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Abstract

Over-parameterisation is a well-known and often described problem in hydrological models, especially for distributed

models. Therefore, methods to reduce the number of parameters via sensitivity analysis are important for the efficient use of

these models.

This paper describes a novel sampling strategy that is a combination of latin-hypercube and one-factor-at-a-time sampling

that allows a global sensitivity analysis for a long list of parameters with only a limited number of model runs. The method is

illustrated with an application of the water flow and water quality parameters of the distributed water quality program SWAT,

considering flow, suspended sediment, total nitrogen, total phosphorus, nitrate and ammonia outputs at several locations in the

Upper North Bosque River catchment in Texas and the Sandusky River catchment in Ohio. The application indicates that the

methodology works successfully. The results also show that hydrologic parameters are dominant in controlling water quality

predictions. Finally, the sensitivity results are not transferable between basins and thus the analysis needs to be conducted

separately for each study catchment.
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1. Introduction

Over-parameterisation is a well-known and often

described problem with hydrological models (Box

and Jenkins, 1976), especially for distributed models

(Beven, 1989). Therefore, sensitivity analysis

methods that aim to reduce the number of parameters

that require fitting with input–output data are common

(e.g. Spear and Hornberger, 1980). These methods
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identify parameters that do or do not have a significant

influence on model simulations of real world

observations for specific catchments.

Catchment models that also aim to describe water

quality variables such as sediment fluxes, nutrients

and other dissolved compounds that affect stream

ecology need detailed rainfall–runoff process

descriptions in time and space in order to be able

to mimic erosion and sedimentation processes and

the aqueous residence times in the soil, groundwater

reservoir or the river. Additionally, these models

must account for a number of transformation

processes. The increased complexity means that

they have more model parameters than simpler

rainfall-runoff models. The complexity also means

that the models require significantly longer simu-

lation times than equivalent rainfall runoff-models.

On the other hand, there may be observations of

model outputs other than water quantity that are

available for model calibration and evaluation of

these additional process representations. Often these

additional water quality time series are of lower

frequency and can have large model error residuals

associated with them.

Since water quality models are over parameterized

and there are multiple data sets for comparison with

model predictions (e.g. flow (Q), suspended sediment,

nitrogen and phosphorus), sensitivity analysis

methods are needed that can accommodate a large

number of parameters while considering several

output variables. In this paper we develop a method

based on combining existing one-factor-at-a-time

methods (Morris, 1991) with latin-hypercube

sampling of the parameter space (McKay, 1979).

The intent is to develop a simple and effective

sensitivity method that can be implemented with

minimal computational cost for a river basin water

quality model.
2. Existing methods

An important classification of the existing methods

refers to the way that the parameters are treated

(Saltelli et al., 2000). Local techniques concentrate on

estimating the local impact of a parameter on the

model output. This approach means that the analysis

focuses on the impact of changes in a certain
parameter value (mean, default or optimum value).

Opposed to this, global techniques analyse the whole

parameter space at once.
2.1. Local methods

A local sensitivity analysis evaluates sensitivity at

one point in the parameter hyperspace. This point may

be defined by default values or a crude manual model

calibration. Sensitivities are usually defined by

computing partial derivatives of the output functions

with respect to the parameters. A sensitivity index S

can be calculated for a small change of Dei while the
other input parameters are held constant (Melching

and Yoon, 1996):

SZ
Mðe1;.;eiCDei;.;ePÞKMðe1;.;ei ;.;ePÞ

Mðe1;.;ei ;.;ePÞ

Dei
ei

(1)

where M is the model output, ei refers to the different

model parameters, and Dei is the perturbation in a

single model parameter. As these methods need only a

few model runs, they were very popular in early

studies.
2.2. First order second moment method

The First Order Second Moment (FOSM) method

estimates the mean (first moment) and the variance

(second moment) of model output through compu-

tation of the derivative of model output to model input

at a single point (Yen et al., 1986). This method is

initially designed for uncertainty propagation but it

provides measures of sensitivity as well.

