grid cells representing 
agricultural locations within the HUC8. 
The frequency distributions for each of the 
methods are shown plotted on figure 4. 
The multiple-parcel/ESRI slope method 
resulted in the closest agreement with the 
NRI distribution of LS-factor values, with a 
maximum difference between the 20th and 
95th percentiles of around 20%. The shapes 
of the GIS-based and NRI-based distribu-
tions are remarkably similar, considering the 
differences in the sampling approaches and 
density. The particular HUC8 chosen was 
one that had a relatively high number of 
NRI points (969), suggesting that perhaps 
the “true” distribution of LS-factor val-
ues was more adequately sampled. Of the  
375 HUC8s evaluated, 50% had fewer than 
287 points. Low NRI sample density may be 
part of the reason for the differences in the 
LS-factors between the GIS approach and 
the NRI database.

Discussion. The comparison of the GIS-
based LS-factors with the NRI database 
values produced encouraging results. There is 
clearly a strong correlation between the two 
sampling approaches; however, the LS-fac-
tor distribution based on the GIS methods 
consistently produced higher LS values. 
One factor contributing to the bias of the 
GIS methods is the significant differences 
between the sampling methods. In evaluat-
ing the GIS methods, every agricultural grid 
cell was considered a sample point, com-
monly resulting in millions of cells within 
a HUC8. The NRI database commonly 
contained only several hundred (median of 
287) sample points within a HUC8. This 
difference in sampling density suggests that 
the GIS methods are more likely to be  
sampling the complete distribution of  
LS-factor values. This hypothesis was inves-
tigated by comparing the percentiles of the 
GIS-based and NRI-based LS-factors for 
only those HUC8s with greater sampling. 
The HUC8s that were in the top 25% in 
terms of both total sample points and sample 
point density (points per km2) were evalu-
ated independently. The 25th percentile for 
total sample points and point density were 
478 points and 0.126 points km–2 respectively. 
The 25th percentile was chosen to capture 
HUC8s with significantly greater sampling 
than the median amount. Linear regression 
was performed for the LS-factor percentile 



110 journal of soil and water conservationMay/June 2008—vol. 63, no. 3

Figure 3
Comparison of 90th percentile length-slope (LS) by HUC8 for (a) single-parcel method TauDEM 
slope algorithm, (b) single-parcel method ESRI slope algorithm, (c) multiple-parcel method, 
TauDEM slope algorithm, and (d) multiple-parcel method, ESRI slope algorithm.
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pairs for the 50th, 90th, and combined 5th 
to 95th percentiles for the multiple-parcel/
ESRI slope method. The linear regression 
r2 and regression line slope values for this 
evaluation are shown in table 2. When con-
sidering only HUC8s with greater sampling, 
the r2 values improve for both the high point 
count and high point density cases, while the 
linear regression slope values only improve 
in the case of the high point count constraint 
on HUC8s. This brief investigation suggests 
that for HUC8s with greater NRI sampling, 
the distribution of LS-factor values estimated 
from the NRI points is more closely approxi-
mated by the GIS approach. This is not to say 
that the GIS-based method does not equally 
apply to HUC8s with smaller numbers of 
NRI sample points but rather that the GIS 
method is more strongly supported by the 
NRI database when the distribution of LS 
values is more comprehensively sampled by 
the NRI.

The preferred multiple-parcel GIS method 
for estimating LS-factors can be applied to 
any area where a suitable DEM and land 
use dataset exists (the approach applied in 
this study also incorporated a roads dataset). 
The method, which uses the contributing 
upslope area approach, has the potential to 
produce unrealistically long slope lengths 
for areas with infrequent changes in land 
cover and low road density, both of which 
act to constrain slope lengths. An alterna-
tive approach for identifying breaks in slope 
length involves the evaluation of change in 
slope, as proposed by Hickey (2000) and 
Van Remortel et al. (2001). Although more 
difficult to parameterize, this approach could 
provide improvements to the method pre-
sented and would likely result in lowering of 
some slope lengths and resulting LS values.

