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INTRODUCTION  
 
 The spatial sciences, including geographic information systems (GIS), remote sensing, and 
global positioning systems (GPS), have become an invaluable tool across all science and 
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engineering disciplines, especially in natural resource modeling. Furthermore, with the recent 
advancements in data collection and dissemination via the internet, there is an increasing 
opportunity to provide information on a real-time basis which would aid in the decision-making 
process for natural resource managers. Both raw and processed data can be provided to modelers 
for use in various applications. In natural resource modeling, elevation, soils, land use, and 
weather are considered to be the factors that define various processes and interactions. Of these, 
land use and weather are the most dynamic variables and are closely dependent on each other. 
Providing near real time access to dynamic resources such as vegetation and weather would 
greatly improve model results, and thereby management of natural resources. The Advanced Very 
High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric 
Administration (NOAA) series of polar-orbiting satellites, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites, and the NEXt 
generation weather RADar (NEXRAD) of the National Weather Service (NWS) are three of the 
systems currently gathering near real time data.  
 The NOAA series of Polar Orbiting Environmental Satellites (POES) have been in operation 
for more than three decades and are the primary source for monitoring weather across the globe. 
POES utilizes a near-circular, sun-synchronous orbit and views the entire surface of the Earth 
every one to two days. AVHRR is a broadband scanner aboard these satellites, sensing in the 
visible (Channel 1), near-infrared (Channel 2), and thermal infrared (Channel 3, Channel 4, and 
Channel 5) portions of the electromagnetic spectrum at a spatial resolution of 1000 m. Currently, 
NOAA satellites 14, 15, 16, and 17 are operational (NOAA, 2003).  
 The MODIS instrument, aboard NASA’s Terra and Aqua spacecrafts (launched in December 
1999 and May 2002, respectively) has a higher spectral and spatial resolution than the AVHRR 
sensor. MODIS acquires data in 36 spectral bands between visible and thermal infrared portions of 
the electromagnetic spectrum at three spatial resolutions - 250, 500, and 1000 m. In addition, the 
satellites are equipped with Direct Broadcast (DB) capability.  In other words, data are not only 
stored for later downloads, but they can also be broadcast in real time to ground stations equipped 
to receive them (NASA, 2003). 
 NEXRAD is a Doppler radar system, previously known as the Weather Surveillance Radar-
1988 Doppler (WSR-88D). NEXRAD provides precipitation data for larger areas with better 
spatial and temporal resolution than conventional raingauge networks. The raw data, or Stage I 
output, are available in 4 km x 4 km resolution grids, with cells identified by the Hydrologic 
Rainfall Analysis Project (HRAP) number. Stage I data are corrected using a bias adjustment 
factor based on available one-hour raingauge reports. The resulting correction is available as Stage 
II data. Finally, Stage II data for all radars are combined into one map with ground truth data from 
gauge stations, and overlapping areas are averaged together. The result is multi-sensor Stage III 
adjusted data. In this process, the combining and averaging of overlapping data, or mosaicking, 
helps to compensate for the overestimation or underestimation of individual radars (Jayakrishnan 
2001). More detailed information about NEXRAD products and processing algorithms can be 
found in Crum and Alberty (1993), Klazura and Imy (1993), Smith et al. (1996), and Fulton et al. 
(1998).  
 With these datasets, several real-time products have been developed, some of which are 
currently available via the internet at the Texas Weather Connection (TWC) Website 
(http://twc.tamu.edu). Among these products are a wildfire risk assessment index, a real-time crop 
monitoring system, and a runoff prediction map for the state of Texas. 
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REAL-TIME WILDFIRE RISK ASSESSMENT  
 

 
 Every year, thousands of hectares of grassland and forests are lost due to wildfires. According 
to the National Interagency Fire Center, about 4 million acres are scorched by wildfire every year 
(NIFC, 2003). These fires cost millions of dollars in economic loss and cause irreparable damage 
to the environment. Forest fire managers across the United States use fire potential or drought 
indices to assess wildfire risks and to alert local residents of potential fire threats. These indices 
are derived from weather data, such as temperature, rainfall, and vegetation condition, recorded by 
local weather stations. Weather data often come from sparsely located weather stations. The 
drought indices derived from these point source weather data are then manually interpolated 
across the entire state, based on expert judgment, at a coarse spatial resolution (county level). This 
procedure of calculating and interpolating drought indices across the entire state relies heavily on 
expert judgment and involves many uncertainties. Further, high spatial resolution data are often 
needed for effective wildfire risk assessment and control. 
 During the past two decades, several advances have been made in remote sensing, GIS, and 
computational sciences. In addition, high spatial resolution data, such as temperature and rainfall, 
are readily available for use in conservation and management of natural resources, and provide the 
means to develop fire potential indices in real time. The objective of this research is to develop a 
near real time fire risk index using weather data obtained from satellites carrying the NOAA-
AVHRR sensor series and the NEXRAD weather radar for Texas. 
 