The first step in the FOSM analysis is to

approximate the system output solution of interest in

Taylor series form. In the simplest form, a first-order

Taylor series approximation requires computing the

model output at a single point and determining the

derivative (i.e. change of model output due a change

in model input):

MðeÞZMð �eÞC
Xp
iZ1

dM

dei
ðeiK �eiÞ (2)

where eZ{e1,.,ep}are the input random variables

with means �eZ f �e1;.; �epg. dM/de are derivatives

evaluated at the mean values �e.



A. van Griensven et al. / Journal of Hydrology 324 (2006) 10–2312
The mean of the output function M and the

standard deviation sM are then calculated as:

�M ZMð �eÞ s2M Z
XP
iZ1

dM

dei
sei

� �2

(3)

with seiZ fse1 sepg the standard deviations for the

input variables.

Special FOSM techniques, such as the Mean Value

First Order Reliability Method (MFORM) and the

Mean-Value Second-Order Reliability method

(SORM) provide an efficient method for estimating

the probability associated with engineering com-

ponent failure or reliability (Saltelli et al., 2000;

Yen et al., 1986). These methods seek regions of

failure that are mathematically expressed as exceed-

ing a threshold output value.

MFORM approximates the failure surface by a

hyperplane and this surface is estimated from a first-

order development of the model output function

around a mean-value point in the parameter space.

The reliability of this estimate decreases for output

values far from the mean value point and is a function

of the non-linear character of the model.

When the parameters are correlated, more accurate

results can be obtained by SORM than by MFORM.

SORM is based on the expansion up to the second

order of the Taylor series for the model response

function at the mean-value point in the parameter

space (Saltelli et al., 2000).
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The matrix of the second-order derivates A has the

elements

aij Z
sisj

2

d2M

deidej

� �
(5)

The failure surface is then represented by a

quadratic form using the eigenvalues that are obtained

by diagonalisation of matrix A. While requiring more

runs compared to the MFORM method, Mailhot and

Villeneuve (2003) showed that the method leads to
better estimates for water quality modeling

applications.

2.3. Integration of a local method to a global method

An example of an integration of a local into a

global sensitivity method is the random OAT (One-

factor-At-a-Time) design proposed by Morris (1991).

The method consists of repetitions of a local method

whereby the derivatives are calculated for each

parameter ei by adding a small change to the

parameter Dei. The change in model outcome

M(e1,.,eiCDei,.,eP) can then be unambiguously

attributed to such a modification by means of an

elementary effect, Si, defined by Eq. (1). M(e1,.,eiC
Dei,.,eP) is usually some lumped measure like total

mass export, sum of squares error between modelled

and observed values or sum of absolute errors.

Considering P parameters (i.e. iZ1,.,P), this

means that this experiment involves performing

PC1 model runs to obtain one partial effect for

each parameter according to Eq. (1). The result is

quantitative, elementary and exclusive for the

parameter. However, the quantitativeness of this

measure of sensitivity is only relative: as the influence

of ei may depend on the nominal values chosen for the

remaining parameters, this result is only a sample of

its sensitivity (i.e. a partial effect). Therefore, this

experiment is repeated for several random sets of

nominal values of the input parameters. The final

effect will then be calculated as the average of a set of

partial effects, and the variance of such a set will

provide a measure of how uniform the effects are (i.e.

the presence or absence of nonlinearities or corre-

lation interactions with other parameters). In this way,

local sensitivities get integrated to a global sensitivity

measure. The elementary effects for each parameter

obtained using this procedure allow the user to screen

the entire set of input parameters with a low

computational requirement. This approach has the

advantage of not relying on predefined (tacit or

explicit) assumptions of relatively few inputs having

important effects, monotonicity of outputs with

respect to inputs, or adequacy of low-order poly-

nomial models as an approximation to the compu-

tational model (Morris, 1991).

The OAT approach is a very useful method for

water quality models such as the Soil Water
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Assessment Tool (SWAT) (Francos et al., 2001; van

Griensven et al., 2002) as it is able to analyse the

sensitivity of a high number of parameters with low

computational cost.

2.4. Global sampling methods

Global sampling methods scan in a random or

systematic way the entire range of possible parameter

values and possible parameter sets. The sampled

parameter sets can give the user a good idea of the

importance of each parameter. These in turn can be

used to quantify the global parameter sensitivity or the

uncertainty of parameters and outputs. Essential to

this method is the sampling strategy.

