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USING NEXRAD AND RAIN GAUGE

PRECIPITATION DATA FOR HYDROLOGIC

CALIBRATION OF SWAT 
IN A NORTHEASTERN WATERSHED

A. M. Sexton,  A. M. Sadeghi,  X. Zhang,  R. Srinivasan,  A. Shirmohammadi

ABSTRACT. The value of watershed‐scale, hydrologic and water quality models to ecosystem management is increasingly
evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact
on the environment. Quality of precipitation data is critical for appropriate application of watershed models. In small
watersheds, where no dense rain gauge network is available, modelers are faced with a dilemma to choose between different
data sets. In this study, we used the German Branch (GB) watershed (~50 km2), which is included in the USDA Conservation
Effects Assessment Project (CEAP), to examine the implications of using surface rain gauge and next‐generation radar
(NEXRAD) precipitation data sets on the performance of the Soil and Water Assessment Tool (SWAT). The GB watershed is
located in the Coastal Plain of Maryland on the eastern shore of Chesapeake Bay. Stream flow estimation results using surface
rain gauge data seem to indicate the importance of using rain gauges within the same direction as the storm pattern with
respect to the watershed. In the absence of a spatially representative network of rain gauges within the watershed, NEXRAD
data produced good estimates of stream flow at the outlet of the watershed. Three NEXRAD datasets, including
(1)�non‐corrected (NC), (2) bias‐corrected (BC), and (3) inverse distance weighted (IDW) corrected NEXRAD data, were
produced. Nash‐Sutcliffe efficiency coefficients for daily stream flow simulation using these three NEXRAD data ranged from
0.46 to 0.58 during calibration and from 0.68 to 0.76 during validation. Overall, correcting NEXRAD with rain gauge data
is promising to produce better hydrologic modeling results. Given the multiple precipitation datasets and corresponding
simulations, we explored the combination of the multiple simulations using Bayesian model averaging. The results show that
this Bayesian scheme can produce better deterministic prediction than any single simulation and can provide reasonable
uncertainty estimation. The optimal water balance obtained in this study is an essential precursor to acquiring realistic
estimates of sediment and nutrient loads in future GB modeling efforts. The results presented in this study are expected to
provide insights into selecting precipitation data for watershed modeling in small Coastal Plain catchments.
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odel simulation of hydrologic processes is only
as good as the input used to drive the model.
Precipitation is one of the most important in‐
puts to any hydrologic model. Except for sever‐

al experimental watersheds, the National Climatic Data

Submitted for review in October 2009 as manuscript number SW 8273;
approved for publication by the Soil & Water Division of ASABE in March
2010.

The authors are Aisha M. Sexton, ASABE Member Engineer,
Postdoctoral Research Associate, Fischell Department of Bioengineering,
University of Maryland, College Park, and USDA-ARS Hydrology and
Remote Sensing Laboratory, Beltsville, Maryland; Ali M. Sadeghi, Soil
Scientist, USDA‐ARS Hydrology and Remote Sensing Laboratory,
Beltsville, Maryland; Xuesong Zhang, ASABE Member Engineer,
Research Scientist, Joint Global Change Research Institute, Pacific
Northwest National Laboratory, College Park, Maryland; Raghavan
Srinivasan, Professor, Department of Ecosystem Sciences and
Management, Spatial Sciences Laboratory, Texas A&M University,
College Station, Texas; and Adel Shirmohammadi, ASABE Fellow,
Associate Dean and Professor, College of Agriculture and Natural
Resources, University of Maryland, College Park, Maryland.
Corresponding author: Aisha M. Sexton, USDA‐ARS Hydrology and
Remote Sensing Laboratory, 10300 Baltimore Ave., BARC‐West Bldg.
007, Beltsville, MD 20705; phone: 301‐504‐8554; fax: 301‐504‐8931;
e‐mail: aisha.sexton@gmail.com.

Center (NCDC) rain gauge data (approximately one gauge
per 800 km2) is the major source of observed precipitation
data for most watersheds in the U.S. Another important
source of precipitation data is next‐generation radar (NEX‐
RAD), which provides spatially continuous estimations at
approximately  4 × 4 km2 resolution. In small watersheds,
where no dense rain gauge network is available, we are faced
with a dilemma to choose between different data sets.

