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Abstract

Accurate analysis of water flow pathways from rainfall to streams is critical
for simulating water use, climate change impact, and contaminants transport. In
this study, we developed a new scheme to simultaneously calibrate surface flow
(SF) and baseflow (BF) simulations of soil and water assessment tool (SWAT)
by combing evolutionary multi-objective optimization (EMO) and BF separation
techniques. The application of this scheme demonstrated pronounced trade-off of
SWAT’s performance on SF and BF simulations. The simulated major water fluxes
and storages variables (e.g. soil moisture, evapotranspiration, and groundwater)
using the multiple parameters from EMO span wide ranges. Uncertainty analysis
was conducted by Bayesian model averaging of the Pareto optimal solutions.
The 90% confidence interval (CI) estimated using all streamflows substantially
overestimate the uncertainty of low flows on BF days while underestimating the
uncertainty of high flows on SF days. Despite using statistical criteria calculated
based on streamflow for model selection, it is important to conduct diagnostic
analysis of the agreement of SWAT behaviour and actual watershed dynamics.
The new calibration technique can serve as a useful tool to explore the trade-
off between SF and BF simulations and provide candidates for further diagnostic
assessment and model identification. Copyright  2011 John Wiley & Sons, Ltd.
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Introduction
Accurate analysis of water flow pathways from rainfall to streams is criti-
cal for the optimal protection of surface and groundwater (GW) resources,
assessing the impacts of changes on the hydrological response and predict-
ing contaminant transport (e.g. Wenninger et al., 2004; Kannan et al., 2007;
Kim et al., 2008; Gonzales et al., 2009). Soil and water assessment tool
(SWAT) (Arnold et al., 1998) has been used worldwide to assist in water
resources management (Gassman et al., 2007). The importance of simulta-
neous calibration of surface flow (SF) and baseflow (BF) simulations has
been emphasized in previous applications of SWAT (Arnold and Allen,
1999). Santhi et al. (2001) developed the general procedures for calibrat-
ing SWAT (Figure 1a). This calibration scheme requires the SF and BF be
separated. Then, SF, BF, sediment, and nutrients are calibrated in sequence
until each of these variables meets the statistical criteria set by the mod-
ellers. It is worth noting that the parameter calibration processes of SF and
BF are interdependent with each other. Modellers need to check the perfor-
mance of the SWAT on SF when they are calibrating BF and vice versa.
This recursive manual calibration methodology is very time consuming.
Although there are numerous automatic calibration programs for calibrat-
ing the SWAT model parameters (e.g. Abbaspour, 2008; Van Griensven,
2008; Zhang et al., 2009b), no program exists for simultaneous calibration
of SF and BF simulations of SWAT. In addition, few previous applications of
SWAT conducted diagnostic analysis that has been shown to play critical role
in model identification (e.g. Wagener, 2003; Wagener et al., 2003; Wagener
and McIntyre, 2005; Gupta et al., 2008). Therefore, the major objective of
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Figure 1. Two schemes for SWAT calibration (a) is adapted from Santhi et al. (2001) and (b) is the new scheme that employs multi-objective
optimization

this study is to develop a new calibration scheme that can
simultaneously calibrate SF and BF by combining multi-
objective optimization and BF separation techniques and
provide candidate parameter sets for further diagnos-
tic assessment and model selection. Previous studies
(e.g. Gupta et al., 1998; Yapo et al., 1998; Boyle et al.,
2000; Wagener et al., 2001) have shown that evolu-
tionary multi-objective optimization (EMO) algorithms
can serve as an effective means to calibrate hydrolog-
ical models with non-commensurate objectives. In this
study, A Multi-ALgorithm Genetically Adaptive Method
(AMALGAM; Vrugt and Robinson, 2007) adapted by
Zhang et al. (2010) is used to simultaneously calibrate
SF and BF simulations of SWAT and explore the trade-
off. Another objective of this study is to examine the
uncertainty analysis for SF and BF using Bayesian model
averaging (BMA) by combining the multiple parameter
solutions produced by EMO. The results of this research
are expected to provide insights into SWAT performance
on SF and BF simulations and robust model selection and
uncertainty analysis when applying SWAT for watershed
planning.