2.4.1. Monte Carlo methods

2.4.1.1. Monte Carlo sampling. The Monte Carlo

method provides approximate solutions to a variety of

mathematical problems by performing statistical

sampling experiments on a computer (Fishman,

1996). This method performs sampling from a

possible range of the input parameter values followed

by model evaluations for the sampled values. An

essential component of every Monte Carlo experiment

is the generation of random samples. These generating

methods produce samples drawn from a specified

distribution (typically a uniform distribution). The

random numbers from this distribution are then used

to transform model parameters according to some

predetermined transformation equation.

2.4.1.2. Statistical analysis. An analysis of Monte

Carlo simulations is conducted with statistical

methods such as Kolmogorov–Smirnov (K-S) test

(Stephens, 1970) to define whether a parameter is

sensitive (Spear and Hornberger, 1980) or with the

computation of regression and correlation based

sensitivity measures (Saltelli et al., 1995).

A great advantage of the method is the logical

combination of calibration, identifiability analysis,

sensitivity and uncertainty analysis within a single

modelling framework (van der Perk and Bierkens,

1997). The method can be applied to problems with

absolutely no probabilistic content as well as to those

with inherent probabilistic structure. It has been

widely used in catchment modelling, for assessing
parameter uncertainty and input uncertainty, e.g. for

rainfall variability (Krajewski et al., 1991). Many

examples exist that use the Monte Carlo method in

combination with multi-variable water quality

models, e.g. Hornberger and Spear (1980); Meixner

et al. (1999).
2.4.2. Latin–Hypercube (LH) simulations

2.4.2.1. Latin Hypercube sampling. Monte Carlo

simulation and the sensitivity methods based on it

are robust, but may require a large number of

simulations and consequently large computational

resources. The concept of the Latin-Hypercube

simulation (McKay et al., 1979; Iman and Conover,

1980; McKay, 1988) is based on Monte Carlo

simulation but uses a stratified sampling approach

that allows efficient estimation of the output statistics.

It subdivides the distribution of each parameter into N

strata with a probability of occurrence equal to 1/N.

For uniform distributions, the parameter range is

subdivided into N equal intervals. Random values of

the parameters are generated such that for each of the

P parameters, each interval is sampled only once. This

approach results in N non-overlapping realisations

and the model is run N times.

2.4.2.2. Statistical analysis. The model results are

typically analysed with multi-variate linear regression

or correlation statistical methods (Saltelli et al., 2000).

Latin–Hypercube sampling is commonly applied in

water quality modelling due to its efficiency and

robustness (Weijers and Vanrolleghem, 1997; Van-

denberghe et al., 2001). The main drawback for

statistical analysis is the assumption of linearity, i.e.

that the model output is linearly related to the changes

in the parameter values. If these are not fulfilled,

biased results can be obtained.
2.4.3. Variance-based methods

These ANOVA (ANalysis Of Variance) methods

aim at a decomposition of the variance, when all

inputs are varying, into partial variances.

V Z
X
i

Vi C
X
i!j

Vij C
X
i!j!m

Vijm C/CVi;j;k;.P

(6)
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Fig. 1. Illustration of MC-OAT sampling of values for a two

parameter model where X represent the Monte-Carlo points and C

the OAT points.
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A partial variance Vi represents the main, or first

order, affect of an input i on the output that

corresponds to the variance when other inputs are

kept constant. Higher order effects V1,2,.p are

combined effect for 2 or more inputs. The partial

effects can be calculated with special sampling

schemes that are often computationally demanding

(Saltelli et al., 2000).

A more efficient alternative is the Fourier

amplitude sensitivity test (FAST) method (Cukier,

et al., 1978; Helton, 1993; Saltelli et al., 2000). It is

based on Fourier transformation of uncertain model

input variables into the frequency domain, thus

reducing the multi-dimensional model into a single

dimensional one. FAST is a very reliable tool for

analysing non-linear and non-monotonic water qual-

ity models (Melching and Yoon, 1996).
3. A new LH-Oat method

Previously described global sampling methods can

provide interesting information on the model inputs,

but the computational cost is often too high for

complex water quality models. The efficient local

methods on the other hand do not provide any global

measure of sensitivity for the entire parameter space.