Site‐specific precipitation data are generally scarce due to
lack of a sufficient number of rain gauges and/or due to mea‐
surement errors. These issues have been major concerns in wa‐
tershed model calibration (Groisman and Legates, 1994; Neff,
1977; Skinner et al., 2009; Huebner et al., 2003) and have led
researchers to explore other sources of rainfall data, such as
NEXRAD. Along with rain gauges, NEXRAD data contain
measurement and algorithm errors (Young et al., 2000; Jayak‐
rishnan et al., 2004; Hunter, 1996). Attempts to validate NEX‐
RAD data using rain gauge data as ground truth have also
encountered some difficulties because of the scarcity of gauge
data and the difference in sampling area (Young et al., 2000;
Jayakrishnan et al., 2004; Skinner et al., 2009). Although these
errors and difficulties exist, radar estimations are still a viable
source of rainfall data in hydrologic modeling, especially as ra‐
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dar algorithms are improved and denser gauge networks are
created for radar validation (Habib et al., 2009).

NEXRAD rainfall data have been developed and im‐
proved through four different processing steps. In stage I, the
Hourly Digital Precipitation (HDP) network was developed
by entering reflectivity measurements into the Precipitation
Processing System (PPS) algorithm. These data have been or‐
ganized into 4 × 4 km2 grids in the Hydrologic Rainfall Anal‐
ysis Project (HRAP) coordinate system. The stage II product
is a combination of stage I radar data corrected for bias using
hourly rain gauge observations for a single radar site. Collec‐
tive stage II radars covering River Forecasting Center (RFC)
regions are mosaicked and corrected for bias to produce stage
III data. Finally, stage IV data were created by combining stage
III data (RFC regions) to cover the entire U.S. Several refer‐
ences describe the details of the PPS algorithm and its updates
(Fulton et al., 1998; Ahnert et al., 1983; Ahnert et al., 1984).

To date, stage III data have been the most widely used of
all NEXRAD rainfall data in the area of hydrologic and water
quality modeling (Starks and Moriasi, 2009; Tobin and Ben‐
nett, 2009; Jayakrishnan et al., 2005; Moon et al., 2004;
Neary et al., 2004; Di Luzio and Arnold, 2004). However, im‐
provements to the PPS algorithm have led to another product,
the Multisensor Precipitation Estimator (MPE). MPE en‐
hancements over the stage III algorithm include: delineation
of effective areal coverage of radar, mosaicking based on ra‐
dar sampling geometry, service area‐wide precipitation anal‐
ysis, improved mean‐field bias correction, and local bias
correction (Seo and Breidenbach, 2002; Nelson et al., 2006;
Wang et al., 2008). The MPE product has proven to be superi‐
or to stage III data, which is why RFCs have replaced the pro‐
duction of stage III data with MPE data in recent years.
Although the MPE product has been validated in a number of
studies, the impact of MPE data in hydrologic modeling is not
well known. Neary et al. (2004) mentioned the need for more
studies to evaluate the recently adopted MPE products in
hydrologic modeling.

The Soil Water Assessment Tool (SWAT) is a widely used
hydrologic and water quality model that was developed to
simulate the effects of changing land uses and climate on wa‐
tershed water quality (Arnold et al. 1998). SWAT is the major
modeling tool used in the CEAP program, which aims to
quantify the environmental benefits of conservation practic‐
es implemented under USDA conservation programs. The
utility of NEXRAD rainfall data in SWAT has the potential
to improve flow estimates by accounting for the spatial vari‐
ability of rainfall. The majority of studies that have imple‐
mented NEXRAD data in the SWAT model have used
stage�III data (Moon et al., 2004; Di Luzio and Arnold, 2004;
Jayakrishnan et al., 2005; Tobin and Bennett, 2009). Moon et
al. (2004) evaluated the use of NEXRAD rainfall data on
stream flow estimation of the SWAT model. NEXRAD rain‐
fall inputs provided a better flow estimate than gauge data.
Another study found that SWAT simulations with NEXRAD
provided better stream flow results on a monthly time scale
compared to Tropical Rainfall Measurement Mission
(TRMM) and rain gauge data (Tobin and Bennett, 2009). Jay‐
akrishnan at el. (2005) found stream flow estimates using
NEXRAD stage III data better than rain gauge estimates
without calibrating the model. They pointed out the potential
of improving radar data and subsequent model simulations by
calibrating radar data using gauge data. NEXRAD data, how‐
ever, have not provided better flow simulation results in all

cases. Kalin and Hantush (2006) compared gauge and NEX‐
RAD MPE driven simulations of SWAT on an eastern Penn‐
sylvania watershed. There was no significant difference in
model flow prediction during the calibration period on the
monthly or daily time scale. Validation on a monthly basis us‐
ing NEXRAD data resulted in higher model efficiencies than
using gauge data, while validation on a daily basis using
gauge data resulted in higher model efficiencies than NEX‐
RAD data. More research is needed in this area to determine
the circumstances in which NEXRAD will provide better
stream flow estimates than surface rain gauge data in hydro‐
logic modeling.

