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PROGRESS TOWARD EVALUATING THE

SUSTAINABILITY OF SWITCHGRASS AS A
BIOENERGY CROP USING THE SWAT MODEL

L. Baskaran,  H. I. Jager,  P. E. Schweizer,  R. Srinivasan

ABSTRACT. Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a
regional scale. To quantify feedstock production, we compared lowland switchgrass yields simulated by SWAT with estimates
from a model based on empirical data for the eastern U.S. The two produced similar geographic patterns. Average yields
reported in field trials tended to be higher than average SWAT‐predicted yields, which may nevertheless be more
representative of production‐scale yields. As a preliminary step toward quantifying bioenergy‐related changes in water
quality, we evaluated flow predictions by the SWAT model for the Arkansas‐White‐Red river basin. We compared monthly
SWAT flow predictions to USGS measurements from 86 subbasins across the region. Although agreement was good, we
conducted an analysis of residuals (functional validation) seeking patterns to guide future model improvements. The analysis
indicated that differences between SWAT flow predictions and field data increased in downstream subbasins and in subbasins
with higher percentage of water. Together, these analyses have moved us closer to our ultimate goal of identifying areas with
high economic and environmental potential for sustainable feedstock production.

Keywords. Bioenergy, Functional validation, River flow, Sensitivity analysis, Sustainability, Switchgrass, Water quality.

ong‐term sustainability of the nascent bioenergy in‐
dustry is influenced by several factors. These in‐
clude economic feasibility and concerns over
environmental impacts (Simpson et al., 2008;

Simpson, 2009). Switchgrass (Panicum virgatum L.) is a na‐
tive grass that has high potential as a sustainable dedicated
energy crop (Sanderson et al., 1996; McLaughlin and Kszos,
2005). According to Hall (1997), biomass productivity is an
important aspect determining the long‐term economic feasi‐
bility of bioenergy. Unfortunately, there are only a limited
number of field sites where dedicated energy‐crop produc‐
tion has been measured. Estimates of production for a wide
range of regions and a variety of growing conditions are es‐
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sential to provide more accurate spatial estimates of bioener‐
gy resource potential. Because they are capable of
extrapolating to new locations, mechanistic plant growth
models are well‐suited for this purpose (Williams et al., 1989;
McMaster et al., 2005; Johnson et al., 2009).

A second aspect of long‐term sustainability of bioenergy
is the protection of soil, water, and biodiversity associated
with emerging bioenergy landscapes (Graham et al., 1996).
The widespread degradation of water quality associated with
agriculture is well documented (e.g., Carpenter et al., 1998;
USEPA, 2009). It is therefore likely that cultivation of
switchgrass, a deep‐rooted perennial grass, on agricultural
lands previously supporting row crops can improve water
quality by reducing sediment and nutrient loadings to streams
(Graham et al., 1996). Projecting how changes in the agricul‐
tural landscape will influence water quality is a complex is‐
sue that requires an appropriate modeling tool capable of
representing important aspects of the question.

Quantifying energy crop production and ecological ef‐
fects on aquatic ecosystems at large regional spatial extents
requires crop and watershed modeling in response to geo‐
graphic variation in climate. Our choice of a model depended
on two factors: (1) its ability to predict both the yields of
bioenergy crops and crop residues, and (2) its ability to repre‐
sent watershed influences on water quality at regional spatial
scales. Working at a regional scale placed a number of
constraints on our choices. First, although bioenergy land
covers are the focus of our research, other land covers also in‐
fluence water quality. Therefore, we required a model that
could simulate watershed influences of natural, agricultural,
and urban land as well as and bioenergy crops. Second, we

L



1548 TRANSACTIONS OF THE ASABE

required a model capable of using spatially explicit input data
that are generally available throughout the conterminous
U.S. Third, we required a model capable of representing wa‐
tershed influences on water quality at relatively coarse spa‐
tial scales consistent with the resolution of national GIS input
datasets. The size of subwatersheds used in the modeling was
limited by the ability to process high‐resolution digital eleva‐
tion models and in the inherent resolution of satellite‐derived
spatial data. Fourth, tile drainage can adversely impact water
quality in rivers draining agricultural lands by providing a
preferential  flow pathway for nitrates (Zhao et al., 2001). The
ability to represent tile drains has been shown to improve
flow predictions in agricultural regions (Green et al., 2006).
These four requirements for a tool to quantify yields of bioen‐
ergy crops and water quality effects at regional to national
scales were addressed by the Soil and Water Assessment Tool
(SWAT). The large user community and widespread applica‐
tion and testing is another advantage of the SWAT model
(Gassman et al., 2007). Although applications of SWAT to
large, regional river basins are much less common than those
for smaller spatial areas (e.g., Vache et al., 2002; Nelson et
al., 2006), the model has been used to represent larger areas
(e.g., the Upper Mississippi River basin; Arnold et al., 2000).