Therefore, these local methods do not constitute a

robust and reliable approach for distributed water

quality models since output is often not linearly

related to the input parameters. These models

typically have a very high number of input

parameters of which only a limited number are of

importance for model calibration and model output

for a particular basin. A method that is able to

separate these important parameters from the

unimportant ones would be beneficial. Therefore,

such models need a global and efficient screening

method. Morris OAT method can accomplish this,

but random Monte Carlo sampling that underlies the

OAT design needs many samples to cover the full

parameter ranges, which comes at a significant

computational cost. A replacement of the Monte

Carlo sampling by Latin Hypercube sampling should

be an improvement and should allow the user to

control the total number of simulations while an

optimal representation of the parameter space is

established.
We therefore developed the LH-OAT method. The

LH-OAT method performs LH sampling followed by

OAT sampling (Fig. 1). It starts with taking N Latin

Hypercube sample points for N intervals, and then

varying each LH sample point P times by changing

each of the P parameters one at a time, as is done in

the OAT design.

The method operates by loops. Each loop starts

with a Latin Hypercube point. Around each Latin

Hypercube point j, a partial effect Si,j for each

parameter ei is calculated as (in percentage):

Si;j Z
100 � Mðe1;.;ei�ð1CfiÞ;.;ePÞKMðe1;.;ei ;.;ePÞ

½Mðe1;.;ei�ð1CfiÞ;.;ePÞCMðe1;.;ei;.;ePÞ�=2

� �
fi

������
������
(7)

where M($) refers to the model functions, fi is the

fraction by which the parameter ei is changed (a

predefined constant) and j refers to a LH point. In Eq.

(7), the parameter was increased with the fraction fi,

but it can also be decreased since the sign of the

change is defined randomly. Therefore a loop requires

PC1 runs.

A final effect is calculated by averaging these

partial effects of each loop for all Latin Hypercube

points (thus for N loops). The method is very efficient,

as the N intervals (user defined) in the LH method

require a total of N*(PC1) runs.

The final effects can be ranked with the largest

effect being given rank 1 and the smallest effect being

given a rank equal to the total number of parameters
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analysed. Oftentimes during a sensitivity analysis for

a particular dataset some parameters have no effect on

model predictions or performance. In this case they

are all given a rank equal to the number of parameters.

This method combines the robustness of the Latin

Hypercube sampling that ensures that the full range of

all parameters has been sampled with the precision of

an OAT design assuring that the changes in the output

in each model run can be unambiguously attributed to

the parameter that was changed.
4. Case studies

4.1. The SWAT program

The Soil and Water Assessment Tool (SWAT)

(Arnold et al., 1998) is a semi-distributed, conceptual

model designed to simulate water, nutrient and

pesticide transport at a catchment scale on a daily

time step. It represents hydrology by interception,

evapotranspiration, surface runoff, soil percolation,

lateral flow and groundwater flow and river routing

processes. The catchment is subdivided into sub-

basins, river reaches and Hydrological Response

Units (HRU’s). While the sub-basins can be

delineated and located spatially, the further sub-

divisions in HRU’s is performed in a statistical way by

considering a certain percentage of sub-basin area,

without any specified location in the sub-basin.

4.2. Description of the Sandusky river catchment

and SWAT model

The Sandusky River basin, with a drainage area at

Fremont of 3240 km2, is located within the Lake Erie

Catchment and Great Lakes basin. The Sandusky

River is the second largest of the Ohio rivers draining

into Lake Erie. Analysis of 1994 LANDSAT data

indicated that 84% of the land is used for agriculture,

12.6% is wooded, 1.2% is urban and 1.1% is non-

forested wetlands. Major crops based on county-level

estimates in 1985 were corn (Zea mays L.) with 35.6%

of cropland acreage, soybeans (Glycine max L.) with

44.9% and wheat (Triticum aestivum L.) with 19.5%.

Crop production was similar in 1995 with 32.1% in

corn, 49.1% in soybeans and 18.7% in wheat. Tillage

practices shifted from 86% conventional management
in 1985 to 50.5% in 1995, as farmers replaced

conventional with conservation tillage practices.

