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Abstract 

 
When developing a Watershed Protection Plan (WPP) or a Total Maximum Daily Load (TMDL), it is often difficult to accurately assess the 
pollutant load for a watershed because inadequate water quality monitoring data are available.  According to the Texas Commission on 
Environmental Quality (TCEQ), there are 274 bacteria impairments in Texas water bodies out of 386 impaired water bodies.  Bacteria water 
quality data are often more sparse than other types of water quality data, which hinders the development of WPPs or TMDLs.  The Spatially 
Explicit Load Enrichment Calculation Tool (SELECT) is an automated Geographical Information System (GIS) tool that can assess pathogen 
loads in watersheds using spatial factors such as land use, population density, and soil type.  A spatial watershed model was developed to 
simulate bacteria concentrations in streams resulting from non point sources using SELECT combined with a simple rainfall-runoff 
model.This model was used to simulate E. coli concentrations in the Geronimo Creek watershed.  The watershed model applies a rainfall-
driven loading function to the potential E. coli loads calculated by the output of SELECT.  The simulated runoff volumes and E. coli 
concentrations from the model were compared to actual monthly E. coli data collected at two sampling sites near the outlet of a 
subwatershed. The runoff volumes were predicted with very good agreement (Nash-sutcliffe efficiency (ENS) = 0.95, Ratio of root-
meansquare error to standard deviation (RSR) = 0.21to 0.22) for both sampling sites.  The predicted E. coli concentrations did not agree with 
measured concentrations for both sites using four different methods to determine a delivery factor for 2 sites.  The results indicate that the 
model does not include significant factors contributing to the transport of E. coli bacteria. 
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INTRODUCTION 
 

When developing a Watershed Protection Plan (WPP) or 
a Total Maximukm Daily Load (TMDL), it is often difficult 
to accurately assess the pollutant load for a watershed as a 
result of inadequate water quality monitoring data.  Bacteria 
are the most common reason for impairment of Texas water 
bodies.  According to the Texas Commission on 
Environmental Quality (TCEQ), there are 274 bacteria 
impairments in Texas water bodies out of 386 impaired water 
bodies (TCEQ 2008). Data on bacteria in water bodies is 

often more sparse than other types of water quality data, 
which hinders the development of WPPs or TMDLs.   

In order to develop WPPs or TMDLs, additional data on 
waterborne bacteria must be collected, which is costly and 
time consuming.  The bacteria load analysis for a watershed 
cannot begin until the water quality monitoring data 
collection is completed.  Generally, the timeframe for a 
substantial water quality dataset can range from a year to 
multiple years. The US EPA estimates the cost of water 
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quality monitoring of all TMDLs nationally “is expected to be 
approximately $17 million per year” (USEPA 2001b).  A 
considerable portion of effort in developing a TMDL is 
inallocating pollutant loads and identifing potential sources.  
This can be done with modeling, which can be less costly  
thanthan extensive sampling. 

Models such as Soil and Water Assessment Tool 
(SWAT) and Hydrological Simulation Program-FORTRAN 
(HSPF) have been used for bacterial modeling (Benham et al. 
2006; Sadeghiand Arnold 2002).  Other simplistic microbial 
models, such as the potential non-point pollution index 
(PNPI) and a Spatially Explicit Delivery MODel (SEDMOD), 
have been developed to rank the potential pollution impacts 
of areas from nonpoint sources primarily utilizing land use 
and geomorphology (Fraser et al. 1998; Munafo et al. 2005).   
SELECT is an automated Geographic Information System 
(GIS) tool that can assess potential E. coli loads in a 
watershed based on spatial factors such as land use, 
population density, and soil type (Teague et al. 2009).  
SELECT is able to calculate a potential E. coli load and 
highlight areas of concern where best management practices 
(BMPs) should be implemented.  The potential E. coli load in 
SELECT is calculated by distributing the contributing sources 
spatially over the entire watershed.  The population densities 
of potential contributors are determined with stakeholder 
input to accurately represent the watershed; however, 
SELECT is a worst case scenario model and assumes the 
largest amount of contribution possible from individual 
sources.   

Current bacteria models either require extensive 
monitoring data within the watershed for calibration or are 
not able to predict actual E. coli concentrations in the 
waterbody. A simple model that is able to predict actual 
bacteria concentrations in a waterbody is needed in order to 
develop TMDLs or WWPs within the State of Texas.  The 
objective of this study was to develop a model that would 
estimate the runoff volume and the E. coli concentration 
contributed by surface runoff at a sampling site drainage area 
outlet.   
 

Study Area 

Located in the Guadalupe River basin, the Geronimo 
Creek watershed is located across Comal and Guadalupe 
Counties in south central Texas (Figure 1).  The Geronimo 
Creek watershed consists of Geronimo Creek and its 
tributary, Alligator Creek.  Alligator Creek is an intermittent 
stream that typically only has flow after a rainfall event.  
Geronimo Creek is a tributary of the Guadalupe River, which 
is used for recreation by local residents and tourists.  The 
watershed is 17,868 hectares (44,152 acres) and is primarily 
agricultural with some urban area near the towns of Seguin 
and New Braunfels (Dictson 2009).   

Geronimo Creek was chosen as the study site because it 
was listed as a bacterially impaired waterbody on the 2008 
303(d) list (TCEQ 2008).  A WPP for Geronimo Creek was 
also being developed by the Texas AgriLife Extension 
Service – Department of Soil and Crop Sciences through a 
Texas State Soil and Water Conservation Board project with 
the Clean Water Act 319(h) Non Point Source Grant 
Program.  The SELECT model was used to assess the 
potential E. coli loads to develop the load allocation portion 
of the WPP.   