The goal of this study was to evaluate the ability of SWAT
to estimate stream flow in a watershed containing no rain
gauges using proximal rain gauge and NEXRAD MPE precipi‐
tation data. A new GIS tool for incorporating NEXRAD data
into ArcSWAT, NEXRAD_SWAT (Zhang and Srinivasan,
2009), was utilized to provide MPE data as well as rain gauge
calibrated radar data. In addition to comparing gauge and NEX‐
RAD flow estimates, NEXRAD_SWAT enabled us to compare
flow estimates derived with original MPE data as well as MPE
data that received additional calibration using rain gauge data.
Given the multiple precipitation datasets and corresponding
simulations, we explored the combination of the multiple simu‐
lations using Bayesian model averaging. Special attention was
also given to the location of surface rain gauges with respect to
the direction of storm flow patterns in capturing rainfall
amounts representative of that in the watershed.

MATERIALS AND METHODS
SITE DESCRIPTION

The German Branch (GB) watershed (~50 km2) is a tribu‐
tary within the non‐tidal zone of the larger Choptank River
basin located in the Coastal Plain of Maryland on the eastern
shore of Chesapeake Bay (fig. 1). Upland soils of the wa‐
tershed are mostly composed of Ingleside sandy loam on 2%
to 5% slopes. Baseflow contributes about 65% of the total
flow in the watershed (Bachman et al., 1998). The major land
uses are agriculture (~61%) and forest (~33%), followed by
developed land (~5%) and water (~1%). The agricultural
landscape in the region is dominated by the poultry industry.
Corn and soybeans are grown to supply feed to those opera‐
tions, and poultry litter is used to fertilize the crops. This wa‐
tershed is being evaluated because it was initially selected as
one of the CEAP special emphasis watersheds in which sev‐
eral tributaries have been identified as “impaired waters” un‐
der Section 303(d) of the Clean Water Act due to high levels
of nutrients and sediments. It is to be noted that the CEAP
program managers have recently moved this watershed from
the “special emphasis watersheds” into the list of permanent
watersheds called “CEAP core watersheds” (NRCS, 2009).

Figure 2 shows the four National Climatic Data Center
(NCDC) surface rain gauges in closest proximity to the GB wa‐
tershed outlet. The Chestertown and Royal Oak gauges were
chosen to be included in this study because of their closeness to
the GB outlet as well as their directional location with respect
to the watershed and the direction of storms on the eastern shore
of Maryland. Both gauges are located west of the watershed,
which is the direction that storms generally travel from in tem‐
perate latitudes. Therefore, their storm pattern was more likely
to resemble storm occurrences in the GB watershed.
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Figure 1. Location of German Branch watershed in Maryland and land
use map showing delineated subbasins.

MODEL SELECTION AND DATA ACQUISITION

SWAT Model
SWAT is a complex, physically based, semi‐distributed

model that operates in continuous time on a daily time step.
The main components of SWAT include: climate, hydrology,
land cover/plant growth, erosion, nutrients, pesticides, land
management,  channel routing, and reservoir routing. Algo‐
rithms from the QUAL2E model were incorporated into
SWAT to provide in‐stream water quality modeling capabili‐
ties (Ramanarayanan et al., 1996).

The version of SWAT used in this study was SWAT‐2005,
which operates in the ArcGIS interface (Winchell et al.,
2007). The three basic GIS maps required to run SWAT in‐
clude a digital elevation model (DEM), land cover/land use,
and soils data. A 2 m resolution DEM based on LIDAR data
collected by the State of Maryland was produced at USDA‐
ARS. A 3 × 3 pixel low‐pass filter was used to eliminate “no
data” values. Additional “no data” values were removed by
hand and replaced by local averages. A high‐resolution land
use map was developed through on‐screen digitizing in Arc‐
Map 9.1 using 1998 National Aerial Photography Program
(NAPP) digital orthophoto quad imagery (1:12,000 scale).
Soil Survey Geographic (SSURGO) data downloaded from
the USDA‐NRCS Soil Data Mart server were used as soils in‐
put into the model.

The delineated watershed was separated into 26 subbasins
based on tributary drainage areas (fig. 1). Within each subba‐
sin, the superimposing of similar land uses, soil types, and

Figure 2. Location of nearby rain gauges with respect to GB watershed
outlet.

slopes created 233 hydrologic response units (HRUs) in the
GB watershed. Threshold area values of >10%, >15%, and
>15% were used to include land use, soils, and slope types,
respectively, in the HRU definition process. Surface rain
gauge and NEXRAD data were obtained from the National
Weather Service (NWS). Surface rain gauge and temperature
data from NCDC were obtained for two Maryland sites, one
in Chestertown and the other in Royal Oak. NEXRAD data
missing from the NWS website were obtained from the Mid‐
Atlantic River Forecasting Center (MARFC). Daily solar
radiation, wind speed, relative humidity, and missing precipi‐
tation and temperature data were generated using SWAT's
weather generator (Neitsch et al., 2005).