Summary and Conclusions
A GIS-based approach to generating high-

resolution, spatially distributed LS-factor 
datasets for large watersheds was presented. 
The benefits in the approach developed 
include the incorporation of an infinite flow 
direction model (TauDEM) and additional 
methods for constraining slope lengths, 
including the use of roads and urban land use 
datasets. While the approach developed was 
not directly compared with others reported 
in the literature, it may be considered as a 
further refinement of the Desmet and Govers 
(1996) method that should be applied in sit-
uations where complex topography may be 
influencing overland flow paths and where 
excessively long slope lengths calculated from 
a DEM may require further constraint based 
on landscape features. The greatest limitation 
of this method is the absence of an algorithm 
for predicting topographically-driven zones 
of soil deposition.

Several variations of the GIS approach 
were compared, including single-parcel 
and multiple-parcel methods and variations 
on the slope calculation algorithm (ESRI 
and TauDEM methods). The ESRI slope 
algorithm method was preferred because it 
considers the broader slope of the landscape 
by evaluating all neighboring grid cells and is 
less prone to extreme slope values. The mul-
tiple-parcel approach was preferred over the 
single-parcel approach, since it more effec-
tively constrains slope lengths.

The GIS LS-factor results were compared 
with field-based assessments of LS-factors 
reported in the NRI database by evaluating 
the percentiles from their statistical distribu-
tions at the HUC8 level. The comparisons 
showed that the multiple-parcel/ESRI slope 
method produced the closest approxima-
tion to the NRI data distributions; however, 
all GIS methods had a positive bias. The 
fit between the GIS and NRI LS-factors 
improved somewhat when considering only 
HUC8s that been more extensively sampled 
in the NRI database.

The approach presented in this study was 
applied to a large section of the Mississippi 
River watershed and may be extended to other 
regions with suitable datasets. The value of a 
spatially explicit LS-factor dataset for use in 
soil conservation applications is fully realized 
when incorporated in an automated process to 
predict spatially explicit soil loss and sediment 
yield estimates (Fernandez et al. 2003; Fu et al. 
2006). Given the importance of the LS-factor 
in GIS-based methods for soil erosion calcu-
lations, further refinement and validation of 
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Figure 4
Comparison of length-slope (LS) factor frequency distributions, HUC 07090005.
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Table 2
The r 2 value and trend line slope values for linear regression of National Resources Inventory-based length-slope (LS) percentiles vs. geographic 
information system–based LS percentiles by HUC8.

     Multiple parcel/ Multiple parcel/
 Single parcel/ Single parcel/ Multiple parcel/ Multiple parcel/ ESRI slope ESRI slope
Percentile TauDEM slope ESRI slope TauDEM slope ESRI slope (high point count*)  (high point density†)

50th	 0.83	(1.53)	 0.83	(1.49)	 0.84	(1.22)	 0.86	(1.17)	 0.86	(1.05)	 0.87	(1.16)
90th	 0.78	(1.73)	 0.78	(1.78)	 0.76	(1.17)	 0.77	(1.13)	 0.82	(1.08)	 0.85	(1.15)
All	 0.84	(1.73)	 0.83	(1.78)	 0.85	(1.18)	 0.85	(1.14)	 0.91	(1.10)	 0.92	(1.16)
Note:	Trend	line	slope	values	are	in	parentheses.
*	High	point	count	includes	only	HUC8	watersheds	with	a	total	number	of	NRI	sample	points	in	the	upper	25%	of	all	HUC8s	evaluated	(478	points).
†	High	point	density	includes	only	HUC	watersheds	with	a	point	density	(NRI	points	per	square	km)	in	the	upper	25%	of	all	HUC8s	evaluated	(0.126	
points	km–2).

LS-factor algorithms are needed. In particular, 
techniques that use breaks in slope identified 
from the DEM to locate soil deposition zones, 
such as the approach of Van Remortel et al. 
(2001), should be further investigated along 
with new approaches to constraining slope 
lengths to reasonable values. Finally, while this  
study used a statistical sample of LS-factors to 
validate the GIS-method at a large watershed 
scale, site-specific validation of GIS-based val-
ues with field measurements of LS would be 
invaluable.
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