AWPP project collects crucial data, such as potential 
sources, population densities of animals, and the areas or land 
uses where potential sourcescould be present, from a local 
stakeholder group consisting of affected owners and citizens. 
 

 
Figure 1 Geronimo Creek watershed study area with NCDC rain gauges and 
water quality sampling sites. 

 

Stream Flow and E. coli Data 

Historical and routine stream flow and E. coli 
concentration sampling data from 1996 to 2010 were obtained 
from the Guadalupe Brazos River Authority (GBRA).  
Personnel from GBRA collected surface water grab samples 
in sterile plastic bottles. The bottles were kept on ice and 
brought to the central water testing laboratory located in New 
Braunfels, TX. E. coli in the water samples were enumerated 
using EPA 1603 method (USEPA 2002) within four hours of 
sample collection.The SH 123 and Haberle Road sampling 
sites are both historical sites (beginning in 1996) while 
sampling atthe other 13 samplings sites in the watershed 
began in September 2008.  Haberle Road samples were taken 
on a monthly basis beginning in September 2003 and ending 
in December 2010 resulting in 84 samples.  For the SH 123 
sampling site, monthly sampling began in October 1996 and 
ended in August 2003, but then resumed on September 2008 
until August 2010.  Out of the 105 data points taken at the SH 
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123 sampling site only 5 coincided with precipitation-induced 
runoff. Only 12 data points out of the 84 for the Haberle Road 
site samples were taken when precipitation-induced runoff 
occurred. 
 
 

MATERIAL AND METHODS 

 

E. coli concentrations were calculated using an equation 
for delivery factor originally developed by McElroy et al. 
(1976) for pollutant loading from livestock facilities: 

 C = (Y D)⁄(u R A) (1) 
Where Cis the concentration of E. coli at sampling site 

(colony forming units [CFU]/mL), Yis the daily loading rate 
of E. coli at the sampling site (CFU), Dis the delivery factor 
(dimensionless), uis the unit conversion factor (2.54×104) 
used to convert from (inm2) to (mL), Ris the daily runoff at 
the sampling site (in), and Ais the grid cell area (m2). 

Equation 1 was originally intended for livestock facilities 
but was applied to multiple non-point sources in this study 
using SELECT and ArcGIS 9.X (McElroy et al. 1976). The 
details for obtaining each of the variables in Equation 1 are 
presented below.   
 

Runoff (R) 
Daily precipitation data wereobtained at 5 sites:Canyon 

Dam, Kingsbury, New Braunfels, San Marcos, and Seguin, 
from the National Climatic Data Center (NCDC) for 1996 to 
2010.  Selection of gauges was based on long-term 
availability and consistency of the rainfall data.  The NCDC 
rain gauges shown in Figure 1 were utilized to develop a daily 
precipitation grid using inverse distance weighted (IDW) 
interpolation over the entire watershed area.  A grid cell size 
of 30 meters was selected to be consistent with the spatial 
resolution inthe SELECT model.   

 
Rainfall Event Selection 

The minimum rainfall needed to produce runoff was 
estimatedusing the NRCScurve number approach.First, the 
maximum soil water retention parameter (S) in inches was 
calculated as (Haan et al. 1994):  

 S=1000⁄CN - 10 (2) 
WhereCNis the area weighted curve number for the 

Geronimo Creek watershed.  In the NRCScurve number 
method rainfall must exceed0.2 Sbefore runoff will be 
produced.  This threshhold rainfall amount was used to 
determine the days whenrunoff-producing precipitation and a 
sampling event occurred simultaneously in the watershed. 
The model was only run on these days to prevent 
overestimation of runoff and therefore E.coli.  A 
customclassification of land use (Figure 2) produced using 
2008 National Agriculture Imagery Program (NAIP) imagery 

(USDA-FSA-APFO 2008) and a prior Texas Parks and 
Wildlife (TPWD) classification was provided by the Texas 
A&M University Spatial Sciences Laboratory (SSL). The 
watershed curve number grid (Figure 3) was developed in 
ArcGIS 9.3. byoverlaying the Soil Survey Geographic 
(SSURGO) hydrologic soil group (USDA-NRCS 2004b) with 
the land use type and using an NRCS curve number lookup 
table (Soil Conservation Service 1986). 

 

 
Figure 2Geronimo Creek watershed land use classification. 

 
The curve numbers (Table 1; Figure 3) used in the NRCS 

lookup table (Soil Conservation Service 1986) were 
determined based on the assumption of antecedent moisture 
condition (AMC) II.  The area-weighted curve number for the 
Geronimo Creek Watershed was 82.  The minimum 
rainfallneeded to produce runoff calculated using the area 
weighted curve number was 11 mm (0.44 in). 

If the daily precipitation in one of the five rain gauges 
exceeded the minimum rainfall to induce runoff (0.2 S) on a 
day that coincided with a routine E. coli sampling event, a 
precipitation grid was generated using the ArcGIS Spatial 
Analysis Extension.The inverse-distance weighting 
(IDW)technique was used to interpolate rainfall depths across 
the watershed.IDW assumes that observations closer to one 
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another are more alike than ones further apart (Zhang 
andSrinivasan 2009).   

 

 
Figure 3Geronimo Creek curve number grid. 

 
Runoff Calculation 

The runoff volume at a sampling site was calculated from 
the precipitation grid (Figure 4).  An automated tool was 
programmed into ArcGIS to calculate a runoff grid with the 
input of a rain gauge shapefile with the measured amounts of 
rainfall for each rain gauge as fields in the attribute table and 
an S grid calculated from the curve number grid.   