Using NEXRAD in SWAT
The ArcGIS interface of SWAT can automatically select

the rain gauge closest to each subbasin and read in precipita‐
tion records stored in text and database format for each rain
gauge. In order to use NEXRAD in SWAT, a new GIS pro‐
gram was developed for SWAT (NEXRAD‐SWAT) (Zhang
and Srinivasan, 2009) to automatically read in the binary
NEXRAD MPE data and estimate the spatial average precip‐
itation for each subbasin. NEXRAD‐SWAT can evaluate and
correct NEXRAD data using rain gauge data. Several geosta‐
tistical methods can be employed by the tool to produce a spa‐
tial precipitation map (in grid format) for use in hydrologic
modeling. The methods include: nearest bias correction
(BC), simple kriging (SK), ordinary kriging (OK), inverse
distance weighted (IDW), simple kriging with varying local
means (SKlm), and kriging with external drift (KED). Krig‐
ing methods only perform better than IDW when there is a
dense rain gauge network. In this study area, data from only
four surface rain gauges were available near the watershed.
Therefore, NEXRAD‐SWAT was used to supply non‐
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corrected (NC), bias‐corrected (BC), and inverse distance
weighted (IDW) corrected MPE data to ArcSWAT.

NEXRAD_SWAT makes bias corrections to MPE data us‐
ing the following equations:

 oriadj RBR ⋅=  (1)
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where Radj is the bias‐adjusted NEXRAD data, Rori is the
NEXRAD‐estimated precipitation, B is the bias adjustment
factor, Z(xi) and R(xi) are, respectively, the rain gauge ob‐
served and NEXRAD‐estimated precipitation at sampled
locations xi (i�= 1, 2, ..., n), and n is the number of data
sampled using rain gauges.

In the implementation of IDW to correct NEXRAD data,
the precipitation amount (Z) within a spatial domain is de‐
composed into a trend (m) and a residual (�), where Z(x) =
m(x) + �(x). The drift trend (m) is fitted using linear regres‐
sion analysis. The general form of m(x) is:
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ables, the �k are unknown drift model coefficients to be deter‐
mined, and K is the number of predictors. In this study, the
trend surface used by IDW was obtained using m(x) = �1 +
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The IDW method interpolates precipitation by weighting
the points closer to the prediction location greater than those
farther away. Equation 3 denotes the procedure (Zhang and
Srinivasan, 2009):
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where �(u) is the interpolated residual value, �ui is the weight
of the sampled data at location xi, hui denotes the distance be‐
tween unsampled location u and sampled location xi, and p
is the power of hui.

The data requirements for NEXRAD‐SWAT include hour‐
ly NEXRAD‐MPE data in XMRG format (~4 km resolution),
a rain gauge shape file, daily precipitation records for each
rain gauge, and a subbasin shape file. The map projection of
the rain gauge and subbasin shape files must be known and
have the same projection. NEXRAD‐SWAT will automati‐
cally convert the projection used by the modeler to the HRAP
projection used by NEXRAD. In SWAT, precipitation is mod‐
eled on a subbasin basis. Therefore, the subbasin map is dis‐
cretized into a grid (fig. 3a). NEXRAD‐SWAT interpolation

(a)

(b)

Figure 3. Maps of German Branch subbasins showing (a) NEX‐
RAD‐SWAT discretized watershed grid, and (b) grid centroids over sub‐
basins and subbasin centroids.

methods are then implemented at each grid to estimate pre‐
cipitation.  Precipitation estimates from all grids contained in
each subbasin are then averaged to represent precipitation at
the subbasin center (fig. 3b).