 

Keetch-Byram Drought Index  
 
 
 The Keetch-Byram Drought Index (KBDI) is widely used by fire managers to monitor 
moisture deficiency in the deep duff and upper layers of the soil profile. It is so widely used 
because of its simplicity and the fact that it is the only drought index that relates the effect of 
drought to potential fire activity. KBDI is based on a simple single- layer water balance model and 
indicates the amount of moisture depleted from the soil. The theory and framework of KBDI are 
based on the following assumptions (Keetch and Byram, 1968): 
 

1. The rate of soil moisture loss depends on density of the vegetation cover, antecedent 
moisture conditions, annual rainfall, and evapotranspiration.  

 
2. The field capacity of soil is 8 in of available water. (Eight inches of water is chosen 

because in many areas of the country, it takes all summer for the vegetation cover to 
transpire that much water. This number is reasonably well suited for use in forest fire 
control.)  

 
 The four climatological parameters used to calculate KBDI include daily maximum 
temperature, daily rainfall, cumulative antecedent moisture deficiency, and annual average 
precipitation. Keetch and Byram (1968) explain in detail the mathematical formulations involved 
for computing KBDI. The result of this system is a number that represents the moisture deficiency 
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in the upper soil layer in hundredths of an inch. A scale of 0 to 800 is used to represent the 
moisture deficiency, with 0 being no moisture deficiency and 800 being the maximum possible 
moisture deficiency. These numbers are correlated with the fire potential as shown in Table 5-1.  

 

Table 5-1. Keetch-Byram Drought Index (KBDI) and fire potential. 

KBDI  Fire potential  

    0 – 200  Low  

200 – 400  Moderate  

400 – 600  High  

600 – 800  Very high  

 
 
 In Texas, if the KBDI for a county is more than 500, countywide outdoor burn bans are 
imposed by the Texas Forest Service (TFS) to prevent wildfires in that county. 

 

Current Practice 
 
 
 Presently, all the climatological data needed to compute KBDI are obtained from 60 ground-
based weather stations across Texas. Daily weather data for these stations are collected by the 
National Weather Service (NWS) and are available for download via the internet 
(http://iwin.nws.noaa.gov/iwin/tx/climate.html). These daily weather data are downloaded 
manually from the NWS and imported into a spreadsheet to calculate daily KBDI. The KBDI 
derived from these point data sources are then interpolated at a county scale across the entire state 
based on expert judgment. Some of the uncertainties involved with this procedure are the 
following:  

• Localized precipitation events are common in arid climatic zones. These precipitation events 
may not be captured by the sparsely located rain gauge stations.  

• Interpolation of KBDI from weather station data across large regions could introduce errors.  

• The interpolation method in use is based on human judgment. This might introduce further 
bias when interpolating KBDI across large areas.  
 

 With advances in spatial and computational sciences, the procedure for computing KBDI can 
be automated, and spatial accuracy can be considerably improved (county scale to 4km × 4km) by 
using GIS and remote sensing technologies. 

 
 

Real-Time Methodology 
 
 The proposed methodology involves the use of remotely sensed data from AVHRR and 
NEXRAD for deriving weather parameters such as maximum air temperature and daily rainfall. 
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 Maximum air temperature (Ta), needed for calculating KBDI, is derived from land surface 
temperature (Ts) obtained from the thermal channels of AVHRR. Land Surface Temperature 
(LST) is the temperature measured just a few inches above the surface of the land or vegetation. 
The LST can be derived using a split window algorithm from the brightness temperatures of 
channels 4 and 5 of AVHRR. Several split window algorithms have been developed and used to 
derive LST from these channels to account for the effects of atmospheric disturbances on the 
satellite measurements. The split window algorithm developed by Ulivieri et al. (1994) has been 
used in this study to derive LST from the thermal channels. As previously mentioned, LST is 
different from the air temperature that is measured at a standard height of 2 m. Maximum air 
temperature (Ta) can be obtained from the surface temperature (Ts) using an energy balance 
approach. But such an approach involves many variables that cannot be readily derived from 
satellite measurements. 
 According to Narasimhan et al. (2003), there is a strong linear relationship between surface 
temperature obtained from the satellite and the maximum air temperature measured at weather 
stations across the state. Hence, a simple regression approach was developed in order to derive 
(Ta) from (Ts). This regression model is of the form:  
 