This article describes our efforts to advance research from
two directions, addressing aspects of sustainability related to
energy and environment. These advances are part of a larger
framework of sustainability research designed to understand
how much bioenergy is likely to be added to agricultural
landscapes (top of fig. 1) and how these changes will affect
water quality (bottom of fig. 1). Two goals of this research ef‐
fort were (1) geographic modeling of potential production of
a bioenergy crop and (2) producing and validating SWAT pre‐
dictions of water quantity (flow). To address our first goal, we
implemented switchgrass as a perennial crop and used the
SWAT model to quantify potential growth of switchgrass in
the U.S. The results provide valuable information toward un‐
derstanding switchgrass growth potential and resource avail‐
ability over a large spatial extent. In addition, our yield
estimates can be used to predict where growing switchgrass
will be economically feasible and to forecast where switch‐
grass is likely to replace other crops in future agricultural

Figure 1. Schematic showing the process by which we propose to project
future changes in water quality. Solid boxes and checked items indicate re‐
search described in this article, and dashed boxes represent a roadmap for
future research. An economic model (POLYSYS) will use estimated
switchgrass production to forecast of future land conversion among agri‐
cultural and bioenergy crops. The Soil Water Assessment Tool (SWAT)
will estimate the resulting changes in water quality.

landscapes (top right in fig. 1). We focused our analysis on
Alamo, a lowland variety of switchgrass, in its natural range,
the eastern U.S. (Parrish and Fike, 2005).

A critical aspect of validating water quality predictions is
to ensure that the processes controlling stream flow are repre‐
sented adequately. In the second part of this article, we de‐
scribe our efforts to implement, calibrate, and validate stream
flow predictions of the SWAT model for the Arkansas‐White‐
Red (AWR) River basin. We conducted a functional valida‐
tion of SWAT flow predictions. The philosophy of functional
validation is not to “validate” or pass judgment on a model
but rather to analyze residual patterns to gain constructive
guidance for further model improvement (Jager et al., 2000).
Future research will build on these efforts to simulate and
compare water quality in current landscapes and future land‐
scapes that include switchgrass where it is economically fea‐
sible (fig. 1). Using future bioenergy landscapes projected by
the economic model (top right of fig. 1) as input, we will sim‐
ulate future water quality from the calibrated and validated
SWAT model for each region. Ultimately, this approach will
help to quantify changes in water quality in surface waters as
energy crops are added the landscape (bottom middle of
fig.�1). Only by evaluating both the energy and environmen‐
tal implications of landscape changes can informed decisions
about bioenergy policy be made, leading toward a sustainable
energy future.

METHODS
We used the ArcSWAT version of SWAT2005 for our anal‐

yses (Neitsch et al., 2005). Although the SWAT model was
used in both our characterization of potential feedstock pro‐
duction and our validation of water quantity, methods for the
two components of our larger research effort differ substan‐
tially. For example, whereas the assessment of potential pro‐
duction was easily accomplished for most of the
conterminous U.S., evaluation of SWAT‐predicted water
quantity required smaller geographic regions. Therefore, this
article focuses on water quantity predictions for one large riv‐
er basin. Methods for each of these components are described
in two sections below.

BIOENERGY FEEDSTOCK PRODUCTION

Predicting the amount of switchgrass produced requires
knowing two things: (1) where lands will be converted to
grow switchgrass, and (2) how much switchgrass will be pro‐
duced on those lands. The goal of this analysis was to address
the second question for the conterminous U.S. based on soil,
slope, and climate.