SENSITIVITY ANALYSIS

Sensitivity analysis was conducted using the Latin hyper‐
cube one‐at‐a‐time (LH‐OAT) method (van Griensven et al.,
2006), which is part of the slate of evaluation tools built into
the SWAT model. A sensitivity index (Si) was calculated by
averaging the sensitivity indices for each interval of each pa‐
rameter, denoted by:
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where M( ) is the model function, fi is the fraction by which
parameter ei is changed, i is the number of parameters , and
j is the LHS point or interval number. Based on the sensitivity
analysis, 13 parameters were chosen to be sensitive (table 1)
and were therefore included in model calibration. Parameters
Cn2, Rchrg_Dp, Esco, Alpha_Bf, and Sol_Awc were ranked
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Table 1. Sensitivity index (Si) and ranking
of parameters used in sensitivity analysis.[a]

Rank Parameter Description Si

1 Cn2 Initial SCS runoff curve number for
moisture condition II

1.55

2 Rchrg_Dp Deep aquifer percolation factor 0.88

3 Esco Soil evaporation compensation factor 0.65

4 Gwqmn Threshold depth of water in the shallow
aquifer required for return flow to occur

0.54

5 Alpha_Bf Baseflow alpha factor 0.25

6 Sol_Z Depth from soil surface to bottom of layer 0.22

7 Sol_Awc Available water capacity 0.21

8 Blai Maximum potential leaf area index 0.08

9 Timp Snow pack temperature lag factor 0.07

10 Ch_K2 Effective hydraulic conductivity in main
channel alluvium

0.07

11 Canmx Maximum canopy storage 0.06

12 GW_Revap Groundwater “revap” coefficient 0.02

13 Slope Average slope steepness 0.02

14 Sol_K Saturated hydraulic conductivity 0.02

15 Surlag Surface runoff lag coefficient 0.01

16 Revapmn Threshold depth of water in the shallow
aquifer for “revap” or percolation to the
deep aquifer to occur

0.01

17 GW_Delay Groundwater delay time 0.01

18 Ch_N2 Manning's roughness coefficient for the
main channel

0.01

19 Smtmp Snow melt base temperature 0.01

20 Biomix Biological mixing efficiency 0.01
[a] Bold type indicates the 13 parameters chosen to be sensitive.

highest. Other parameters affecting hydrograph timing, such
as Timp, GW_Revap, and Surlag, were ranked lower but still
considered important. Some parameters, such as Gwqmn and
Sol_Z, were ranked high in sensitivity but not included in the
calibration because their values were not well known or the
default values were a best estimate.

MODEL CALIBRATION AND VALIDATION

Calibration Algorithm
The optimization method used to calibrate the model was

parameter solutions (Parasol) (van Griensven and Meixner,
2007). It uses shuffled complex evolution (SCE, a global
search algorithm) to minimize a single objective function or
multiple objective functions. Objective functions include
sum of the squares of the residuals (SSQ) and SSQ after rank‐
ing. The equation for SSQ is:

 [ ]∑
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where xi,measured are measured data, xi,simulated are simulated
data, and n represents the number of observations. Up to
16�parameters  can be adjusted in one optimization run. The
model was calibrated on a daily basis using years 2005 and
2006 with one year of spin‐up (2004). Validation was con‐
ducted using the 1 January to 15 April 2007 (1/1/07 to
4/15/07) time period. Five different calibration scenarios
were run using three sources of rainfall data. Two scenarios
utilized rainfall data from each of the two surface rain gauges
(Chestertown and Royal Oak). Another scenario included

MPE data with no correction (NC). The remaining two sce‐
narios utilized data from both rain gauges to correct MPE
data for bias (BC) and with the inverse distance weighted
(IDW) method.

Model Performance Measures
The performance measures used to evaluate model cal‐

ibration and validation were the Nash‐Sutcliffe efficiency co‐
efficient (NSE), coefficient of determination (r2), root mean
squared error (RMSE), and percent bias (PBIAS). They are
defined as follows:
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where Oi are observed data, Pi are predicted data, O  and P
are observed and predicted mean values, respectively, and n
is the number of observations. Time series plots were also
used to evaluate model performance.

Ensemble Model Prediction
Given the several precipitation datasets described above,

we can produce several streamflow simulations. Instead of
selecting one simulation with the best performance, multiple
simulations can be combined to provide ensemble model pre‐
diction and uncertainty analysis. Bayesian model averaging
(BMA) is a standard approach to inference in the presence of
multiple competing models (Raftery et al., 2005). The BMA
algorithm described by Zhang et al. (2009), which was de‐
rived based on Raftery et al. (2005) and Duan et al. (2007),
is applied in this study. In BMA, the probabilistic distribution
of a hydrologic prediction (y) is the weighted average of the
posterior distribution of each model under consideration:

 ∑
=

=
1

21 )|(),...,,|(
k

kkK fygwfffyp  (10)

where K is the number of competing models, k is the index
of each model, fk denotes the bias‐corrected prediction of a
candidate model Mk, and wk is p(fk | D), the posterior probabil‐
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ity of model prediction fk, also known as the likelihood of
model prediction fk being the correct prediction given the ob‐
servational data D. The value of wk is nonnegative and with

a sum ⎟⎠
⎞⎢⎝

⎛∑ =

K

k kw
1

 of 1. Finally, g(y | fk) represents the condi‐

tional probability distribution function (PDF) of y condition‐
al on fk. The conditional distribution, g(y | fk), can be
represented as a normal distribution, N(ak + bk fk, �k

2, where
ak and bk are regression coefficients obtained through least
square linear regression. Given equation 10, it is straightfor‐
ward to derive the expected mean prediction and uncertainty
interval. Detailed information on calculating terms in equa‐
tion 10 is provided by Zhang et al. (2009).