 )()()( iCTTimiT lmsa +×=                                                                                     [1] 
 
where Ta (i) is the estimated daily maximum air temperature for climatic zone i, Ts is the land 
surface temperature (°C), Tlm is the long-term monthly maximum air temperature (°C), and m(i) 
and C(i) are regression constants for climatic zone i (where i = 1,…..10) (Table 5-2). 
 
 

Table 5-2. Regression coefficients used for deriving maximum air 
temperature (Ta)  from surface temperature (Ts). 

 
Climatic division  m(i)  C(i)  R2 

1  0.78  5.04  0.74  
2  0.88  3.46  0.80  
3  0.86  4.73  0.81  
4         0.9  4.82  0.83  
5  0.82  2.72  0.75  
6  0.86  4.12  0.78  
7  0.75  7.47  0.72  
8  0.86  5.31  0.78  
9  0.81  5.99  0.71  
10  0.81  6.55  0.75  

 
 

  Daily precipitation, again needed for calculating KBDI, was obtained from Stage III 
NEXRAD weather radar.  Precipitation is the most sensitive parameter in the estimation of KBDI. 
As previously mentioned, localized precipitation events are very common in arid climatic zones. 
These precipitation events may not be captured by the sparsely located raingauge stations. 
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Currently, NEXRAD provides the best estimates of precipitation over large areas with high spatial 
resolution (4km × 4km). 
 Since outdoor burn bans and distribution of fire personnel and resources across the state 
depend on KBDI estimates, accurate estimation of KBDI is essential. Hence, by using remotely 
sensed temperature and precipitation estimates obtained from AVHRR and NEXRAD, 
respectively, accurate estimation of KBDI is possible at a high spatial resolution.  

 
 

Development of Real-Time System  
 

 
 A real-time system (Fig. 5-1) has been developed for estimation of daily KBDI from remotely 
sensed data using Arc Macro Language (AML) scripts in ESRI’s ArcInfo software. The satellite 
receiving system located at the Blackland Research Center (BRC), in Temple, TX, acquires daily 
raw AVHRR data from NOAA-14 and NOAA-15 satellites. An automatic data processing system 
has been developed using PCI Geomatics’ remote sensing software for radiometric, geometric, and 
atmospheric corrections and computing NDVI and LST. In addition, algorithms developed by 
various researchers have been refined and are used for cloud detection (Chen et al., 2002). During 
cloudy days (cloud cover > 30%), it may not be possible to get maximum air temperature 
estimates from the AVHRR satellites. On these days, maximum air temperature measured at 60 
NWS weather stations across Texas is interpolated using a “Regular Spline” method, available in 
the ArcInfo system. The resulting maximum air temperature is used as a replacement for the 
satellite data during cloudy days. An automatic data-capturing algorithm is used to obtain the daily 
maximum air temperature from the 60 NWS stations.  
 Stage III NEXRAD data are collected and archived by the NWS. The Stage III data, obtained 
from the NWS River Forecasting Center (RFC) in Fort Worth, TX, through a cooperative 
arrangement, is in a  Hydrologic Rainfall Analysis Project (HRAP) grid system, whereas the rest 
of the data are in a regular grid system. Hence, the precipitation data are remapped to the regular 
grid system using the ArcInfo. Once all of the input data are prepared, KBDI is computed using 
AML scripts, again, in ArcInfo. This entire system is completely automated and no longer requires 
manual data processing. Once the KBDI information is processed, it is distributed to forest fire 
managers across Texas through the World Wide Web (WWW) at http://twc.tamu.edu.  
 