Tile drainage is used extensively throughout the

catchment. Urban areas within the Sandusky river

basin are Bucyrus, Fremont, Tiffin, and Upper

Sandusky, and numerous smaller communities. The

river and its major tributaries support important

recreational uses for catchment residents. Dominant

soils are Hapludalfs, Ochraqualfs, Fragiaqualfs,

Medisaprists, Fluvaquents, and Argiaquolls (Natural

Resources Conservation Service (NRCS) Ohio).

Textures are mainly silt loam and silty clay loam.

Average annual precipitation ranges from 881 mm

at Fremont to 964 mm at Bucyrus. Historic precipi-

tation data for the catchment show highest amount for

July (99 mm) and smallest for February (48 mm).

Annual mean discharge for the Sandusky River

catchment at Fremont is 29.1 m3 sK1, Honey Creek

at Melmore is 3.8 m3 sK1, and Rock Creek at Tiffin is

0.88 m3 sK1 (Sandusky River Catchment Coalition,

2000).

In this analysis, we used a DEM from the National

Elevation Dataset (NED) with cell size of 30!30 m

from the US Geological Survey. A digital land

cover/land use map derived from Landsat ETMC
imagery [SG1](2000) was provided by the Depart-

ment of Geography and Planning, University of

Toledo. We used a digital soil map from the State

Soil Geographic Database (STATSGO) developed by

the NRCS USDA. Water quality data were collected

by the Water Quality Laboratory, Heidelberg College.

For more information about the water quality data

refer to (Richards and Baker, 2002). The SWAT

model was built using the BASINS package and the

included catchment tools (Di Luzio et al., 2002) for

the spatial analysis of pollution sources and water

quality. The model consists of 28 sub-basins and 242

HRU’s.

4.3. Description of the Upper North Bosque river

catchment and SWAT model

The Bosque River flows southward through Erath,

Hamilton, and Bosque counties in central Texas

before discharging into to Lake Waco. Our case

study, the Upper North Bosque River (UNBR)

catchment, covers about 932 km2 in the upper portion

of the North Bosque River (NBR) catchment, almost
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Fig. 2. Map of the Sandusky river catchment with observation sites.

A. van Griensven et al. / Journal of Hydrology 324 (2006) 10–2316
entirely within Erath county. The NBR catchment is a

known problem catchment due to concentrated animal

feeding operations and is of particular water quality

concern since the Bosque river feeds Lake Waco

which serves as a water supply reservoir for more than

200,000 people in the city of Waco and surrounding

communities.

As reported by McFarland and Hauck (1999),

UNBR catchment is primarily rural (more than 98%)

with the primary land uses being rangeland (43%),

forage fields (23%), and dairy waste application (7%).

Dairy is the dominant agricultural activity. In

addition, other significant agricultural practices

include the production of peanut, range cattle,

pecan, peaches and forage.

The catchment lies primarily in two major Land

Resource Areas, known as the West Cross Timbers

and the Grand Prairie. The soils in the West Cross

Timbers are dominated by fine sandy loams with

sandy clay subsoils, while calcareous clays and clay

loams are predominant soil types in the Grand Prairie

(Ward et al., 1992). The elevation in the catchment

ranges from 305 to 496 m. The average annual

precipitation in the area is around 750 mm and the

average daily temperature ranges from 6 to 28 degrees

centigrade.

Since 1991 the Texas Institute for Applied

Environmental Research (TIAER) at Tarleton State

University has been monitoring UNBR (McFarland

and Hauck, 1999) at stormwater sites equipped with

automated samplers. Those used in this study are

shown in Fig. 3. Specifics of the monitoring program

and loading calculations are presented in McFarland

and Hauck (1995).

Topographic, landuse/cover, and soil data required

by SWAT for this study were generated from the

following basic GIS databases using the BASINS

package and the included catchment tools (Di Luzio

et al., 2002):

† Three arc-second, 1:250,000-scale, USGS DEM;

† NHD dataset for cataloging unit 12060204;

† 1: 250,000-scale, USGS Land Use and Land Cover

(LULC) data;

† USDA-NRCS STATSGO soils map;

† Daily rainfall and temperatures from 14 gauges

within the catchment including in part water

sampling and National Weather Service stations
The catchment has been segmented into 55 sub-

catchments and 172 HRUs.
4.4. Sensitivity criteria

This study analyses the effect of model parameters

on the model output directly and on model perform-

ance, thus the errors on the output are evaluated by

comparing the model output to corresponding

observations.