To implement the SWAT model, we delineated subbasins
for each major river basin in the eastern U.S. (New England,
Mid‐Atlantic,  South Atlantic‐Gulf, Great Lakes, Ohio, Low‐
er Mississippi, Texas‐Gulf, Arkansas‐White‐Red, Missouri,
Upper Mississippi, Souris‐Red‐Rainy, and Rio‐Grande) us‐
ing a 1 km resolution digital elevation model (DEM) based
on shuttle radar topography mission (SRTM) data (Farr et al.,
2007). We identified larger, mainstem reaches from the Na‐
tional Hydrologic Dataset (NHDPlus) (thinnercod in
NHDPlus, 2009) and superimposed this stream network on
the DEM before delineating subbasins with an average size
of 500,000 ha.
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Switchgrass yields were simulated using SWAT for hydro‐
logic response units (HRUs) within each subbasin. An HRU
is a unique combination of subbasin, land cover, soil, and
slope class. For the purpose of obtaining regional estimates
of switchgrass yield, we created two land‐cover classes with‐
in each subregion by reclassifying all land‐cover classes oth‐
er than water in the 30 m resolution 2001 National Land
Cover Dataset (Homer et al., 2004) to Alamo switchgrass.
The reclassified land cover had two classes (switchgrass and
water), which helped create a national‐scale map of potential
yield of switchgrass within its natural range. Soil characteris‐
tics were defined by the STATSGO dataset (Soil Survey Staff,
1994). We defined three slope classes, slopes of 0% to1%, 1%
to 5% and greater than 5%, based on the 1 km resolution
SRTM data. All HRUs created using the above described land
cover, soil, and slope data were used in the SWAT runs, re‐
gardless of area.

The default parameters for Alamo switchgrass (lowland
ecotype) were used in our simulations, with a few modifica‐
tions. Because switchgrass is a perennial grass, lands planted
in switchgrass were initialized as mature stands with a leaf
area index of 0.5, initial biomass of 500 kg ha‐1, and 3 m root‐
ing depth (Parrish and Fike, 2005). Each year, we assumed
that switchgrass required 1,100 physiological heat units
(degree‐days °C above a base temperature) to reach maturity.
This value is at the low end of values reported in the literature
for switchgrass. Growth parameters included radiation use
efficiency of 47 kg MJ‐1, base temperature of 12°C, and an
optimal temperature for growth of 25°C (Kiniry et al., 2005).
Growth is simulated by increasing the leaf area index over the
growing season from the initial value of 0.5 to a maximum
potential value, BLAI = 6.0 (if there is no water or nutrient
stress), followed by a decrease during senescence. To allow
for crop drying, we delayed harvesting until reaching 120%
of heat units required to reach maturity and harvested 80% of
above‐ground biomass each year.

Switchgrass is known to have low nutrient requirements,
but variability among studies and site‐to‐site variation has
prevented a consensus from emerging on best management
practices for nutrients (Parrish and Fike, 2005). We allowed
SWAT to automatically apply nitrogen fertilizer whenever
plants experienced nutrient stress that reduced growth by
more than 0.85 of its potential. Use of the automatic fertilizer
routine allowed us to account for geographic and site‐specific
differences in nutrient requirements, which are currently un‐
known.

We simulated mature, lowland switchgrass yields using
SWAT for 21 years using simulated climate. We treated the
first two years of the model run as spin‐up years and averaged
predicted switchgrass yields over the remaining 19 years.
The average switchgrass yield for each hydrologic response
unit was then mapped. To evaluate SWAT predictions of
switchgrass yield, we compared geographic patterns with
those of an empirical model developed by Jager et al. (2010)
to describe yields from published field trials (Davis, 2007;
Gunderson et al., 2008). For the lowland ecotype, field trials
were available from studies over many years at 28 locations
ranging from Texas to New Jersey. The empirical model used
to predict yield included climate variables (average and mini‐
mum annual temperature, average annual precipitation, an
interaction between average temperature and precipitation,
all in the year of harvest) as well as management variables
(harvest frequency and stand age), as described by Jager et al.

(2010). A mixed modeling approach was used to account for
spatial correlation among yields measured in the same geo‐
graphic area.

WATER QUANTITY (FLOW)
We followed a series of steps to set the SWAT modeling

environment validated toward reaching our eventual goal of
projecting changes in water quantity and quality associated
with a bioenergy landscape. These include (1) SWAT model
implementation,  (2) sensitivity analysis and calibration of
stream flow on SWAT parameters in smaller subbasins, and
(3) functional validation at a regional scale. Each of these
steps is described below.