Materials and Methods
Study area description

The Little River Experimental Watershed (LREW) is
one of the US Department of Agriculture—Agricultural

Research Service experimental watersheds (Bosch et al.,
2007). The LREW (Figure 2) is located in the Tifton
Upland physiographic region, which is characterized by
intensive agriculture in relatively small fields in upland
areas and riparian forests along stream channels. The
LREW is the upper 334 km2 of the Little River, has
low topographic relief and is characterized by broad,
flat alluvial floodplains, river terraces, and gently sloping
uplands (Sheridan, 1997). Climate in this region is
characterized as humid subtropical with an average
annual precipitation of about 1167 mm. Soils on the
watershed are predominantly sands and sandy loams
with high infiltration rates. Land use types include forest
(65%), cropland (30%), rangeland and pasture (2%),
wetland (2%), and miscellaneous (1%).

SWAT description
The SWAT model is a continuous, long-term, distributed-
parameter model that can simulate surface and subsurface
flow, soil erosion and sediment deposition, and nutrient
fate and movement through watersheds (Arnold et al.,
1998). SWAT subdivides a watershed into sub-watersheds
connected by a stream network and further delineates
hydrologic response units consisting of unique combina-
tions of land cover and soils in each sub-watershed. The
hydrologic routines within SWAT account for snow fall
and melt, surface runoff (SR), vadose zone processes [i.e.
infiltration, evaporation, plant uptake, lateral flows, and
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Figure 2. The location of the Little River Experimental Watershed, Georgia

Table I. Parameters for calibration of the SWAT model

Code Parameter Description Range

1 CN2 Curve number II š20%
2 ESCO Soil evaporation compensation factor 0–1
3 SOL AWC Available soil water capacity š25%
4 GW REVAP Groundwater re-evaporation coefficient 0Ð02–0Ð2
5 REVAPMN Threshold depth of water in the shallow aquifer for re-evaporation to occur (mm) 0–500
6 GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0–5000
7 GW DELAY Groundwater delay (days) 0–50
8 ALPHA BF Baseflow recession constant 0–1
9 RCHRG DP Deep aquifer percolation fraction 0–1
10 CH K2 Effective hydraulic conductivity in main channel alluvium (mm h�1) 0Ð01–150
11 SURLAG Surface runoff lag coefficient (day) 0Ð5–10

percolation (PERC)], ground water flows, and river rout-
ing. In this study, 11 parameters and the corresponding
parameter ranges are selected for calibration (Table I).

Modified multi-objective calibration scheme
The general multi-objective optimization problem can
be defined as follows: find the parameter solution
x that will optimize the objective function vector

F�x� D [f1�x�, f2�x�, . . . , fm�x�], where fi�x� is the
ith objective function and m the number of objec-
tive functions. An objective function vector F�x

0
� D

[f1�x
0
�, f2�x

0
�, . . . , fm�x

0
�] is said to dominate another

objective function vector F�x� D [f1�x�, f2�x�, . . . ,
fm�x�] (denoted by F�x

0
� � F�x�), if 8i 2 f1, 2, . . . , mg,

fi�x
0
� ½ fi�x� ^ 9i 2 f1, 2, . . . , mg, fi�x

0
� > fi�x�

(Zitzler and Thiele, 1999). If the objective function vector
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F�xŁ� of a parameter solution xŁ 2 � is not dominated by
all the other objective function vectors of the parameter
solutions in the feasible parameter space, then xŁ is taken
as a Pareto optimal parameter solution.

We proposed to incorporate EMO for simultaneous cal-
ibration of SF and BF simulations of SWAT (Figure 1b).
This new scheme includes several major procedures:
(1) separate SF and BF from observed streamflow data
using BF filer, (2) employ EMO to automatically adjust
the parameters of SWAT to search non-dominated param-
eters solutions, and (3) generate multiple Pareto optimal
parameter solutions allowing users to select parameters
based on expert knowledge and application purpose. In
comparison to the scheme depicted in Figure 1a, the
major strength of this new scheme consists in its capacity
to calibrate SR and BF simultaneously and provide mul-
tiple solutions to explore trade-offs between SR and BF
simulations. The major components of the new scheme
are described as follows.

Multi-objective optimization algorithm. AMALGAM
adaptively and simultaneously employs multiple EMO
algorithms to ensure a fast, reliable, and computationally
efficient solution to multi-objective optimization prob-
lems (Vrugt and Robinson, 2007). In this study, four
candidate EMO algorithms, including strength Pareto
evolutionary algorithm 2, particle swarm optimization,
differential evolution, and adaptive metropolis sampler,
were incorporated into AMALGAM following Zhang
et al. (2010).

BF separator. The digital BF filter (Arnold and Allen,
1999) that has performed well in comparison with
measured field estimates in multiple watersheds (Arnold
et al., 1999) is used to separate BF from total streamflow.