The model performance is considered by error

functions that are calculated by the sum of the squared

errors for flow (Q), sediments (S), total N (N) and total

P (P) for the daily observations (if available) at 5

observation sites within the basin (See Figs. 2 and 3,

Tables 1 and 2). The sensitivities to the model

performance give insight in parameter identifiability

using the available information (what parameters can

we possibly identify?). This approach is based on

daily observations and model simulations for two

years of simulations (1998–1999 for the Sandusky

river basin and 1995–1996 for the Upper North
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Bosque river basin). A half year warming up period

proceeded this simulation period.

In addition, the sensitivities are also assessed for

the total amount of water, sediments, nitrogen and

phosphorus that leaves the catchment at the outlet

over the model period. The latter is an example of

model output that is typically used for basin manage-

ment and indicates what parameters can influence

these outputs and hence decisions based on these

outputs (what parameters should we identify?).

4.5. Parameters

A restricted set of model parameters have been

used in the sensitivity analysis in order to capture the
Table 1

Observations in the Sandusky river catchment and the number of

observation for the years 1998–1999

Observation site Q S N P

1 Sand/Fremont 689 723 318 716

2 Rock Creek 570 706 250 707

3 Honey Creek 661 710 364 723

4 Tymochlee Creek 730 0 0 0

5 Sand/Bucyrus 730 0 0 0
major processes represented by SWAT (Table 3).

They were selected based on the list that is used in the

calibration tool of the SWAT interface (in bold in

Table 3), extended by other names listed in the SWAT

manual and believed to be potentially important.

Since the SWAT modelling tool was applied in a

distributed way—thus with spatially varying par-

ameter values according to soil and land use proper-

ties—this resulted in a very large number of

parameters each of which has a small influence on

model output. Therefore, the default values of these

distributed parameters are changed in a relative way

over a certain range, for instance over the range

K50% and C50%. The sensitivity analysis evaluates
Table 2

Observation sites in the Upper North Bosque river catchment and

the number of observations for the years 1996–1997

Observation

site

Q S N P

1 Mb040 731 137 137 137

2 Bo040 725 725 725 725

3 Ic020 731 596 596 596

4 Gc100 731 647 647 647

5 Gb020 75 75 75 75



Table 3

Parameters and parameter ranges used in sensitivity analysis (in alphabetic order)

Name Min Max Definition Process

ALPHA_BF 0 1 Baseflow alpha factor (days) Groundwater

BIOMIX 0 1 Biological mixing efficiency Soil

BLAIa 0 1 Leaf area index for crop Crop

CANMX 0 10 Maximum canopy index Runoff

CH_Cov K0.001 1 Channel cover factor Erosion

CH_ERODa K0.05 0.6 Channel erodibility factor Erosion

CH_K2 K0.01 150 Effective hydraulic conductivity in main channel alluvium (mm/hr) Channel

CH_Na 0.01 0.5 Manning coefficient for channel Channel

CN2a 35 98 SCS runoff curve number for moisture condition II Runoff

EPCOa 0 1 Plant evaporation compensation factor Evaporation

ESCO 0 1 Soil evaporation compensation factor Evaporation

GW_DELAY 0 50 Groundwater delay (days) Groundwater

GW_REVAP 0.02 0.2 Groundwater ‘revap’ coefficient. Groundwater

Gwno3 0 10 Nitrate concentration in the groundwater (mg/l) Groundwater

GWQMN 0 5000 Threshold depth of water in the shallow aquifer required for return flow to

occur (mm)

Soil

NPERCO 0 1 Nitrogen percolation coefficient Soil

PHOSKD 100 200 Phosphorus soil partitioning coefficient Soil

PPERCO 10 17.5 Phosphorus percolation coefficient Soil

RCHR_DP 0 1 Groundwater recharge to deep aquifer (fraction) Groundwater

REVAPMN 0 500 Threshold depth of water in the shallow aquifer for ‘revap’ to occur (mm). Groundwater