 

Summary 
 
 
 A real-time system has been developed for estimation of a fire potential index (KBDI). The 
use of GIS and remote sensing technologies overcomes the uncertainties involved in the 
computation of the KBDI index. The spatial accuracy of KBDI estimates has also been improved 
(county scale to 4km × 4km) due to the use of real-time, and readily available, remotely sensed 
data and GIS (Fig. 5-2 and Fig. 5-3). Efforts are also underway for the development of a new fire 
potential index by incorporating NDVI estimates with that of soil moisture deficit. NDVI gives a 
measure of greenness/dryness of vegetation. Because this plays an important role in the ignition or 
spread of wildfire, it can give a better estimate of fire potential at any given place.  
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NWS - National Weather Service, NEXRAD - Next Generation Weather Radar, LST - Land Surface Temperature 
 
Fig. 5-1. A real-time system for computing the Keetch-Bryam Drought Index (KBDI) using remotely 

sensed data and geographic information systems (GIS). 
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Fig. 5-2. Keetch-Byram Drought Index (KBDI) for 30 Sept. 1999 computed by 
conventional methods (Courtesy of TFS). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5-3. Keetch-Byram Drought Index (KBDI) at a resolution of 4km × 4km 
computed using remotely sensed data. 
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REAL-TIME CROP MONITORING  
 
 Vegetation indices (VIs) based on visible and near-infrared reflectance values are primarily 
acquired for vegetation studies. The Normalized Difference Vegetation Index (NDVI) is the most 
widely used VI for vegetation research and can be used to detect change, estimate biomass, and 
map land cover (Jakubauskas et al., 2002; Maselli et al., 2000; Chen et al., 1999). Most crop 
growth studies involve the utilization of a temporal series of NDVI values derived from the 
NOAA-AVHRR sensor series (Dabrowska-Zielinska et al., 2002; Rasmussen, 1998). The 
multitude of spectral bands in the MODIS instrument provides another data resource for near real 
time agricultural studies. Besides NDVI, the MODIS instrument provides the Enhanced 
Vegetation Index (EVI), with improved sensitivity in high biomass regions and improved 
vegetation monitoring through a de-coupling of the canopy background signal and a reduction in 
atmospheric influence (Terrestrial Biophysics & Remote Sensing Lab, 2003). The EVI contains 
self-correcting atmospheric and soil calibration factors and quality control diagnostics, and is 
derived from the visible (0.62-0.67 µm), near-infrared (0.841-0.876 µm), and blue (0.459-0.479 
µm) reflectance data suggested by Huete et al. (1994). It is defined by the following equation:  
 

                                                                                       [2] 
 
where  is the atmospherically corrected (for Rayleigh and ozone absorption) surface reflectance 
data, L is the canopy background adjustment, and C1 and C2 are the aerosol resistance coefficients. 
The blue band is used to correct for aerosol influences in the red band. The EVI values vary 
between -1.0 and +1.0. Negative EVI values indicate the presence of clouds, snow, or water, and 
positive EVI values are positively correlated to the abundance of green vegetation. 
 Daily coverage of the earth surface is a strong advantage of MODIS data, but cloud 
contamination limits the data usage for environmental monitoring (Ohring and Clapp, 1980). 
Cloud detection is strongly recommended for real-time data such as those from AVHRR and 
MODIS (Gutman et al., 1994; Cihlar, 1996; Chen et al., 2002). The maximum value compositing 
(MVC) method is widely used to minimize the effects of cloud contamination on MODIS data 
(Holben, 1986). The MVC method retains the highest VI value for a given pixel over a pre-defined 
compositing period since the presence of clouds, smoke, haze, snow, and ice in a pixel reduces VI 
values. The 36-channel high spectral resolution MODIS data are used to produce the 16-d EVI and 
NDVI composite products at spatial resolutions of 250, 500, and 1000 m. 
 