SWAT Model Implementation
We used USGS‐defined 8‐digit hydrologic units (HUC8)

obtained from NHDPlus as subbasins instead of SWAT‐
delineated subbasins. Because SWAT requires one major
stream reach per subbasin, we used the following procedure
to derive main reaches from NHDPlus data. Within each sub‐
basin, we identified the collection of reaches sharing the larg‐
est stream order to produce one stream feature per subbasin,
as required by SWAT. To identify the main channel, we se‐
lected the collection of reaches sharing the smallest value of
an NHDPlus code (levelpathi) identifying the mouth of each
stream network. Finally, we combined the final set of reaches
in each subbasin to produce a single stream feature.

HRUs were defined by unique combinations of land‐cover
categories, STATSGO map units, and slope categories, where
only those land cover and soil units comprising more than
10% of a subbasin were included. The 2008 crop data layer
(CDL‐08) was used to define land cover, substituting 2001
NLCD for one state (New Mexico) lacking CDL‐08 data. We
assigned CDL land‐cover categories to SWAT land cover.
Because of the large spatial extent of the AWR basin, we re‐
classified a 30 m digital elevation model (DEM) to 56 m,
which also matched the resolution of the CDL land‐cover
data. Using the 56 m DEM, we categorized slope into three
categories: <2%, 2% to 5%, and >5%. Because even small
areas of steep exposed soils can lead to considerable erosion,
we included all three slope categories in the definition of
HRUs, regardless of area.

Tile drainage is common in agricultural areas of the Mid‐
western U.S., including the AWR basin. The presence of tile
drains can have important effects on water quality. To model
the geographic distribution of tile drains, we assumed that tile
drainage was present in cropland areas with poorly drained
soils and with less than 2% slope. We identified the poorly
drained soils using the dominant hydrologic group of the
STATSGO map units. Soils with a hydrologic group of C or
D are known to have slow infiltration rates (USDA, 1994) and
were selected to apply tile drainage parameters. For HRUs
with tile drainage, we assumed that tiles were located at a
depth of 1.1 m and drained over a period of 36 h.

Because flow prediction is sensitive to local variations in
precipitation,  we assembled climate data from DAYMET
(Thornton et al., 1997) to estimate climate for the center of
each subbasin over the period 1980 to 2003. Daily climate
drivers for the SWAT model included were total precipitation
(mm), minimum and maximum temperatures (°C), and solar
radiation (MJ m‐2 d‐1). Wind speed, relative humidity, and po‐
tential evaporation were simulated by SWAT.
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Table 1. Results from sensitivity analysis and autocalibration of stream flow parameters for two subbasins.

Parameter
Code Parameter Description

Sensitivity Analysis
Ranking Parameter

Variation
Method[a]

Parameter Changes for

Basin 1 Basin 2 Basin 1 Basin 2 Average

Alpha_Bf[b] Baseflow alpha factor (d‐1) 1 4 1 0.06 0.06 0.06
Blai Maximum potential leaf area index 6 8 1 1.00 1.00

Canmx[b] Maximum canopy storage (mm) 4 10 1 0.14 0.00 0.07
Ch_K2[b] Channel effective hydraulic conductivity (mm h‐1) 7 7 1 6.86 8.06 7.46

Cn2 Initial SCS CN II value 8 1 3 ‐0.34 4.73
Epco Plant uptake compensation factor 11 1 0.44 NA

Gw_Delay Groundwater delay (d) 12 2 NA 9.84
Esco[b] Soil evaporation compensation factor 2 2 1 0.80 0.01 0.41
Gwqmn Threshold water depth in the shallow aquifer for flow (mm) 5 9 2 503.76 ‐868.14

Revapmn Threshold water depth in the shallow aquifer for “revap” (mm) 3 12 2 ‐95.58 99.81
Sol_Awc Available water capacity (mm H2O mm‐1 soil) 11 3 3 2.03 ‐21.03

Sol_Z Soil depth (mm) 10 6 3 ‐3.18 24.95
Surlag[b] Surface runoff lag time (d) 9 5 1 1.79 1.00 1.40

[a] 1 = replacement of initial parameter by value, 2 = adding value to initial parameter, and 3 = multiplying initial parameter by 1 + value.
[b] Parameters chosen for calibrating across the whole region.

Sensitivity Analysis and Calibration
We performed a sensitivity analysis to identify parameters

with the largest influence on stream flow (van Griensven et
al., 2006). The analysis was conducted for each of two subba‐
sins that were headwater subbasins selected to have different
land‐cover distributions and located in different parts of the
study region. The Current River watershed (HUC 11010008)
has an upstream drainage area of 6817 km2 and is predomi‐
nantly forested (75.5% of total drainage area). The Southern
Beaver watershed (HUC 11130207) has an upstream drain‐
age area of 1780 km2 and has grassland and pasture (47.6%),
shrubland (30.5%), and agriculture (17.3%) as the dominant
land‐cover types. The results of the sensitivity analysis
helped to identify a subset of SWAT parameters with the high‐
est influence on flow.