The runoff volume grid (Figure 4(a-e)) was calculated 
using the NRCS curve number approach with the 
equation(USDA-NRCS 2004a): 

 Q = [(P - 0.2S)
2
⁄(P + 0.8S)] A (3) 

whereQis the runoff volume (inm2), Pis precipitation (in), 
Sis the maximum soil water retention parameter (in), and Ais 
the area of a grid cell (m2).The curve number grid is 
convertedinto an S grid using Equation 2.  Equation 3 requires 
that P must exceed 0.2S before any runoff is generated; 
therefore, when cells in the 0.2 Sgrid (Figure 4(a)) contained 

negative values, they were changed to zero. (Figure 4(b)).  
The values in the grid of Figure 4(b) were squared, creating 
the numerator of Equation 3(Figure 4(c)).  The grid for the 
denominator of Equation 3 was created by adding 0.8S to P in 
each cell (Figure 4(d)).  The numerator (Figure 4(c)) was then 
divided by the denominator (Figure 4(d)), which produced the 
runoff grid for the entire watershed.  Runoff depth was then 
converted to a runoff volume per grid cell by multiplying by 
the cell area, 900 m2 (Figure 4(e)).   

 

Table 1 NRCS curve number lookup table. 

Land Use Type 
Hydrologic Soil 

Group 

Curve Number 

Open Water 

A 100 

B 100 

C 100 

D 100 

Forest 

A 25 
B 55 
C 70 
D 77 

Urban 

A 89 
B 92 
C 94 
D 95 

Rangeland 

A 39 
B 61 
C 74 
D 80 

Managed Pasture 

A 49 
B 69 
C 79 
D 84 

Cultivated Crops 

A 65 
B 75 
C 82 

D 86 

 
Next the automated tool calculates the runoff volume 

accumulation grid for the watershed shown in Figure 4(f-g).  

The inputs to the tool were the runoff volume grid and a 30 × 
30 meter Digital Elevation Model (DEM) (USGS 2009).The 
result of the flow accumulation is the total amount of runoff 
volume going through a specific grid cell.  The runoff volume 
fromeach sampling site was estimated as the runoff volume 
(in)at the outlet of the drainage area. 
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Figure 4 Flow chart illustrating the calculation of accumulated runoff volume. I – rainfall grid, II – 0.2S grid, III – 0.8S grid, IV –DEM,(a) Subtract 0.2S from 
rainfall grid, (b) Convert negative values to zero, (c) Square corrected grid, (d) Add 0.8S to rainfall grid, (e) Divide grid created from (c) by grid created from (d) 
then multiply result by 900 m2 to create a runoff volume grid, (f) Compute flow direction from DEM grid, (g) Compute flow accumulation from flow direction 
grid using the runoff volume grid as the accumulation weight. 
 

Potential E. coli Load (Y) Estimation Using SELECT 

Potential E. coli loads for Geronimo Creek were 
predicted using SELECT and stakeholder input for stocking 
rates and potentialsources. A custom land use classification 
(Figure 2) provided by the Texas A&M University SSL was 
used to distribute sourceson land use types that were 
determined to be suitable for a specific source.   

Twenty-one subwatersheds were delineated using the 
SWAT model.  The stream channel was determined with the 
SWAT model using the DEM.  The fecal production rates 
used in the model,based on EPA guidance, are offecal 
coliform (USEPA 2001a).  These rates were converted from 
fecal coliform to E. coli using aratioof 0.63 fecal coliform to 
E. colibased on USEPA’s regulatory standardsin recreational 
waters.  The regulatory standard for fecal coliform is200 

organisms per 100 mL and is 126 organisms per 100 mL for 
E. coli (USEPA 2003).   

In the Geronimo Creek watershed, relevant livestock 
sources were goats, horses, and cattle.  Wildlife sources were 
deer and feral hogs.  Domestic sources were dogs and on-site 
wastewater treatment systems (OWTS).For livestock and 
wildlife, the number of animals wasestimated usinganimal 
densities and stakeholder input. The animals were distributed 
evenly across suitable habitats and a fecal production rate was 
then applied per animal. For instance, stakeholders 
recommendedstocking rates forcattle of 8 and 4 hectares (20 
and 10 acres) per animal should be applied to Comal and 
Guadalupe Counties, respectively, and should be applied to 
the land use types of rangeland, forest, and managed 
pasture.Thedensity ofhorses was estimatedto be 53 hectares 
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(132 acres) per animal with a population of 124 horses 
distributed overrangeland areas.  Since goats were typically 
raised on goat farms, stakeholders estimatedthat 200 goats of 
the total watershed population of 750 animals should be 
distributed evenly in the watershed on rangeland, forest, and 
managed pasture.  The remaining animals were concentrated 
to specific watersheds thatcontained known goat farms witha 
specificnumber of animals. 

White-tailed deer had a population density of 4 hectares 
(10 acres) per animal (Lockwood 2005).  The suitable habitat 
determined for deer were forest and rangeland with at least 8 
hectares (20 acres) of contiguous terrain available.  Feral hogs 
had a population density of 11 hectares (26 acres) per animal 
and were only distributed on suitable habitat (forest, 
rangeland, managed pasture, and cultivated crops) within 100 
meters of the main stem of Geronimo Creek which is 
perennial.  Feral hogs were not distributed around Alligator 
Creek because it is an intermittent creek and is an unsuitable 
habitat for feral hogs.  