Statistical criteria for evaluating model performance.
In this study, the Nash–Sutcliffe efficiency (NSE; Nash
and Sutcliffe, 1970), a normalized form of square of
residuals, was selected as the model calibration objection
function. In addition, two complementary evaluation
coefficients, percent bias (PBIAS; Gupta et al., 1999) and
coefficient of determination (R2; Legates and McCabe,
1999), are also used to assess the performance of model
predictions.

Uncertainty analysis of SF and BF simulations

The multiple Pareto optimal solutions from AMALGAM
can be used to further explore the uncertainty estimation
of SF and BF simulations. In this study, the BMA
technique described by Zhang et al. (2009a) is employed
for uncertainty analysis. Given the errors associated
with input data, boundary conditions, model structures,
parameters, and observed variables, the model predictions
are not a certain value, and should be represented
with a confidence range (Beven, 2006). The 90% CI

is examined. Two coefficients were used to evaluate
the robustness uncertainty intervals: (1) the percentage
of coverage (POC) of observations in the uncertainty
interval and (2) the average width (AW) of the CI.

Results and Discussion
Model performance on SF and BF simulations

The BF filter was used to separate SF and BF from the
observed daily streamflow from 1991 to 2002. The BF
ratio obtained in this study using BF filter is 54%, which
is consistent with analysed BF ratio between 50 and
55% in LREW (D. D. Boscch, personal communication).
The entire evaluation period was split into SF days and
BF days for calibration. A day is assumed to be a
SF day if the SF contribution (SF divided by the total
streamflow) of that day was larger than 0Ð5, otherwise, it
is taken as a BF day. Among the 4383 days of the entire
evaluation period, 3583 days were classified as BF days
and 800 days were belonging to SF days. We divided the
entire samples into two sets, viz. calibration period from
1991 to 1996 and validation period from 1996 to 2002.

For model calibration, we designed three objectives
to evaluate the performance of SWAT, which are NSE
values calculated using streamflows of all days (NSEall),
streamflows of SF days (NSESF), and streamflows of BF
days (NSEBF). Thirty Pareto optimal solutions were found
by AMALGAM (Figure 3), which show pronounced
trade-off between model performance on SF and BF sim-
ulations. The correlation between NSESF and NSEall is
0Ð99, while the correlation between NSEall and NSEBF

is negative (Figure 3). In most previous applications of
SWAT, streamflows of all days are used for calibration,
which may lead to good performance on SF days but
poor performance on BF days. The ranges of NSEall,
NSESF, and NSEBF are (0Ð65, 0Ð79), (0Ð52, 0Ð78), and
(0Ð62, 0Ð78), respectively. Accordingly, Figure 4 shows
the spread of the 30 parameter sets that has been normal-
ized to a value between 0 and 1 using the corresponding
ends of its range. Three parameter solutions with best
NSE values on all days (Best all), SF days (Best SF), and
BF days (Best BF) are selected to illustrate the perfor-
mance of SWAT. As Best all and Best SF are the same,
only two parameter sets and the corresponding evalua-
tion coefficients are listed in Table II. The preferences of
the two parameter solutions to different objective func-
tions lead to different parameter values. For example,
SOL AWC values of Best surface and Best base are �9
and �25%, respectively. The spread of objective function
and parameter values reveal the high trade-off of SWAT’s
performances on SF and BF simulations, leading to the
important topic on model selection.

Uncertainty analysis for SF and BF simulations

The Pareto optimal solutions found by the AMALGAM
were used to provide the basis for uncertainty estimation
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Figure 3. Thirty Pareto optimal solutions displayed in a two-dimensional
objective function space: (a) NSESF versus NSEBF and (b) NSESF versus

NSEall

of streamflow simulation of all days, SF days, and BF
days, respectively. The CIs estimated using streamflow
of all days, SF days, and BF days are denoted as CI-
all, CI-SF, and CI-BF, respectively. CI-all includes both
SF days and BF days, while CI-SF and CI-BF only

Table II. Parameter values and evaluation coefficients of three
parameter solutions with best performances on all days, SF days,

and BF days, respectively

Parameter solutions Best BF Best SF/Best all
Parameter values and
evaluation coefficients