We calibrated SWAT‐simulated monthly flows against
monthly stream flow records from USGS gauging stations
near the outlets of the two subbasins of interest. We selected
parameters that had the most influence on stream flow from
the sensitivity analysis and entered them into SWAT's auto‐
calibration routine. SWAT‐simulated monthly flows were au‐
tomatically  calibrated against monthly flows between 1985
and 1996. We measured the quality of calibration results us‐
ing the Nash‐Sutcliffe efficiency (NSE).

To apply the calibration results to the whole region, we se‐
lected parameters from the two calibrated subbasins with
similar final calibrated values (baseflow alpha factor, maxi‐
mum canopy storage, channel effective hydraulic conductiv‐
ity, soil evaporation compensation factor, and surface runoff
lag time; table 1). We averaged the optimal parameter values
from the two subbasins and used these averages for simula‐
tions of the AWR region. For other parameters, such as the
curve number, calibrated results for the two subbasins were
different, and default values were retained.

Functional Validation
After calibrating the SWAT model at a finer scale, we con‐

ducted a functional validation of flow predictions for the
AWR basin. We see this as a first step leading toward validat‐
ing water quality predictions for the current landscape. We
used a constructive approach of validation that seeks to ana‐
lyze patterns in residuals to better understand discrepancies

between model‐simulated values and field measurements
(Jager et al., 2000).

Flows were simulated by SWAT with calibrated parameter
values described above for the AWR region from 1980 to
2003 for the current pre‐bioenergy landscape. Predictions
from the first five years (1980 and 1984) were excluded from
the comparison. We identified USGS gauges closest to the
outlets of 88 of 173 eight‐digit hydrologic unit (HUC8) sub‐
basins in the AWR and obtained daily stream flow data from
1985 to 2003. Because USGS gauges were not all located ex‐
actly at the outlet of the subbasins, we estimated flow at the
outlets by assuming that the additional, ungauged drainage
area would produce the same amount of flow per unit drain‐
age area as the gauged drainage area. The percentage of
drainage area gauged ranged from 33% to 100% (median =
80%) for subbasins included in our final analysis. We ex‐
cluded two subbasins with fewer than 20 months of flow data
and an incomplete representation of different seasons. For
each of the remaining 86 USGS gauges, we compared month‐
ly average flows against those predicted by SWAT for the
same month and year.

To identify possible factors distinguishing watersheds
with better fit from those with poorer fit, we fitted a linear
model for the absolute values of residuals (monthly averages
of SWAT‐predicted minus area‐adjusted USGS flows at
HUC8 outlets). HUC8 attributes used as predictors included
(1) the number of upstream HUCs, (2) the proportion of water
as a “land” cover, (3) the proportion of agricultural cropland,
(4) the proportion of wetland, (5) average elevation, (6) the
product of annual precipitation (mm) from DAYMET and
watershed area (km2), and (7) month. Standardized coeffi‐
cients are reported, where large coefficients identify wa‐
tershed attributes associated with poorer flow predictions. In
addition, we displayed correlations between measured and
predicted flows and Studentized residuals on maps with
mainstem rivers and reservoirs depicted, allowing us to visu‐
ally identify geographic patterns. To address the question of
whether simulated and empirical flows are controlled by sim‐
ilar factors, we compared linear models for modeled and
measured flows and compared standardized coefficients for
the suite of predictors listed above.
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Figure 2. Twenty‐year average Alamo switchgrass yields (Mg ha‐1) simulated by SWAT.

RESULTS
BIOENERGY FEEDSTOCK PRODUCTION

Lowland switchgrass yields simulated by SWAT varied
from zero in the northern U.S. to over 16 Mg ha‐1 in southern
Illinois, Arkansas, western Kentucky, and Tennessee (fig. 2).
In addition to the latitudinal gradient, predicted yields in‐
creased from very low values west of the 100th meridian to
higher values farther east (fig. 2). Yields predicted across the
southern extremes of the eastern U.S. were typically between
6 and 12 Mg ha‐1 (fig. 2). The SWAT‐simulated values in fig‐
ure 2 were compared to those derived from an empirical mod‐
el, which are based on published field trials in the eastern U.S.
(Jager et al., 2010).