Household data from the 2000 US Census (USCB 2000) 
was used to calculate a dog density of 1 dog per household.  
The potential E. coli load for OWTSs was calculated by 
Espey Consultants (Ling and McFarland 2011) using spatially 
distributed point data of each household collected from 911 
address data. Households within Certificate of Convenience 
and Necessity (CCN) areas, which were on city sewer lines, 
were removed to elimate households being serviced by a 
wastewater treatment facility (WWTF).  A failure rate for the 
OWTS was determined using SSURGO soil limitation classes 
and the age of the treatment system to calculate the 
percentage of E. coli contributed to the watershed due to 
septic failure.  A fecal production rate was applied to each 
household for dogs and OWTS.   

SELECT divided the watershed into a raster grid with a 

30 × 30 meter cell size thus the potential load was calculated 
over the entire watershed at this resolution.  The individual 
raster files for each source were added together spatially to 
create a total load raster file (Figure 5) for the watershed.The 
total load raster file (Figure 5) estimated the potential E. coli 
load for the entire watershed based on a worst-case scenario 
and assumed the entire load calculated reaches the water 
body. 

Another part of the automated tool programmed in 
ArcGIS 9.3. was to calculate the E. coli load actually reaching 
a specific grid cell in the watershed (Figure 6).The inputs to 
the tool were the runoff grid, the total load raster from 
SELECT, and the DEM.  The first step to estimate the  

 
Figure 5 Total potential E. coli load calculated using SELECT for the 
Geronimo Creek watershed. 

 

E. coli load reaching the sampling site was to only 
consider the E. coli load grid cells that had runoff generated.  
Therunoff volume grid generated from each precipitation 
event was converted to a Boolean runoff grid, where the grid 
cells with values greater than 0 precipitation were converted 
to 1 (Figure 6a).  A SELECT runoff grid was estimated for 
each runoff event by multiplying the SELECT grid by the 
Boolean runoff grid, so that the cells with no runoff had a 
contributing E. coli load of zero (Figure 6b).  The load 
accumulation was calculated using the SELECT runoff grid 
as an input weight and the DEM shown in Figure 6(c-d).  The 
output of flow accumulation would then represent the amount 
of E. coli load that would flow through each cell considering 
the upslope cells (Figure 6d).  The flowaccumulation at a 
sampling site would then estimate the E. coli load reaching 
that site. 
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Figure 6 Flow chart illustrating the calculation of the contributing E. coli load. (a) Convert runoff values greater than zero to one, (b) Multiply converted runoff 
and SELECT load to compute contributing load, (c) Compute flow direction, (d) Compute flow accumulation using flow direction with contributing load as 
accumulation weight 
 

Calculation of Observed and Predicted Runoff 

Volumes 

Two methods for calculating flow duration curves 
(FDCs) were used at eachsampling site, Haberle Road and SH 
123, one method using instantaneous monthly samples and 
the other using SWAT simulated daily flow rates.  SWAT-
simulated FDCswere developed using simulated daily 
flowrates from 1998 to 2009.  The observed FDCs were 
developed using instantaneous observed flowrates from 
sampled 1996 to 2003.  The SH123 dataset had a break in 
sampling from 2008 to 2009 The Haberle Road dataset had a 
break in sampling from 2003 to 2009. 

To account for the volume of water present in the stream 
before the runoff event, three methods were used to add base 
flow to the predicted runoff volume calculated from the 
FDCdeveloped using instantaneous flows: (1) adding the 75% 

exceedence flow calculated from the FDC developed using 
instantaneous flows, (2) adding the 75% exceedence flow 
calculated from the FDC using SWAT simulated flows, and 
(3) adding the maximum instaneous flow or 100% 
exceedence flow developed using instantaneous flows.  The 
75% exceedence flow using instantaneous flows was 0.06 
m3/s (2.2 cfs)for SH 123 and 0.23 m3/s (8.1 cfs) for Haberle 
Road.  The 75% exceedence flow using SWAT simulated 
flows was0.32 m3/s (11.35 cfs) and 0.40 m3/s (14.29 cfs) for 
SH 123 and Haberle Road, respectively.  The 100% 
exceedence flow using instantaneous flow rates for SH 123 
and Haberle Road were 0.028 m3/s (1.0 cfs) and 0.096 m3/s 
(3.4 cfs), respectively.Observed and stream flows and base 
flows (cfs)were converted to a runoff volume (m3) by 
multiplying by the watershed response time using a 
combination of methods (Table 2): SWAT calculated time of 
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concentration (tC), SCS method lag time (tL) calculated using 
the tC, SCS method calculated tCand SCS method calculated tL 
using SCS method calculated tc. SWAT calculatedtC for each 
hydrological response unit (HRU).  All HRUs in a subbasin 
were averaged to obtain subbasintC.  ThetCs for the subbasins 
containing the main channels of Geronimo and Alligator 
Creeks were added together starting at the upper portion of 
the watershed and ending ateither the SH 123 or Haberle 
Road sampling sites.  The SWAT calculated tC was converted 
to a tL by using a method developed by the SCS (Haan et al. 
1994): 

tL= 0.6tC (4) 
wheretLis the lag time (hrs) and tCis the  time of concentration 
(hrs). 

The SCS tL equation based on natural watersheds (Haan 
et al. 1994) is: 

tL= (L
0.8

 (S+1)
0.7

)⁄(1900Y
0.5

)           (5) 

whereLis the  hydraulic length of the sampling site drainage 
area (ft), Sis the average maximum soil water retention 
parameter (in), and Yis the  average land slope of the 
sampling site drainage area (%).  The hydraulic length of the 
SH 123 subbasin was determined by measuring the longest  
distance along the SWAT delineated stream channel to the 
drainage area outlet.  The stream length included the entire 
length of Alligator Creek and the length of Geronimo Creek 
from its confluence with Alligator Creek to the drainage area 
outlet.  Although the Haberle Road sampling site was located 
downstream of SH 123, there was a log jam located at SH 123 
which may haveinhibited flow from upstream of SH 123 to  

Haberle Road.  Therefore, two hydraulic lengths were 
used forHaberle Road, one for the entire upstream portion 
from Alligator Creek, and one from SH 123. 
 