Parameter values CN �18Ð4% �14Ð9%
ESCO 0Ð90 0Ð98
Surlag 0Ð58 0Ð97

ALPHA BF 0Ð87 0Ð93
SOL AWC �25% �9%

CH K2 116Ð7 146Ð2
GW REVAP 0Ð14 0Ð17
GW DELAY 3Ð02 3Ð95
RCHRG DP 0Ð03 0Ð04

GWQMN 146Ð5 99Ð2
REVAPMN 64Ð33 28Ð2

NSE SF days 0Ð52 0Ð78
BF days 0Ð78 0Ð62

R2 SF days 0Ð76 0Ð79
BF days 0Ð78 0Ð73

PBIAS SF days �47% �8%
BF days 0Ð5% �7%

include SF days and BF days, respectively. Table III lists
the evaluation coefficients of the 90% CIs estimated by
BMA. If we use simulated streamflow of all days, the
estimated POC values correspond well to the expected
coverage (90%) for the observed streamflow of all days.
However, it is worth noting that CI-all does not work
well for SF days and BF days separately. POC value
of CI-all decreases to 68% for SF days while increases
to 94Ð8% for BF days. For CI-all, we split it into SF
days and BF days for comparison purpose. On SF days,
AW of CI-SF is about twice that of CI-all, while AW

Figure 4. Normalized parameter values of the thirty Pareto optimal solutions
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Table III. Properties of the 90% CIs estimated using streamflow of all days, SF days, and BF days, respectively

Evaluation coefficients Calibration period Validation period

Variables POC (%) AW (m3 s�1) POC (%) AW (m3 s�1)

All days CI-all 89Ð6 10Ð0 93Ð9 9Ð9
SF days CI-all 60Ð4 11Ð4 79Ð6 11Ð7

CI-SF 87Ð2 20Ð5 95Ð2 21Ð1
BF days CI-all 94Ð8 9Ð6 95Ð8 9Ð5

CI-BF 87Ð8 5Ð4 94Ð8 5Ð3

Figure 5. Estimated 90% CIs in year 1997 for (a) BF days derived using streamflow of all days, (b) BF days using streamflow of BF days, (c) SF
days derived using streamflow of all days, and (d) SF days derived using streamflow of SF days

of CI-BF is only half that of CI-all on BF days. Similar
results were obtained for the validation period. We use
year 1997 to visually illustrate the difference between
estimated CI-all, CI-SF, and CI-BF at 90% confidence
level (Figure 5). In general, CI-all overestimates the
uncertainty of model simulations on BF days, while
underestimates this uncertainty on SF days.

Discussion
The above results reveal the unbalanced performance
of SWAT for SF and BF simulations, which is simi-
lar to previous applications of multi-objective optimiza-
tion algorithms for calibrating conceptual models with
objective functions tailored for different ranges of flows
(e.g. Gupta et al., 1998; Yapo et al., 1998; Boyle et al.,
2000; Wagener et al., 2001). The very different perfor-
mances of the Pareto optimal solutions lead to another
important topic of model selection. Which parameter
solution should be selected for further watershed analy-
sis? By combining the criteria suggested by Santhi et al.
(2001) and Moriasi et al. (2007), model simulation can

be judged as satisfactory if NSE >0Ð50, R2 > 0Ð60, and
PBIAS <25% for streamflow. According to these crite-
ria, Best BF should not be adopted because of its large
PBIAS on SF days (Table II). Among the 30 Pareto opti-
mal solutions, 19 meet these requirements for calibration
period. For the validation period, five solutions are satis-
factory. If we increase the statistical criteria standards,
less model simulations will be selected. Finally, only
one model simulation with the best statistical perfor-
mance coefficients can be selected. However, this scheme
neglects whether the hydrologic model can reasonably
approximate the rainfall–runoff processes essential for
practical water resources management. The ranges of
evapotranspiration (ET), soil water (SW), PERC, SR,
GW, overland sediment load, and BF ratio simulated
by different parameter solutions are shown in Table IV.
These values are averaged over multiple years and across
the entire watershed. For the 30 Pareto optimal solu-
tions, wide ranges of simulated variables are observed.
For example, SW ranges between 141 and 263 mm and
sediment load ranges from 0Ð8 to 3Ð2 t/ha. Even when we
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Table IV. Ranges of simulated variables of interest by different parameter solutions

Variables
Parameter solutions

ET
(mm)

SW
(mm)

PERC
(mm)

SR
(mm)

GW
(mm)

Sediment
(t/ha)

BF
ratio

Thirty Pareto
optimal solutions

(636, 778) (141, 263) (272, 431) (124, 208) (156, 257) (0Ð8, 3Ð2) (0Ð43, 0Ð65)