The geographic patterns produced by SWAT and by the
empirical data at a regional scale were qualitatively similar,
with the highest yields extending from west to east across the
mid‐latitudes,  from Missouri, Illinois, Kentucky, and Ten‐
nessee to Virginia and North Carolina. Yields decreased away
from the center. The average county yields predicted by em‐
pirical model and the SWAT model were correlated with an
R2 of 0.51 (fig. 3). However there was a bias, with the SWAT
model yields being lower than the empirical model yields.
The differences between the average county yields predicted
by the empirical model and by SWAT in the counties that
shared the prediction range of both models indicated that the
average SWAT model yields tended to be lower in most of the
regions (counties shaded in teal in fig. 4). In less than 6% of
the counties, the SWAT model predicted higher yields than
the empirical model (counties shaded in brown in fig. 4). The
differences between the empirical model and SWAT model
results were within ±4 Mg ha‐1 in 52% of the counties, and
the mean difference was 4.4. The largest differences (>6 Mg
ha‐1), indicated by the dark teal shaded counties and compris‐

ing about 28% of the counties, were in the northeastern states,
in counties along the Appalachian mountain range, and in
counties along the western end of the prediction range in the
Rocky Mountains (fig. 4). The large differences in the coun‐
ties along the mountain ranges were caused by very low
SWAT‐predicted yield, which was due to reduced growth un‐
der lower temperatures and high slopes. Such unfavorable
conditions were probably not represented among field trials,
which are typically conducted near land‐grant universities in
flat areas suitable for agriculture. The SWAT model did not
predict switchgrass yield in the northern latitudes because of
the inability of plants to accumulate the requisite physiologi‐
cal heat units to maturity (1,100 physiological heat units ‐
degree‐days °C above a base temperature). This caused the
empirical model yields to far exceed SWAT‐simulated yields
in the northeastern U.S. We conclude that the differences
should not necessarily be attributed to problems in the model,
as the empirical data and empirical model fitted to them are
also imperfect (Jager et al., 2010), but this comparison adds
to our understanding of geographic patterns.

WATER QUANTITY (FLOW)
Results are presented below for each step of the process,

which began with sensitivity analysis and calibration per‐
formed in smaller subbasins and ended with functional val‐
idation on a regional scale. This analysis was conducted for
the Arkansas‐White‐Red River basin, which is outlined in
figure 4.

Sensitivity Analysis
We found that monthly flows were most sensitive to the

baseflow alpha factor (Alpha_Bf in table 1) in one subbasin and
to the curve number (Cn2) in the other. In both subbasins, the
soil evaporation compensation factor (Esco) ranked second.
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Figure 3. Correlation between average county switchgrass yield predic‐
tions from the SWAT model and the empirical model of lowland switch‐
grass yields.

Calibration
Nash‐Sutcliffe efficiencies for the two calibrated subba‐

sins with their own individual calibrated parameter values
were 0.74 and 0.78 for the calibration time period. We then
validated SWAT‐predicted monthly stream flow using data
from 1997 to 2003 for each calibrated subbasin. Validation
results measured goodness‐of‐fit as NSE = 0.75 and 0.65. Us‐

ing the five‐parameter calibration averages reduced the NSE
values to 0.63 and 0.45. Values exceeding 0.65 are considered
to be good, and those greater than 0.75 are considered to be
very good (Moriasi et al., 2007).

Flow Validation
The correlation between SWAT predictions and USGS es‐

timates for 86 HUC8s was high (0.91). A strong relationship
between area‐weighted USGS‐measured and SWAT‐
predicted monthly average flow was found (adjusted R2 =
0.8277, RMSE = 90.48 m3 s‐1, 16,589 df), with a slope near
one (standardized slope = 0.91).

Functional validation is a methodology for analyzing re‐
siduals (model ‐ field data) to expose and understand patterns
where the model (SWAT) fits field data and where fit can po‐
tentially be improved (Jager et al., 2000). To this end, we
fitted a linear model of absolute residuals (SWAT outflow mi‐
nus area‐adjusted USGS outlet flow) with attributes such as
number of dams, upstream‐downstream HUC position, per‐
cent of land cover area within an HUC, elevation, etc. The
model explained 43% of the variation in absolute discrepan‐
cies between SWAT and USGS‐measured flow. Not surpris‐
ingly, model‐data deviations increased with downstream
position (fig. 5). To a smaller extent, the percentage of water
(reservoir area) increased absolute deviation, although the
number of dams was not important (fig. 5). Other variables
(increasing percentage of wetland, month) had smaller ad‐
verse influences on SWAT model fit (fig. 5). Deviations were
smaller in HUC8s with a higher percentage of cropland
(fig.�5).