 
Table 2 Times (lag and concentration) used to estimate runoff volumes in the Geronimo Creek watershed. 

Sampling Site Method Time (hrs) 

SH 123 

SCS tL from SCS tc starting from Alligator Creek 7.2 

SCS tc starting from Alligator Creek 12.0 

SWAT tc starting from Alligator Creek 6.9 

Haberle Road 

SCS tL from SCS tC starting from Alligator Creek 9.2 

SCS tc starting from Alligator Creek 7.8 

SCS tL from SCS tC starting from SH 123 2.9 

SCS tcfrom SH 123 0.97 

SCS tL from  SWAT tc from SH 123 0.58 

 
Delivery Factor (D) 

The delivery factor was calculated from Equation 1 using 
observed E. coli concentration data provided by the 
Guadalupe Blanco River Authority (GBRA) taken at both the 
SH 123 and Haberle Road sampling sites.  The delivery factor 
represents all factors influencing movement of the potential 
E. coli load into the waterbodywith the exception of surface 
runoff. Two delivery factors were calculated, one using the 

observed runoff volume, and the other from runoff predicted 
by the the ArcGIS tool, developed in this study. 

The mean of the delivery factors calculated for each 
rainfall event was determined using both anarithmetic mean 
and a geometric mean to obtain a site specific delivery ratio.  
This resulted in the calculation of eight different delivery 
factors (Table 3), four for each watershed. 
 

 
Table 3 Delivery factors used for E. coli concentration calculation. 

Sampling Site Average Observed Runoff Volume Predicted Runoff Volume 

SH 123 Mean  0.752 0.942 

Geomean 0.015 0.015 

Haberle Road Mean  0.480 0.316 

Geomean 0.065 0.059 
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Outlier Testing 

The model assumes that runoff transporting the E. coli to 
the stream was generated by rainfall occurring on the day the 
sample was taken.  An ideal sample would be one that was 
taken on a day where the preceding day had either no rainfall 
or not enough rainfall to induce runoff.  Eleven out of the 
17samples fit these criteria and were considered ideal 
samples.  Five of the remaining samples had runoff generated 
from one or more subbasins the day preceding sampling, but 
the cumulative rainfall of all subbasins was less for 
thepreceding day than the day sampled.  Of these five, there 
were two cases where runoff was generated from 
multiplesubbasins, but the cumulative rainfall for the day the 
sample was taken was at least 4.5 times greater than rainfall..  
It was decided that these 16 samples would not violate the 
model assumptions because a majority of the rainfall 
impacting runoff occurred on the day of sampling.  One 
sampling day, March 3, 2005, at the Haberle Road site did 
notmeet these criteria.  The cumulative rainfall on all 
subbasins for the preceding day was higher (55 mm, 2.01 in) 
than the day the sample was taken (29 mm, 1.13 inches).  
Precipitation grids were computed for both days, and the grid 
generated from the precipitation onMarch 3, 2005 had lower 
minimum, maximum, and mean precipitation values for grid 
cells over the entire watershed than the precipitation grid 
generated for March 2, 2005. 

The Dixon-Thompson test was applied to test 
thehypothesis that the March 3, 2005 sampling point was an 
outlier.  The Dixon-Thompson test is suitable for sample sizes 
as small as three and can test for both lowest and highest 
outliers (McCuen 2003).  However, the March 3, 2005 data 
point was the second largest observed runoff volume, so the 
sample with the highest runoff volume was not included in 
this test,reducing the sample size to 11.  The equation for the 
Dixon-Thompson High Outlier Test Statistic for sample sizes 
of 11 is (McCuen 2003):  

  (9) 
whereXnare the data are ranked from smallest to largest and 
the subscript indicates the rank of the value from smallest to 
largest.   

Assuming a normal population, the test statistic (RDT = 
0.801; Equation 9) was larger than all of the critical values 
(RC) at 5% (0.570), 2.5% (0.617), and 1% (0.670) for the 
sample size of 11.  Therefore, the March 3, 2005runoff 
volume was considered an outlier by the Dixon-Thompson 
test.  The point March 3, 2005 was removed from the Haberle 
Road data set.  The largest runoff volume was not removed 
from the dataset because there was not a substantial amount 
of rainfall the day before the sample was taken as there was 
with the March 3, 2005 sampling day.   

 
 

Statistics 

The accuracy of the model was evaluated using the Nash-
Sutcliffe efficiency (ENS), root mean square error (RMSE), 
and RMSE-observations standard deviation ratio (RSR). 
Legates and McCabe (1999) recommend including at least 
one relative error measure (ENS or R

2) and at least one 
absolute error measure (RMSE or mean absolute error) for a 
complete assessment of model performance.According to 
Nash and Sutcliffe (1970) the ENS value is an index of 
agreement or disagreement between observed and predicted 
values.  ENS is computed as (Nash and Suttcliffe 1970):  

  (6) 

whereOiis an observed value, Piis the corresponding  

predicted values,  is the mean of the observed values, and 

nis the number of data points. 
The ENS value ranges from -∞ to 1, where negative values 

are considered a biased model and values between 0 and +1 
are considered an unbiased model (McCuen et al. 2006).  
Model efficiencies were classified similar to Moriasi et al. 
(2007) and Parajuli et al. (2009) as very good (ENS = 0.75 to 
1), good (ENS= 0.5 to 0.74), fair (ENS = 0.25 to 0.49), poor 
(ENS = 0 to 0.24) and unsatisfactory (ENS< 0.0).   