SFTMP 0 5 Snowfall temperature (8C) Snow

SLOPEa 0.0001 0.6 Average slope steepness (m/m) Geomorphology

SLSUBBSNa 10 150 Average slope length (m). Geomorphology

SMFMN 0 10 Minimum melt rate for snow during the year (occurs on winter solstice)

(mm/8C/day)

Snow

SMFMX 0 10 Maximum melt rate for snow during (mm/8C/day) Snow

SMTMP 0 5 Snow melt base temperature (8C) Snow

SOL_ALBa 0 0.1 Soil albedo Evaporation

SOL_AWCa 0 1 Available water capacity of the soil layer (mm/mm soil) Soil

SOL_Ka 0 100 Soil conductivity (mm/h) Soil

SOL_LABP 0 100 Initial labile (soluble) P concentration in surface soil layer (kg/ha) Soil

SOL_NO3 0 5 Initial NO3 concentration (mg/kg) in the soil layer Soil

SOL_ORGN 0 10000 Initial organic N concentration in surface soil layer (kg/ha) Soil

SOL_ORGP 0 4000 Initial organic P concentration in surface soil layer (kg/ha) Soil

SOL_Z 0 3000 Soil depth Soil

SPCON 0.0001 0.01 Linear parameter for calculating the channel sediment routing Channel

SPEXP 1 1.5 Exponent parameter for calculating the channel sediment routing Channel

SURLAG 0 10 Surface runoff lag coefficient Runoff

TIMP 0.01 1 Snow pack temperature lag factor Snow

TLAPSa 0 50 Temperature laps rate (8C/km) Geomorphology

USLE_Pa 0.1 1 USLE equation support practice (P) factor Erosion

a These distributed parameters are varied according to a relative change (G 50%) that maintains their spatial relationship.
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thus the effect of such relative changes on a number of

distributed parameters on the model outputs. Table 3

gives the range over which each parameter was varied

(MIN and MAX value), as well as a more complete

definition of the parameter. Additionally the category

of the process (groundwater, soil, crop, runoff,

erosion, channel, and snow) is given.
5. Results

Tables 4 and 5 give the sensitivity rank of all the

parameters for all criteria, starting with criteria on the

performance (for flow, suspended sediments, total

nitrogen and total phosphorus) followed by the results

for criteria on the mass balance of the model outputs.



Table 4

Sensitivity results for the SWAT parameters for stream flow (Q), sediments (S), total nitrogen (N) and total phosphorus (P) for the available

observation sites in the Sandusky river catchment (parameters with no appearance of sensitivity get rank 41)
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The last column in each table shows the lowest rank

from all the criteria and is used to assess global

parameter sensitivity for the two basins. Global ranks

1 are catetegorized as ‘very important’, rank 2–6 as

‘important’, rank 7–40 as ‘slightly important’ and

rank 41 as ‘not important’.

The results for Sandusky river basin identify 7 very

important parameters (global sensitivity of 1) that
cover runoff, groundwater and soil processes, and thus

involve the hydrology of the system. In addition, there

were 17 important parameters (global sensitivity O1

and less than 7) that cover all remaining processes

listed in Table 3, except for crop processes. Finally,

there are 13 ‘slightly important’ parameters (global

sensitivity !28) and 3 parameters that did not cause

any change to model output at all (rank of 41).



Table 5

Sensitivity results for the SWAT parameters for streamflow (Q), sediments (S), total nitrogen (N), and total phosphorus (P) for the available

observation sites for the Upper North Bosque River catchment (parameters with no appearance of sensitivity get rank 41)
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For the Bosque Upper North Bosque river

catchment, the top 7 very important parameters

represented runoff, groundwater, snow and soil

processes. The following 12 ‘important’ parameters

cover all other processes except for crop. There are 18

parameters that are slightly important and the same 3

parameters as in the Sandusky River catchment that

have no impact at all.
6. Discussion

6.1. Criteria on model performance

The scattered appearance of the higher ranked

parameters show that the ranking depends on the

variable, the location and, when both tables are

compared, on the case. But, some generalisations can
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be made such as the overall importance of curve

number (CN2) and the importance of the groundwater

parameter ALPHA_BF on the water quality variables.