These results suggest that SWAT‐predicted flows for up‐
stream, headwater HUC8s are more accurate than those in

Figure 4. Difference between average county switchgrass yield predictions from empirical model of lowland switchgrass yields and those predicted by
the SWAT model. The Arkansas‐White‐Red river basin is outlined in black.
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Figure 5. Standardized coefficients in the linear model for absolute value
of the residual (SWAT outflow ‐ area‐adjusted outlet flow) as a function
of the variables shown.

mainstem rivers. Spatially, the poorest correlations between
SWAT and USGS flows occurred in HUC8s along the mains‐
tem of the Canadian River, the upper portion of the mainstem
Arkansas River, and in one high‐elevation headwater HUC8
on the Arkansas River, approximately 25% of which was un‐
gauged (fig. 6). This is apparent when looking at the lowest
correlations (light shading in fig. 6) and highest magnitude
Studentized residuals. Visually, the presence of large reser‐
voirs did not seem to correspond with larger‐magnitude devi‐
ations. Note that in all cases, SWAT‐simulated flows fell
within 1.6 SD of those estimated from USGS data.

To further explore seasonal patterns, we examined the dis‐
tribution of residuals for each month (including multiple
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Figure 7. Seasonal distribution of Studentized residuals. Replicates are
years and HUC8 watersheds. The box encloses the inter‐quartile range,
including horizontal lines for the mean (dotted) and median (solid).
Whiskers indicate the 10th and 90th percentiles, and values outside this
range are shown individually as points.

years and HUC8 watersheds). The Studentized residuals gen‐
erally bracketed zero but showed a seasonal pattern, with
higher deviations (overprediction of flow) in summer than at
other times (fig. 7). One possible explanation for this would
be underprediction of evapotranspiration. Another explana‐
tion might be water storage in reservoirs during summer
months.

Our comparison of HUC8 influences on SWAT‐predicted
and USGS‐measured outlet flows suggests that similar fac‐
tors influence both (fig. 8), although simulated upstream in‐
fluences on SWAT‐predicted flows are greater than those
reflected in measured flows.

Figure 6. Correlations between SWAT‐predicted and USGS‐measured outlet flows. Studentized residuals (SD from mean) for monthly outlet flows for
each HUC8 are labeled on the map.
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Figure 8. Comparison of influences on estimated monthly flows at HUC8
outlets (USGS flow) and those predicted by the SWAT model.

DISCUSSION
In this article, we compared regional‐scale empirical data

with SWAT predictions for switchgrass production and river
flow with the goal of quantifying two important aspects of
bioenergy sustainability (energy production and water quality).
Our productivity estimates suggested that the highest yields of
this perennial energy crop are possible in the middle latitudes
of the eastern U.S. Low yields simulated for higher latitudes re‐
flect the fact that this analysis is for a lowland ecotype. Geo‐
graphic patterns in SWAT‐simulated yields and those predicted
by a model fitted to empirical data by Jager et al. (2010) were
similar, but SWAT‐simulated switchgrass yields tended to be
lower, especially in the northern states and also mountainous re‐
gions. SWAT‐simulated yields could be increased to match
those of empirical data by calibrating growth parameters, such
as the maximum potential LAI. However, it is important to note
that yields obtained in field‐scale trials are often higher than
those achieved at production scales.

We see several future directions for this research on the
production of switchgrass as a bioenergy crop. First, future
efforts will examine yields for the upland ecotype, which is
grown successfully at higher latitudes. Changes in plant
growth parameters will be needed to accomplish this, and
subsequent comparisons with field‐trial data will be useful.
Second, a functional validation of SWAT‐simulated yields for
both ecotypes would be useful to help understand model‐data
discrepancies, keeping in mind that field data are also fraught
with uncertainty. Third, modeling the uncertainties in the em‐
pirical estimates, for example by mapping prediction errors,
and evaluating SWAT model fit in the context of uncertainty
in empirical data are needed to provide context.