Nineteen solutions
with satisfactory
performance in
calibration
period

(636, 751) (146, 243) (303, 431) (140, 208) (158, 257) (1, 3Ð2) (0Ð43, 0Ð65)

Five solutions with
satisfactory
performance in
calibration and
validation period

(654, 751) (146, 239) (303, 406) (150, 173) (171, 231) (2Ð2, 2Ð6) (0Ð50, 0Ð58)

reduce the number of satisfactory solutions to five, pro-
nounced variability still exists. For example, the range
of SW values simulated by the five parameter solutions
is between 146 and 239 mm. Auxiliary information of
these water fluxes and storage variables and sediment
load is required to conduct physically oriented calibration
and evaluation of the performance of different param-
eter solutions on approximating watershed dynamics.
Practically, limited data availability may hinder physi-
cally oriented calibration and evaluation. In addition, the
limitations of model structure make it very difficult to
achieve good approximation of all the rainfall–runoff
processes (Wagener and McIntyre, 2005). Therefore,
purpose-oriented calibration, which calibrates hydrologic
models to support a specific management decision pro-
cess, may be a practical choice. For example, the model’s
performance on SF simulation should be emphasized if
the major purpose of model application is to evaluate
sediment load, because SF is the major driver of soil ero-
sion. Recent research (e.g. Herbst et al., 2009a, 2009b)
showed that self-organizing map can be used to classify
modelled streamflow time series and analyse diagnostic
signatures of model behaviour, which could potentially
serve as tools for decision-makers select model realiza-
tions according to the purpose of the model applica-
tion. However, it is worth noting that the purpose-driven
model calibration may sacrifice the hydrological real-
ism (Wagener and McIntyre, 2005). Overall, the results
obtained in this study illustrate the weakness of rely-
ing on statistical criteria and streamflow data to calibrate
SWAT model. Diagnostic approach to model evaluation
and identification that has been extensively presented
and discussed in previous research (e.g. Wagener, 2003;
Wagener et al., 2003; Wagener and McIntyre, 2005;
Gupta et al., 2008) should be explored in the future appli-
cation of SWAT. The new calibration scheme designed in
this study is expected to serve as a useful tool to facilitate
the implementation of the general framework described
by Gupta et al. (2008) towards better diagnostic analysis
of SWAT.

For uncertainty analysis, it is also important to dif-
ferentiate the performances of SWAT on SF and BF
simulations. The major reason for the unbalanced per-
formances of CI-all on SF days and BF days is the
difference between the residual characteristics associ-
ated with SF days and BF days. For example, during
calibration period, the average absolute residual values
from the thirty Pareto optimal solutions range between
4Ð57 and 5Ð75 m3 s�1 for SF days while between 1Ð09
and 1Ð26 m3 s�1 for BF days. The mechanisms that con-
trol SF and BF are very different in SWAT. However,
means to represent the residual characteristics and model
mechanisms that are associated with BF and SF simu-
lations into Markov Chain Monte Carlo algorithms and
meaningful probabilistic function forms still deserves fur-
ther research. Dynamic Bayesian-based model averaging
methods (e.g. Marshall et al., 2007) that can differentiate
model performance over different temporal periods (e.g.
BF or SF dominated periods) could potentially serve as
tools to improve uncertainty analysis of hydrologic mod-
elling.

Summary
A new calibration scheme by incorporating EMO was
developed to simultaneously calibrate SF and BF
simulations of SWAT. The application of this scheme
demonstrated pronounced trade-off between SWAT’s per-
formance on SF and BF simulation. The wide ranges of
simulated major water fluxes and storage variables asso-
ciated with different Pareto optimal solutions indicate the
importance of using auxiliary information on the physical
water cycle to assist in model selection. Uncertainty anal-
ysis without differentiating SF and BF simulations may
lead to unreasonable uncertainty estimation with respect
to SF and BF. The BMA analysis results show that, if
all streamflow data are used, uncertainties associated with
low flows on BF days and high flows on SF days are over-
estimated and underestimated, respectively. When apply-
ing SWAT for water resources management, it is impor-
tant to conduct diagnostic analysis of the agreement of
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SWAT behaviour and actual watershed dynamics, despite
using statistical criteria calculated based on streamflow
for model selection. The combination of multi-objective
optimization and BF separation method can serve as a
useful tool to explore the trade-offs between SF and BF
simulations and provide candidates for model identifica-
tion and uncertainty analysis.
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