Crop Monitoring Study 
 
 Several vegetation monitoring studies have been conducted using NDVI, based on the 
assumption that NDVI and leaf area index (LAI) are closely correlated to the fraction of 
photosynthetic active radiation (PAR) intercepted by canopies (Hatfield et al., 1984; Shanahan et 
al., 2001). Sorghum (Sorghum bicolor) and corn (Zea mays), two of the major crops in Mexico, 
are planted along the east and west coasts of Mexico, respectively. Sorghum is primarily planted 
between January and February and is harvested in June. Corn is planted in November and 
harvested in May of the next year. The NDVI composite data from AVHRR images have been 
used to monitor corn growth stage and to estimate corn yield in Mexico starting in 1999 (Baez-
Gonzalez et al., 2002) to ensure food security.  Since the MODIS instrument provides real-time 
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vegetation information at finer resolutions (250 and 500 m) than AVHRR, the objective of this 
study was to assess the suitability of the EVI temporal profiles at different resolutions for sorghum 
and corn monitoring in Mexico. All remote sensing procedures were done in PCI Geomatics and 
ERDAS systems. 
 For this research, 16 sorghum and 16 corn locations were randomly selected from a series of 
field samples for 2002 provided by scientists of the National Research Institute of Forestry, 
Agriculture, and Livestock Production (INIFAP). Moreover, each studied location was verified 
using LANDSAT-7 Enhanced Thematic Mapper (ETM+) images acquired in February and May 
2002 for sorghum and maize, respectively. The sorghum fields had maximum LAI values at the 
end of April and beginning of May, and the corn fields reached maximum LAI values between 
February and March. The longitude and latitude of each location were used to extract EVI values 
from the MODIS data. A series of 16-d EVI composite data at different resolutions were 
downloaded from NASA GSFC DAAC (http://modis.gsfc.nasa.gov/data/dataproducts.html) for 
the period from the end of 2001 to the middle of 2002 for the crop monitoring study. 
 

Results and Discussion  
 
 All 16 sampled sorghum locations had maximum EVI values occurring between the middle of 
April and the beginning of May, coincident with the time of maximum leaf area index (LAI) for 
the sorghum fields (Alma Baez-Gonzalez, personal communication; March 2003). The EVI 
temporal profiles for 500m MODIS pixels (EVI_500m) were similar to EVI profiles for 1000-m 
MODIS pixels (EVI_1000m) for sorghum growth, with maximum EVI values occurring at the 
same time (Fig. 5-4). Most EVI temporal profiles for 250-m MODIS pixels (EVI_250m) had 
maximum values that were either 16 d earlier or later than the EVI_500m and EVI_1000m data. 
Only three out of 16 locations had maximum EVI values occurring at the same time period for all 
three pixel resolutions. The EVI difference between the EVI_1000m and EVI_500m data was less 
than that between the EVI_500m and EVI_250m data. The EVI_500m data usually had maximum 
values that were similar to or greater than those of the EVI_1000m data. Maximum values of the 
EVI_250m data were more variable. Six EVI_250m data out of 16 had lower maximum values 
compared to the EVI_500m data. 

  
 Eastern Mexico has several large areas of sorghum fields. Each area is divided into many 
small parcels of agricultural land that are rectangular in shape. Although all of the parcels were 
planted with sorghum, planting time and farming practice differed between parcels. In addition, a 
couple of urban areas were adjacent to or within agricultural areas. The TM images revealed 
different spectral responses for agricultural parcels of land next to each other. The EVI_1000m 
data were most likely to cover more than one parcel, while the EVI_250m data were almost 
certainly composed of a single parcel or homogeneous land-cover type. The EVI_500m may cover 
one or more parcels of land, depending on the parcel sizes. Five out of the 16 samples had parcel 
sizes less than 250m × 250m, and four out of the 11 remaining samples had parcel sizes less than 
500 m × 500 m. The remaining seven samples had parcel sizes less than 1000m × 1000m. The 
EVI_250m data represented real-time information well, similar to field conditions of sorghum 
growth for every monitoring site in Eastern Mexico. The EVI_1000m data probably presented 
combined field situations for the monitoring spot and its neighbor parcels. The quality of 
EVI_500m data was between that of EVI_250m and EVI_1000m data. 
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                           a 
 
 
 
 
 
 
 
 
 
 
                               b 
 
 
 
 
 
 
 
 
 
 
                               c 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5-4. EVI temporal profiles for sorghum fields from MODIS data at three spatial resolutions at 

different locations (a, b, c) in Tamaulipas in Eastern Mexico in 2002. 
 
 
 The EVI temporal profiles for sorghum (Fig. 5-4) and corn fields (Fig. 5-5) had different 
patterns. The EVI values for corn fields reached a plateau between 75 and 110 d after planting and 
declined when the corn started to mature. The period of 75 to 110 d after planting included the 
growing stages of silking, doughing, and denting. The EVI profiles for sorghum fields reached a 
peak when the sorghum started heading, around 85 d after planting, and declined immediately 
when sorghum started changing colors (senescing). The EVI profile for corn included a plateau 
because corn experiences a slower reduction in LAI and radiation use efficiency than sorghum as 
part of senescence after reaching maximum EVI (Kiniry et al., 1992). 
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                           c 
 
 
 
 
 
 
 
 
 
 
Fig. 5-5. EVI temporal profiles for corn fields from MODIS data at three spatial resolutions at 

different locations (a, b, c) in Sonora in Western Mexico from 2001 to 2002. 
 