One future role of SWAT‐simulated potential switchgrass
yields such as those presented here can be as input to econom‐
ic models of the agricultural and bioenergy sector (fig. 1).
Adequate yield is a necessary, but not sufficient, condition for
the economic viability of switchgrass as a bioenergy crop.
Clearly, producing switchgrass is not profitable in areas
where yields are inadequate. If yields are adequate, then other
factors not addressed here come into play, such as the cost of
producing switchgrass and the relative profitability of alter‐
native crops. For example, economic studies have suggested
that switchgrass would require a crop prices between $43 per
dry Mg (in 1989 dollars; Turhollow, 1994) and $88 per dry
Mg (Jain et al., 2010). The availability of geographic dis‐
tribution of potential yields in all regions can help in the eco‐
nomic analysis of resource potential for bioenergy crop
production (Walsh et al., 2003). The potential yields pre‐
dicted by SWAT in this study can be used in economic models
such as POLYSYS to estimate where switchgrass could re‐
place other land uses based on relative economic profit.
POLYSYS allocates land in 305 agricultural statistical dis‐
tricts and contains major crops, livestock, food, and feed mar‐
kets, with initial conditions anchored to USDA baseline
economic projections (Hellwinckel et al., 2010). To demon-

Figure 9. Preliminary estimates of agricultural areas where cultivation of switchgrass may become economically feasible by 2030 in the Arkansas‐
White‐Red River basin.
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strate, mapped results from preliminary economic simula‐
tions suggest where the conversion to switchgrass would be
feasible for a crop price of $60 per dry tonne and 5% annual
increase in yield of new plantings (fig. 9). Such projections
can be input to the SWAT model to simulate future water
quality under a bioenergy landscape. These results, when
compared to the water quality in the current landscape, will
help us understand potential implications on water quality
owing to a bioenergy future (fig. 1).

The second goal of this study was to validate SWAT‐
predicted river flow. Overall, we were encouraged by the val‐
idation results, which showed good agreement across the
Arkansas‐White‐Red River basin. In our future research, we
will implement the SWAT model and conduct functional val‐
idation in other major river basins of the eastern U.S.

Our functional validation provided constructive feedback
that can be used to improve region‐wide prediction, if it is
deemed necessary. The increase in deviation downstream, as
measured by the number of upstream HUC8s, may simply re‐
sult from compounding errors in flows simulated in upstream
HUC8s. The increased deviation in HUC8s with higher per‐
centages of water, suggesting substantial reservoir area, sug‐
gests that including reservoirs (losses to irrigation and
evaporation) might improve simulation of seasonal flow pat‐
terns, although HUC8s above and below larger reservoirs
showed good agreement (fig. 6). We are encouraged by the
fact that flow prediction in HUC8s with a higher percentage
of agricultural cropland were good, suggesting that represen‐
tation of tile drains has improved our prediction of monthly
flows. Other studies have shown that representing tile drains
using SWAT improves flow prediction for agricultural wa‐
tersheds (e.g., Green et al., 2006).

Although the model could be fine‐tuned along particular
mainstem drainages, the current model structure and parame‐
ters may be adequate for the purpose of regional‐scale re‐
search focused on water quality. Our next step will be to
evaluate the availability of water quality data to compare
against SWAT water quality (nutrients and sediment con‐
centrations) on a regional scale. Previous studies have sug‐
gested that water quality, and nitrate in particular, can be
better predicted with higher‐resolution data, up to a point
(Jha�et al., 2004; Chaubey et al., 2005). The USGS maintains
the National Water Information System (NWIS), an exten‐
sive database for surface water data including time‐series
data that describe stream flow and surface‐water quality
(USGS, 2001). To compare SWAT water quality output
against empirical data, we queried the NWIS for suitable re‐
cords from gauges at the most downstream position within
watersheds. However, our validation efforts were severely
constrained by the limited availability of appropriate time‐
series data because gauge location within a watershed, water
quality parameters measured by the USGS, the number of
data records for individual parameters of interest, or the peri‐
od of data collection were rarely compatible in terms of over‐
lap with our model predictions. We plan to pursue validation
of water quality data by comparing the distribution of mea‐
surements at the level of subregions within the AWR.

This study demonstrated the use of the SWAT model as a
step toward exploring the productivity and environmental
sustainability of switchgrass as a bioenergy crop at regional
scales. As our work with modeling bioenergy landscapes
continues, we can improve our understanding of which areas
provide the highest economic and environmental potential

for biomass feedstock production. The approach we have
outlined can be applied to other major river basins to produce
guidance at a national scale.
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