The latter is explained by the fact that water quality

concentrations during low flow periods are dependent

on flow estimation, as predicted concentrations can be

very high when the river is simulated as drying up,

which often leads to large prediction residuals. The

flow calculations during these low flow periods

depend on the groundwater contribution, which in

turn depends strongly on the parameter

‘ALPHA_BF’.

Other generally important parameters for many

criteria are the soil water capacity ‘SOL_AWC’ and

the delay on runoff ‘SURLAG’. The initial soil

concentrations of nitrogen and phosphorus,

‘SOL_ORGN’ and ‘SOL_ORGP’, are often important

for simulating the nitrogen and phosphorus concen-

trations, respectively.

These results also show that the hydrologic

parameters dominate the highest parameter ranks

when the pollutant concentrations are considered.

Some hydrologic parameters, like the already

mentioned ‘ALPHA_BF’, appear almost only on the

pollutant concentration list while being relatively

unimportant for the water quantity (highest rank of 5

between both cases). This result means that water

quality data are potentially capable of contributing to

the identification of water quantity parameters within

SWAT.

There are also clear differences between the

catchments. For instance, the water flow performance

in the Sandusky river depends on the snow parameters

‘SMFMX’, ‘SFTMP’, ‘TIMP’, ‘SMFMN’ and soil

conductivity ‘SOL_K2’, while in the Upper North

Bosque river basin ‘ESCO’, and canopy index

‘CANMX’ (evaporation parameters) and SLSUBBSN

(a geomorphic parameter) have a high rank. The

differences are obviously due to climate, given the

relatively cold snowy climate of the Sandusky river

basin in Ohio and the relatively high evaporation rates

expected in the warm and sunny climate of the Upper

North Bosque river basin in Texas. This result means

that the results of sensitivity analysis on one

catchment cannot directly be transferred to another

one.

The results also show clear differences for the

interior locations inside a basin. While the Upper
North Bosque river basin does not show a high interior

variability on the flows, this phenomenon is very

apparent in the Sandusky basin. This result indicates

that there is higher spatial variability in the processes

controlling water quality within the Sandusky river

basin. In both basins, the results are very scattered for

the water quality variables. This result illustrates how

parameter importance depends on land use, topogra-

phy and soil types, meaning that a generalisation

within a basin is limited.
6.2. Criteria on model output

Analysis of results for model output show similar

results to those for model performance, but there are

some differences: ‘SURLAG’ loses its importance,

since time delay does not play an important role on the

average annual output values. In return, ‘GWQMN’,

which controls groundwater losses, has rank 2 for the

averaged flow in both case studies, while not being

important for the other criteria. This result suggests

that their may not be enough information to identify

some model parameters that control predictions of

model output. And therefore some parameters may

not always be identified properly, even when enough

observations are provided.
6.3. Considerations on the simulated time period

The results of the sensitivity analysis depend on

the time period of the simulations, especially for

short simulation periods. Exceptional events in the

data such as exceptional dry summers, heavy rains

causing flooding or exceptional snow events may

cause the sensitivity indexes to be biased.

Especially when the dataset does not represent

typical events, for instance this condition would be

true if the data used for sensitivity analysis

contained no snowfall while other years did have

snowfall. In this case important process parameters

may not be activated during the period of

sensitivity study. These types of irregularities

should be taken into account while interpreting

the results. For the two test basins, such irregula-

rities have not been reported. Nevertheless, it is

recommended to use longer periods if possible.
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7. Conclusion

A novel method of sensitivity was presented and

applied to a multiple-variable water quality model. It

provides a simple and quick way to assess parameter

sensitivity across a full range of parameter values and

with varying values of other parameters, thereby

covering the entire feasible space. This approach

results in a global sensitivity analysis that is able to

detect even slight influences within a small number of

iterations.

The results allow some generalisations among

basins with an overall importance of curve number

(CN2) and the importance of the groundwater

parameter ALPHA_BF on the water quality predic-

tions of SWAT. In general, the hydrologic parameters

are dominant in controlling water quality predictions.

There are also clearly different results between the

catchments that are obviously due to climate, but the

results also reflect differences in soil and land

properties. Thus, each new basin model requires its

own sensitivity analysis to select a subset of

parameters to be used for model calibration or

uncertainty analysis. Also interior sites show different

ranks for the parameters dependent on the physical

characteristics of sub-basins.
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