RMSE is an error index used in model evaluation and is 
valuable because the error is indicated in the units of the 
constituent of interest (Moriasi et al. 2007).  RSME values 
close to 0 indicate a perfect fit but values half the standard 
deviation are still considered low (Singh et al. 2004).  The 
equation for RMSE is: 

  (7) 

RSR is a model evaluation statistic that standardizes 
RMSEwith the observed data standard deviation (Moriasi, et 
al. 2007): 

  (8) 

The value of RSR ranges from 0, which is the optimal 
value and indicates a perfect model, to a large positive value 
(Moriasi et al. 2007).  Model efficiences are classified by 
Moriasi et al. (2007) as very good (RSR = 0.00 to 0.50), good 
(RSR = 0.51 to 0.60), satisfactory (0.61 to 0.70), and 
unsatifactory (RSR> 0.70).   

Moriasi et al. (2007) states that the model evaluation 
guidelines for both ENS and RSR values apply to a continuous, 
long-term simulation for a monthly time step.  The guidelines 
should be adjusted based on a multitude of factors including 
quality and quantity of measured data, single-event 
simulation, evalution time step, model calibration procedure, 
and project scope and magnitude (Moriasi et al. 2007).   
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RESULTS AND DISCUSSION 

 
The runoff volumes were simulated for both the SH 123 

and Haberle Road sampling sites and compared to the 
instantaneous observed flows converted to a volume.  For 
both SH 123 and Haberle Road, E. coli concentrations were 
simulated using Equation 1 with both predicted and 
instantaneous observed runoff volumes.    
 

 

Runoff Volume 

SH 123 

The model predicted runoff volume at the SH 123 
sampling site with accuracies ranging from very good to 
unsatisfactory (Table 4).  Adding baseflow using the 75% 
exceedence flow from the SWAT generated FDC resulted in 
an unsatisfactory agreement for both the ENSand RSR values 
no matter which method was used to determine the travel 
time.  Baseflow added using the 75% exceedence flow from 

the FDC developed using instantaneous flows resulted in a 
very good agreement for both ENSand RSR valuesfor all travel 
time methods.  The ENSand RSR values calculated from 
volumes calculated by adding the 100% exceedence flow 
from an FDC developed using instantaneous flows resulted in 
satisfactory to very good agreement.  Overall the best fit was 
found when using the lag time based on the SCS method time 
of concentration and baseflows calculated as the 75% 
exceedence on the FDC developed from instaneous flows.   

Runoff volumes at the SH 123 site were underestimated 
for three events and overestimated for two events.  Runoff 
volumes measured at SH 123 were primarily from the fall and 
winter seasons with only one sample collected in the spring.  
Therunoff volumes for SH 123 followed the general trend of 
the observed runoff volumes and were in close agreement for 
the methods using instantaneous flow, both at 75% 
exceedence and 100% exceedence. 
 

 
Table 4 Model performances for predicting runoff volume at SH 123, n= 5, using 3 methods for determining watershed travel 
time and 3methods for determining baseflow. 

Baseflow Methods 

Travel Time Statistic 75% Exceedence 100% Exceedence 

    SWAT Instantaneous Instantaneous 

SCS tL and  ENS -1.83 0.95 0.83 

SCS tc RSR 1.68 0.22 0.41 

calculated  RMSE (m3) 6217 813 1506 

from Alligator  Observed Mean (m3) 4496 4496 4496 

Creek Observed Std. Dev. (m3) 4128 4128 4128 

SCS  ENS -1.11 0.78 0.63 

tc RSR 1.45 0.47 0.61 

calculated RMSE(m3) 8931 2902 4488 

from Alligator  Observed Mean (m3) 7495 7495 7495 

Creek Observed Std. Dev. (m3) 6882 6882 6882 

SWAT ENS -1.95 0.94 0.84 

tc RSR 1.72 0.25 0.40 

calculated RMSE (m3) 6072 872 1405 

from Alligator  Observed Mean (m3) 4307 4307 4307 

Creek Observed Std. Dev. (m3) 3955 3955 3955 

 

Haberle Road 

The model predicted runoff volumes at the Haberle Road 
sampling site with accuracies ranging from very good to 
unsatisfactory (Table 5).  The travel times originating from 
Alligator Creek calculated using both the SCS and SWAT 
methods had poor to unsatisfactory agreement for ENSand RSR 
values This implies that there was something happening in the 
watershed to prevent stream flow from above SH 123 to reach 
Haberle Road.  A log jam that occurred during the simulation 

period at SH 123 may have caused poolingat that site and 
prohibitedrunofffrom travelingdownstream.  Accuracies 
improved significantly when travel times were calculated 
beginning from SH123. 

The most accurate model for Haberle Road occurred 
when the lag time based on the SWAT tC calculated from SH 
123was used regardless of baseflow method selected. As with 
the SH 123 model, the overall best performance occurred 
when the 75% exceedence flow was from the FDC created 



Nat Env Sci 2012 3(1): 19-33                                                                                                                                          K. E. Borel et al. 

29 
A©ademy Journals 2012 

using instantaneous flows was used to estimate baseflow. 
Simulated runoff volumes were underestimated at 

Haberle Road with the exception of one eventduring the driest 
month (August).All other samples were taken in wetter 
months.  The dataset does not include any data points taken in 
the fall months (October and November); September is not 
considered a fall month because the weather is still similar to 

the summer weather for this region.  The dataset also has a 
gap for 2009, an extremely dry year in whichno samples 
collected had contributing runoff occurring at the same time.   