The four evaluation coefficients described in the previous
section were used to evaluate the performance of the deter‐
ministic expected mean prediction produced by BMA.
Another evaluation coefficient, percentage of coverage
(POC) of observations in the uncertainty interval, was used
to evaluate the uncertainty intervals obtained by BMA. A
smaller difference between POC and the expected coverage
percentage of an uncertainty interval indicates better perfor‐
mance of the estimated uncertainty interval. The 95% uncer‐
tainty interval, which is expected to include 95% of the
observations, was derived from equation 10 and evaluated
using POC.

RESULTS AND DISCUSSION
STREAM FLOW ESTIMATES USING SURFACE RAIN GAUGES

Table 2 shows model performance measures for daily
stream flow estimation during calibration and validation pe‐
riods using precipitation data from two separate rain gauges
(Royal Oak and Chestertown) located outside the GB wa‐
tershed. Results indicated that stream flow was estimated
best using precipitation data collected at the Chestertown
gauge. Chestertown simulations produced higher NSE values
of 0.49 and 0.73, compared to 0.42 and 0.54 for Royal Oak
simulations, during the calibration and validation periods, re‐
spectively (table 2). RMSE values during calibration and val‐
idation were lower for Chestertown (0.87 and 1.07) than for
Royal Oak (0.93 and 1.41) simulations, also indicating better
estimation of stream flow using Chestertown rainfall data.
Negative PBIAS values in table 2 show that stream flow was
generally underestimated using both Royal Oak and Chester‐
town rainfall measurements. Systematic over‐ or under-
estimations of streamflow using Royal Oak data were
negligible during the calibration period.

These results can be explained first by the closeness of the
Chestertown gauge to the watershed outlet (~26 km)
compared to the Royal Oak gauge (~39 km), as shown in fig‐
ure 2. This difference of 13 km (8 miles) may be enough to
have significance; however, the directional location of the
gauges with respect to the GB watershed and the general di‐
rection of storms in this region may have also played a role
in capturing the most accurate rainfall patterns. Previous
studies have shown that storm direction and velocity have
pronounced effects on runoff hydrographs (Foroud et al.,
1984; Singh, 1998; Tsanis et al., 2002; de Lima et al., 2003).
Given that fact, it follows that rain gauges that are in a posi‐
tion to capture those effects will provide the most representa‐
tive rainfall measurements.

Storms generally flow from west to east in temperate lati‐
tudes. However, according to the National Climatic Data
Center (NCDC), prevailing winds in Maryland flow from the
northwest quadrant during approximately nine months of the
year (NESDIS, 2009). For this reason, precipitation collected
at the Chestertown rain gauge (located northwest of GB) is
more likely to resemble rainfall patterns in the German
Branch watershed than Royal Oak measurements (located
southwest of GB) during most of the year. This is illustrated
by the monthly SSQs (eq. 5) between observed and simulated
stream flow for Royal Oak and Chestertown in 2005 (table 3).
During that year, SSQs compiled on a monthly basis for Roy‐
al Oak exceeded Chestertown monthly SSQs in 8 out of
12�months of the year, indicating that flow simulated using
Chestertown data was 67% more accurate than Royal Oak
flow simulations in 2005.

NEXRAD STREAM FLOW ESTIMATES

Model performance measures for daily stream flow simu‐
lation using NEXRAD rainfall data are shown in table 4. Cal‐
ibration results showed that, in most cases, SWAT estimated
stream flow more accurately using NEXRAD precipitation
data than rain gauge data (tables 2 and 4). This is likely due
to the fact that the rain gauges were located outside of the wa‐
tershed. The Chestertown gauge data provided better daily
stream flow estimates than bias‐corrected (BC) MPE (multi‐
sensor precipitation estimator) data during calibration as well
as non‐corrected (NC) MPE and inverse distance weighted
(IDW) MPE during validation. This further demonstrated the
representativeness  of the Chestertown gauge data over the
Royal Oak gauge data, which did not outperform any of the
MPE datasets in estimating daily stream flow at the GB wa‐
tershed outlet.