 The EVI_1000m data for corn had very similar behaviors for each sampled location, reaching 
the maximum plateau from the end of January to the end of February, when the leaf area index 
reached maximum values as well. Irregular up-and-down behaviors occurred frequently in the 
EVI_250m data for corn. These data usually had the largest EVI values before reaching the silking 
stage. The EVI_500m data for corn always had greater EVI values than the EVI_1000m data 
before silking, but both EVI values were very similar when the corn reached maturity. The EVI 
profiles for sorghum demonstrated the opposite behavior. At all three resolutions, these data had 
very similar values before reaching the maximum level, and then the EVI values diverged when 
the data declined. 
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 Clouds were visible in the 16-d EVI composites acquired between November and March. 
Moreover, visible cloud shadows frequently appeared in the EVI composites, although the cloud 
contamination had been effectively removed by maximum value compositing (MVC). It was 
apparent that the 16-d composite period may not be long enough for obtaining cloud-free 
information. Chen et al. (2003) recommended that cloud detection be applied to the individual 
scene before producing composite data. Overall, the EVI_250m data for sorghum behaved more 
closely to crop conditions as known to exist in the fields than the EVI_250m data for corn. The 
main reason was that the EVI composite data were less cloud-contaminated in the sorghum 
season, from February to June. Cloud and cloud shadow effects were more significant for the 
EVI_250m data than EVI_1000m data if the clouds and cloud shadows did not contaminate the 
entire pixel of 1000 m × 1000 m. 

 
Summary 

 
 Although the Normalized Difference Vegetation Index (NDVI) has been successfully applied 
to several agricultural studies, published research studies have concluded that NDVI values were 
responding to the vegetation canopy background. The Enhanced Vegetation Index (EVI) derived 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) was improved, with 
increased sensitivity for biomass estimation in dense vegetation canopies, through a de-coupling 
of the canopy background signal and a reduction in atmospheric and soil reflectance influence. In 
this study, the MODIS EVI data at all three spatial resolutions provided information on sorghum 
growth stage consistent with actual crop conditions as reported in the fields. Our results showed 
that the MODIS EVI 250m composite data were not as reliable as the 500m and 1000m data for 
corn monitoring because of frequent cloud contamination occurring during the first three months 
of the growing season. Moreover, the MODIS EVI value difference among the three resolutions 
was attributable to the proportion of crop fields within the pixel. Overall, this study exhibited that 
MODIS EVI composites can be used to support real-time crop monitoring in Mexico. 
 

REAL-TIME RUNOFF ESTIMATION 
 

The purpose of this third study was to evaluate variations of the Natural Resources 
Conservation Service (NRCS) curve number (CN) method for estimating near real-time runoff for 
naturalized flow, using high-resolution radar rainfall data in Texas. The CN method is an 
empirical method for calculating surface runoff, which has been tested on various systems over a 
period of many years. Many of the findings of previous studies indicate the need to develop 
variations of this method to account for regional and seasonal changes in weather patterns and 
land cover that might affect runoff. This study seeks to address these issues, as well as the inherent 
spatial variability of rainfall, in order to develop a means of predicting runoff in near real time for 
water resource management.  In the past, raingauge networks provided data for hydrologic models. 
However, these networks were generally unable to provide data in real time or capture the spatial 
variability associated with rainfall. Radar networks, like NEXRAD, which are widely available 
and continue to improve in quality and resolution, can accomplish these tasks. 
 

Methodology 
 
 Ten watersheds of varying size in four river basins throughout different agro-climatic regions 
of Texas were used in this study in order to account for the wide variety of hydrologic conditions 
throughout the state (Table 5-3). These areas were chosen based on the dominant land use, soil 
hydrologic group, and streamgauge location for validation and calibration of model results. 
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Table 5-3. Description of watershed study areas chosen for analysis. 
 