The runoff volumes estimated with the method that 
performed the best were used to calculate E. coli 
concentrations. 

 

Table 5 Model performance for estimating runoff volume at Haberle Road n = 11, using 5 methods for determining watershed 
travel time and 3methods for determining baseflow. 

Time Statistic 75% Exceedence 100% Exceedence 

    SWAT Instantaneous Instantaneous 

SCS  ENS 0.09 -0.05 -0.25 

tL RSR 0.95 1.03 1.12 

calculated RMSE(m3)  21473 23145 25205 

from Alligator  Observed Mean (m3) 17368 17368 17368 

Creek Observed Std. Dev. (m3) 23669 23669 23669 

SWAT ENS 0.12 -0.03 -0.22 

tc RSR 0.94 1.01 1.11 

calculated RMSE (m3)  18184 19613 21383 

from Alligator Observed Mean (m3) 14881 14881 14881 

Creek Observed Std. Dev. (m3) 20279 20279 20279 

SCS  ENS 0.35 0.23 0.05 

tL RSR 0.81 0.88 0.97 

calculated from RMSE (m3) 5685 6188 6857 

SH 123 Observed Mean (m3) 5423 5423 5423 

Observed Std. Dev. (m3) 7390 7390 7390 

SWAT  ENS 0.82 0.77 0.66 

tc RSR 0.42 0.47 0.59 

calculated  RMSE (m3) 1011 1133 1401 

from SH 123 Observed Mean (m3) 1837 1837 1837 

  Observed Std. Dev. (m3) 2504 2504 2504 

SWAT tc ENS 0.92 0.95 0.89 

SCS tL RSR 0.28 0.21 0.33 

calculated 
RMSE (m3) 401 317 476 

from SH 123 Observed Mean (m3) 1100 1100 1100 

  Observed Std. Dev. (m3) 1499 1499 1499 

 
Comparison to Other Studies 

Performance statistics for event-based runoff simulation, 
after base flow correction, by the spatial watershed model 
developed from this study (Tables 4 and 5)were comparable 
to those from studies using continuous process models, such 
as SWAT and HSPF for streamflow prediction.  Coffey et al. 
(2010) were able to validate daily flows using a calibrated 
SWAT model from January 2004 to February 2005 with very 
good accuracy (ENS= 0.78) in Irish catchments.  Parajuli et al. 
(2009) were able to calibrate the SWAT model in the Upper 

Wakarusa watershed for mean daily flow of a subwatershed 
with very good agreement (ENS = 0.83) and validate in two 
subwatershedswithin the calibrated subwatershed with very 
good agreement (ENS = 0.83 and ENS= 0.76).  SWAT was also 
used in simulation of a watershed with multiple karst features 
such as multiple springs, sinkholes, and losing streams 
(Baffaut and Benson 2009), validating daily stream flow 
values from 2001 to 2007 with ENSvalues ranging from 0.24 
to 0.56 for five stations.  Chin et al. (2009) predicted daily 
and monthly averaged flow for an experimental watershed 
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from 1996 to 2002 using both SWAT and HSPF.  SWAT was 
able to predict monthly and daily flows with very good (ENS = 
0.88) for monthly flows to good (ENS = 0.65) agreement for 
dailyflows.  HSPF predicted both monthly and daily flows 
with very good agreement (ENS= 0.89 for monthly and ENS= 
0.87 for daily).  Paul et al. (2004) simulated daily mean flow 
using HSPF in the Salado Creek watershed for a calibration 
period from 1991 to 1993 with good agreement (ENS = 0.55).  
These studies were chosen because they also predicted E. coli 
or fecal coliform bacteria that generally had very good to 
good agreement using the ENSvalues. 

E. coli Concentrations 

Based on the ENS and the RSR, the model predicted E. coli 
concentrations for all four methods of delivery factor 
calibration with unsatisfactory agreement at both the Haberle 
Road and SH 123 sampling sites (Table 6 and Table 7). The 
RMSE values at both sites using all four methods were higher 
than both the observed standard deviations and observed 
meansanother indication of unsatisfactory agreement between 
the observed and predicted E. coli concentrations(Table 6). 

 

Table 6 Model performance for E. coli concentrations at SH 123. 
Delivery Factor Statistic Simulated Delivery Factor Observed Delivery Factor 

Calculation   Geomean Average Geomean Average 

Observed Flow 

ENS -90 -441687 -44 -281054 

RSR 10 665 7 530 

RMSE (m3) 8 526 5 419 

Observed Mean (m3) 1.8 1.8 1.8 1.8 

Observed Std. Dev. (m3) 0.9 0.9 0.9 0.9 

Simulated Flow 

ENS -142 -656256 -71 -417698 

RSR 12 810 8 646 

RMSE (m3) 9 641 7 511 

Observed Mean (m3) 1.8 1.8 1.8 1.8 

Observed Std. Dev. (m3) 0.9 0.9 0.9 0.9 

 
 
Table 7 Model performance for estimating E. coli concentrations at Haberle Road. 

Delivery Factor Statistic Simulated Delivery Factor Observed Delivery Factor 

Calculation   Geomean Average Geomean Average 

Observed Flow 

ENS -56 -1641 -67 -3800 

RSR 8 41 8 62 

RMSE(m3)  121 653 133 994 

Observed Mean (m3) 8 8 8 8 

Observed Std. Dev. (m3) 17 17 17 17 

Simulated Flow 

ENS -4 -154 -5 -362 

RSR 2 12 2 19 

RMSE (m3) 36 200 40 307 

Observed Mean (m3) 8 8 8 8 

Observed Std. Dev. (m3) 17 17 17 17 

 
The delivery factor estimated from the geometric mean of 

all of the delivery factors back calculated using simulated 
runoff volumes performed the best for Haberle Road while 
the geometric mean of the delivery factors back calculated 
using observed runoff volume performed the best for SH 123.   