Table 2. Model performance measures for daily stream flow estimation for Royal Oak and Chestertown
surface rain gauges. Values in parentheses are performance measures for non‐calibrated models.[a]

Rain Gauge NSE r2 RMSE (cms) PBIAS (%)

Calibration
(2005‐2006)

Royal Oak 0.42 (‐4.44) 0.42 (0.24) 0.93 (2.85) 0.52 (59.20)

Chestertown 0.49 (‐0.71) 0.50 (0.36) 0.87 (1.60) ‐15.33 (‐1.39)

Validation
(1 Jan. to 15 April 2007)

Royal Oak 0.54 (‐1.04) 0.60 (0.34) 1.41 (2.96) ‐11.94 (19.86)

Chestertown 0.73 (‐0.21) 0.75 (0.51) 1.07 (2.28) ‐19.82 (‐18.46)
[a] NSE = Nash‐Sutcliffe coefficient of efficiency, RMSE = root mean square error, and PBIAS = percent bias.

Table 3. Sum of squares of residuals (SSQ) of the differences compiled on a monthly basis for 2005.
Rain Gauge Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Royal Oak 10.16 2.41 98.16 227.59 51.82 2.07 8.58 3.42 1.97 15.74 0.82 8.62
Chestertown 7.42 2.26 76.62 233.35 71.15 5.54 1.67 3.32 1.89 13.90 1.91 4.85
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Table 4. Model performance measures for daily stream flow estimation using NEXRAD precipitation data.
Values in parentheses are performance measures for non‐calibrated models.[a]

NEXRAD Data[b] NSE r2 RMSE (cms) PBIAS (%)

Calibration
(2005‐2006)

NC 0.58 (‐0.90) 0.60 (0.40) 0.79 (1.68) ‐28.44 (9.40)
BC 0.46 (‐2.36) 0.47 (0.36) 0.90 (2.24) ‐11.80 (33.05)

IDW 0.54 (‐0.50) 0.56 (0.40) 0.83 (1.50) ‐25.32 (3.65)

Validation
(1 Jan. to 15 April 2007)

NC 0.73 (‐2.71) 0.75 (0.49) 1.07 (3.99) 1.14 (41.11)
BC 0.76 (‐0.58) 0.76 (0.53) 1.02 (2.61) ‐10.33 (10.74)

IDW 0.68 (‐0.13) 0.70 (0.50) 1.18 (2.21) ‐18.91 (‐4.51)
[a] NSE = Nash‐Sutcliffe coefficient of efficiency, RMSE = root mean square error, and PBIAS = percent bias.
[b] NC = NEXRAD precipitation with no correction, BC = NEXRAD precipitation with bias correction, 

and IDW = NEXRAD precipitation with inverse distance weighted interpolation.

Results among MPE data were mixed. The model per‐
formed best using NC MPE data (NSE = 0.58) during the cal‐
ibration period and using BC MPE data (NSE = 0.76) during
the validation period (table 4). With such a small number of
rain gauges available to correct NEXRAD data, there was not
much improvement over NC MPE data. In addition, correc‐
tion of NEXRAD data using distant gauge data can decrease
the accuracy of radar data in local areas (Hunter, 1996). This
can be seen in the daily stream flow time series plots for NC
and IDW during the validation period (fig. 4). Events A, B,
and C show significant degradation of flow predictions when
using IDW corrected MPE data compared to NC MPE data.
NEXRAD data generally produced underestimations of flow,
especially during the calibration period. However, daily flow
was mostly overpredicted during validation using NC MPE
data. This may be explained by the fact that 2007 was a dry
year (fig. 5) and the period used for validation was mostly dry
(fig. 4), leading to overestimations during dry periods using
NC MPE data.

If more than five gauges were available near the wa‐
tershed, then the kriging interpolation methods of NEX‐
RAD_SWAT could have been employed. Those methods
may potentially provide better rainfall estimates due to their
sophistication.  However, since their relative benefit mainly

Figure 4. Times series plots showing NC MPE flow prediction (top) and
IDW MPE flow prediction (bottom) for events A (14 Feb. 2007), B
(2�March 2007), and C (17 March 2007).

increases with rainfall network density, they may render esti‐
mates similar to simple methods (e.g., BC and IDW) using
low‐density networks (Goudenhoofdt and Delobbe, 2009).
Furthermore, having surface rain gauges located within the
watershed would provide better estimates of stream flow due
to more accurate measurements of rainfall.