Watershed  USGS 
Streamgauge 

Stream 
Name  

Major Land 
Resource 

Area  

Drainage 
Area 
(km2)  

Rainfall 
Range 
(mm)  

Major  
Land Cover 

Characteristics  
 
Trinity-1 

 
8042800 

 
West 
Fork 
Trinity 
River 

 
Texas North 
Central 
Prairies 

 
1769 

 
550 - 750 

 
56% herbaceous 
rangeland; 17% 
shrubland; 13% 
deciduous forest 

 
Trinity-2 

 
8065800 

 
Bedias 
Creek 

 
Texas 
Claypan 

 
831 

 
750 - 1075 

 
76% improved 
pasture and hay 

 
Trinity-3 

 
8066200 

 
Long 
King 
Creek 

 
Western 
Coastal 
Plains 

 
365 

 
1025 - 1350 

 
80% forested; 15% 
improved pasture 
and hay 

 
Red-1 

 
7311600 

 
North 
Wichita 
River 

 
Rolling Red 
Plains 

 
1399 

 
500 - 750 

 
33% herbaceous 
rangeland; 40% row 
crops; 18% 
shrubland 

 
Red-2 

 
7311783 

 
South 
Wichita 
River 

 
Rolling Red 
Plains 

 
578 

 
500 - 750 

 
60% herbaceous 
rangeland; 28% 
shrubland 

 
LCR-1 

 
8144500 

 
San Saba 
River 

 
Edwards 
Plateau 

 
2940 

 
375 - 750 

 
71% shrubland; 
21% herbaceous 
rangeland 

 
LCR-2 

 
8150800 

 
Beaver 
Creek 

 
Edwards 
Plateau 

 
557 

 
375 - 750 

 
40% shrubland; 
40% evergreen 
forest 

 
LCR-3 

 
8152000 

 
Sandy 
Creek 

 
Texas 
Central Basin 

 
896 

 
625 - 750 

 
41% evergreen 
forest; 33% 
shrubland; 16% 
herbaceous 
rangeland 

 
SA-1 

 
8178880 

 
Medina 
River 

 
Edwards 
Plateau 

 
850 

 
375 - 750 

 
60% forest; 20% 
shrubland; 14% 
herbaceous 
rangeland 

 
SA-2 

 
8178700 

 
Salado 
Creek 

 
Edwards 
Plateau / 
Texas 
Blackland 
Prairie 

 
355 

 
375 – 1150 

 
50% forest; 32% 
urban; 10% shrub 
and herbaceous 
rangeland 

 
 
 
 Daily runoff calculations for the study sites were made using the NRCS CN method, which 
provided a means of estimating runoff based on land use, soil type, and precipitation. This 
calculation is based on the retention parameter, S, initial abstractions Ia (surface storage, 
interception, and infiltration prior to runoff), and the rainfall depth for the day, Rday,

 
(all in mm 
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H20). The retention parameter is variable due to changes in soil type, land use, and soil moisture, 
and is defined as Eq. [3]: 
 

 
[3] 

 
 Average CN values (CNII) are assigned based on the land use and soil hydrologic group from 
lookup tables in the Soil Conservation Service (SCS) National Engineering Handbook, Section 4: 
Hydrology (NEH-4). CN values for wet (CNIII) and dry (CNI) antecedent moisture conditions are 
calculated from this average value. A more detailed description of these calculations can be found 
in Neitsch et al. (2001). For the actual runoff calculation, initial abstractions (Ia) are generally 
approximated as 0.2 S, and the basic equation becomes Eq. [4]: 
 

 
[4] 

 
where Qsurf

  
is surface runoff in mm, and Rday is rainfall depth for the day, also in mm. Runoff will 

occur only when Rday
 
> Ia

 
(Neitsch et al., 2001). However, Ponce and Hawkins (1996) suggest that 

0.2 S may not be the most appropriate number for Ia, and that it should be interpreted as a regional 
parameter. To test this, 0.2 S, 0.1 S, and 0.05 S were used in the runoff equation to determine the 
most appropriate constant for Ia in various agro-climatic regions of Texas. Stage III NEXRAD 
precipitation data were used as the rainfall input for the equation in order to produce runoff 
estimates in real time. In addition, NEXRAD is able to capture the spatial and temporal variability 
of rainfall more effectively than traditional raingauge networks over large areas. In such areas, 
rainfall contributions from heavy, localized storms can go unaccounted for based on traditional 
raingauge information. 
 Runoff estimates generated by the CN method equation were compared with U.S. Geological 
Survey (USGS) streamflow estimates at the watershed outlets.  Because streamflow is composed 
of baseflow and runoff portions of flow, it was necessary to process this data through a baseflow 
separation filter program, such as the one outlined in Arnold et al. (1995). This process allowed 
for direct comparison of runoff estimates to USGS data.  
 Statistical analysis for this study consisted of basic regression analysis and estimation 
efficiency (Nash and Sutcliffe, 1970), which are commonly used in hydrologic model evaluation. 
The equation is calculated as:    
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where COE is the coefficient of efficiency, or runoff estimation efficiency, n is the number of days 
of comparison, Oi is the observed streamgauge runoff for a watershed for day i, Om is the mean 
observed streamgauge runoff for a watershed over all days, and Ri is the estimated runoff for a 
watershed for day i.  When Ri = Oi, COE = 1.  This would represent a good comparison between 
observed and estimated runoff values. Where COE < 1, the estimated runoff value is less 
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representative than the mean value for the dataset. In general, COE values greater than 0.4 are 
considered to be highly significant. 
  