Model performance measures for the different sources of
rainfall without model calibration are shown in tables 2 and
4. There was no major improvement of baseline model be‐
havior by using NEXRAD data. Although IDW had the best
model performance without calibration, there was not much
of an improvement over non‐calibrated Chestertown gauge
results. Hence, the use of NEXRAD data, in this case, did not
eliminate the need for model calibration, and neither did
these data reduce calibration efforts. Calibration improved
model performance in every case.

The decision to use one source of rainfall data over the oth‐
er depends on the availability of accurate rain gauge data, the
variability of rainfall in the watershed, and the ability of
NEXRAD data to accurately account for that variability.
Overall results in this study indicate that, in the absence of
properly designed rain gauge network data in a given wa‐
tershed, the best set of rainfall data for use in watershed
hydrologic assessment is NEXRAD data. The second option
for sources of data in the absence of the watershed‐based rain
gauge network data is data obtained from the closest rain
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Figure 5. Observed annual precipitation at the Chestertown, Maryland,
surface rain gauge (2004‐2008).

Table 5. BMA performance measures for daily stream flow estimation.

NSE r2
RMSE
(cms)

PBIAS
(%)

POC
(%)

Calibration
(2005‐2006)

0.63 0.65 0.74 0 96.9

Validation
(1 Jan. to 15 April 2007)

0.77 0.77 0.99 0.09 96.2
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Figure 6. 95% uncertainty intervals estimated by BMA for the calibration and validation periods.

gauge to the watershed. In addition, one should consider the
location of such a rain gauge with respect to the direction of
storm travel in the region.

BAYESIAN MODEL AVERAGING ESTIMATES

Based on tables 2 and 4, the model performed better dur‐
ing the validation period compared to the calibration period.
It is risky to select one model for prediction. The BMA algo‐
rithm was used to combine the five simulations to derive ex‐
pected mean prediction and 95% uncertainty intervals. The
evaluation coefficients for BMA mean prediction are listed
in table 5. NSE and r2 values obtained by BMA are consis‐
tently larger than other predictions with one set of precipita‐
tion data in both calibration and validation periods.
Meanwhile, BMA also obtained the smallest RMSE and
PBIAS values compared to the statistics listed in tables 2 and
4. For uncertainty analysis, the 95% uncertainty intervals de‐
rived using equation 10 are shown in figure 6. Visually, the
uncertainty intervals in figure 6 contain most of the observa‐
tions. POC values are 96.9% and 96.2% in the calibration and
validation periods, respectively (table 5). The difference be‐
tween POC and expected coverage percentage is less than 2%
for both periods. In general, the combination of multiple
SWAT model simulations using different precipitation data‐
sets produced better deterministic prediction than any simu‐
lation with one set of precipitation input data. The BMA
algorithm implemented in this study also provided reason‐
able uncertainty estimation results, which is valuable for wa‐
ter resources related investigations and decision making
processes.

CONCLUSIONS
In most cases of watershed hydrologic and water quality

assessments, measured rainfall data are either sparse or non‐
existent. For watersheds within which there is no well de‐
signed surface rain gauge network, this study demonstrated
the importance of considering rain gauge proximity to the
watershed and potentially the direction of storm patterns in
the region when choosing the most representative rain gauge.
In Maryland, storms travel from the northwest quadrant dur‐
ing most of the year. This factor along with the closeness of
the gauge to the watershed may explain why the gauge lo‐
cated northwest of the watershed (Chestertown) provided
better precipitation input than the gauge located southwest of
the watershed (Royal Oak). However, further study of this no‐
tion should be explored in watersheds with denser rain gauge
networks.

This study also showed that NEXRAD rainfall data can be
a viable alternative to using rainfall data collected from sur‐
face rain gauges located outside of the watershed. NEXRAD
MPE data produced comparable and, in most cases, better es‐
timates of flow than rain gauge data. This is likely due to hav‐
ing a better network of radar grid cells located within the
watershed boundaries, allowing NEXRAD to better account
for spatial variability of rainfall. The surface rain gauges used
in this study were located outside the watershed and thus were
not able to represent the watershed rainfall distribution as
would a well designed rain gauge network or properly kriged
NEXRAD data. NEXRAD rainfall data can be a good alter‐
native when rain gauge data are not available or where gauges
are not located within the storm path of the watershed. As the
quality of NEXRAD data is further improved, NEXRAD data
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will become increasingly suitable for use in hydrologic mod‐
eling.

Given the multiple precipitation datasets and correspond‐
ing simulations, we explored the combination of the multiple
simulations using Bayesian model averaging. The results
show that this Bayesian scheme can produce better determin‐
istic prediction than any single simulation and can provide
reasonable uncertainty estimation results. Overall, when
there are several available precipitation datasets, it is sug‐
gested to combine the simulations.
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