Results and Discussion 
 
 In this analysis, 9 out of 10 watersheds produced statistically significant runoff results using 
CNI with an initial abstraction coefficient of 0.1 when compared to observed runoff (Hadley, 
2003). Traditionally, CNII would be used with an Ia

 
coefficient of 0.2. Using a dry antecedent 

moisture condition would decrease runoff, whereas the 0.1 coefficient would slightly increase 
runoff by decreasing initial abstractions. These adjustments produced runoff estimates that more 
closely matched observed runoff than did the traditional calculations. For these nine watersheds, 
the combined COE was 0.70, the slope was 0.78, and the r2 was 0.77. Based on the significance of 
these findings, the modified runoff equation was extrapolated to the entire state. A more detailed 
description of these results can be found in Hadley (2003). 
 

Real-Time Runoff Estimation Maps 
 
 The three main datasets used to generate runoff estimates using the NRCS CN method are 
land-cover, soils, and precipitation data. For real-time runoff estimation, the land-cover data are 
obtained from the 1992 USGS National Land Cover Data (NLCD) at a 30-m resolution. In 
addition to land cover, the soil hydrologic group classification is needed to determine the CN 
value for a particular area. This information is derived from the U.S. Department of Agriculture 
(USDA) – NRCS State Soil Geographic (STATSGO) database, which was obtained at a 250-m 
resolution. The final input needed for this calculation is the rainfall depth for the day. Because 
rainfall is the driving factor in runoff, it is altogether necessary to obtain the most accurate rainfall 
input available. In this case, the Stage III NEXRAD radar rainfall data are used. These data are 
better able to capture the spatial and temporal variability of rainfall than traditional raingauge 
networks and are available at a 4-km resolution. Furthermore, as more detailed input data become 
available, they can be easily substituted for these existing datasets. 
 With the use of ESRI’s ArcInfo software and AML scripts, real-time runoff maps are 
generated daily. The land-cover and soils data are used to assign the CN value from a lookup 
table. This value is then converted to the CNI, or dry antecedent moisture condition, value and 
used with the 0.1 Ia

 
coefficient and the daily NEXRAD rainfall data to calculate surface runoff. 

The result is a daily runoff map that is posted on the internet for public use. In addition, using the 
Dem flow direction map to summarize runoff estimation will allow routing of stream flow into 
river reaches in order to estimate stream flow in real time. 
 

Summary 
 
 The goal of this study was to develop a near real time method for generating runoff estimates 
using the NRCS CN method. This was successful, based on the statistical significance of the 
runoff estimates as compared with observed USGS streamflow. Providing access to such 
information via the internet will prove useful in all types of watershed and water resource 
management, including reservoir operation. In addition, as NEXRAD rainfall data are replaced 
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with forecast information, it will be possible to translate this methodology into a tool that could be 
used for flood prediction and mitigation.  

 
CONCLUSIONS 

 
 The research products discussed herein use readily available remote sensing and radar-based 
real-time data to provide decision-making tools to natural resource managers. Many more real-
time applications could be developed by combining ground- and radar-based weather station data 
as well as information from various remote sensing platforms and rendering the raw and processed 
data through the internet. Similar research works are in progress to develop additional real-time 
systems for applications, such as crop growth monitoring using Growing Degree Days (GDD), 
Potential EvapoTranspiration (PET), and severity indices for crop diseases such as Sorghum Ergot 
and Wheat Karnal Bunt. Developing such tools would help action agencies, such as TFS, TWDB, 
USDA, and river authorities make time-sensitive decisions that could have significant impact on 
society.  
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