The Haberle Road site consistently performed better than 
the SH 123 site. 

The observed E. coli concentrations had values ranging 
from 1.12 to 3.2 CFU/mL for the SH 123 sampling site.  The 
method of predicting E. coli concentrations that had the 

closest range of concentrations (0.01 to 9.78 CFU/mL) to the 
observed concentration range was estimated using a the 
geometric mean the delivery factors back calculated using  
the observed runoff volumes and with the concentration 
calculated using the observed runoff volumes.  E. coli 
concentrations predicted using the delivery factor derived 
from the observed runoff volumes produced better results 
than the concentrations predicted using the delivery factor 
back calculated from the simulated runoff volumesPredictions 
ofE. coli concentrations at the SH 123 sampling site were 
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poorer than predictionsat the Haberle Road sampling site.  
One explanation may be the additional data available for 
calibration at the Haberle Road site. 

For Haberle Road the delivery factors back calculated 
using the simulated runoff volumes performed better than the 
delivery factors computed using the observed runoff volumes. 
Concentrations calculated using the delivery factor derived 
using simulated runoff volumesperformed better than 
concentrations calculated using the delivery factor back 
calculated using observed runoff volumes.  The range for the 
observed E. coli concentrations was from 0.46 to 57 CFU/mL.  
The E. coli concentrations predicted using the geometric 
mean of delivery factorscalculated with simulated runoff 
volumes and  concentrations calculated using the simulated 
runoff volumes had the closest range from 0.17 to 96 
CFU/mL of predicted concentrations to the observed 
concentrations. 

 
Comparison to Other Studies 

SWAT and HSPF have been used to predict E. 

coliconcentrations in watersheds with mixed success.  Coffey 
et al. (2010) used SWAT toto predict E. coli concentrations 
for Irish catchments that were compared to monthly grab 
samples over the period September 2005 to September 2006 
resulting in 11 observed samples.  The predicted E. coli 
concentrations were in good agreement with the observed 
concentrations having anENSvalue of 0.59.  Parajuli et al. 
(2009) estimated fecal coliform bacteria concentrations using 
the SWAT model with unsatisfactory to fair agreement for 
calibration, validation, and verification watersheds.  The 
calibration watershed was in poor agreement with anENSvalue 
of 0.20 and the validation watershed had anENSvalue of 0.31 
which resulted in a fair agreement.  The verification 
watershed had an unsatisfactory agreement with an ENSvalue 
of -2.Baffaut and Benson (2009) used the SWAT model to 
predict fecal coliform bacteria concentrations calibrated and 
validated against monthly or bi-monthly grab sample 
concentrations for the James River Basin, a karst watershed.  
The SWAT model was calibrated for four different sampling 
sites resulting inENSvalues ranging from -6 to 0.11 (Baffaut 
and Benson 2009).  Chin et al. (2009) predicted fecal coliform 
bacteria concentrations using both the SWAT and HSPF 
models for an experimental watershed.  SWAT performed 
better than HSPF with anENSvalue of 0.73 compared to 
anENSvalue of 0.33 for HSPF.  Paul et al. (2004) did not 
calibrate the HSPF model due to a lack of observed fecal 
coliform bacteria data.  HSPF was able to simulate in-stream 
fecal coliform concentrations with good agreement butwas 
unableto captureextreme concentrations (Paul et al. 2004). 

 

 

 

Uncertainty 

Uncertainty is an important issue regarding water quality 
modeling because models are increasingly used to guide 
decisions regarding water resource policy, management, and 
regulation (Beck 1987; Sharpley et al. 2002; Harmel et al. 
2006; Parajuli et al. 2009).  Uncertainty in measured water 
quality data is introduced during streamflow measurement, 
sample collection, sample preservation/storage, and 
laboratory analysis (Harmel et al. 2006).  Modeling bacteria 
transport may have one of the highest probable errors and the 
least confidence compared with modeling surface hydrology, 
sediment, and nutrients (Novotny 2003; Parajuli et al. 2009; 
Coffey et al. 2010).  One source of potential uncertainty in 
these model results is the GIS data input (Parajuli et al. 2009).  
In this study the best available data as input into the model 
including stakeholder input for land use and contributing 
bacteria source animal numbers and distribution in the 
watershed.  The other GIS input, including the DEM, soils, 
and climate data, were the best available data.  Harmel et al. 
(2006) determined the cumulative probable uncertainty for 
streamflow data ranging from3-42% for best case to worst 
case scenerios, though uncertainties in measuring in-stream 
concentrations and loads for bacteria are likely greater.  
Uncertainty and variability surrounds bacteria modeling and 
can lead to large discrepancies in model results (Coffey et al. 
2010).   

 
Potential Causes for Inaccurate E. coli Bacteria 

Modeling 

The assumption that the SELECT E. coli load is a 
constant is the most significant reason for the large 
discrepancy between the observed and simulated E. coli 
concentrations.  The SELECT E. coli load does not account 
for buildup of E. coli over multiple days because it is a 
snapshot of one day.  The E. coli load generated using 
SELECT is based on the data collected from the stakeholders 
regarding the densities of the contributing sources as well as 
the distribution of those sources for 2010.  The densities 
collected, especially regarding livestock stocking rates and 
livestock distribution on land use types, varied greatly 
seasonally and from year to year.  The land use and household 
data determining the distribution of sources were also valid 
for 2010. However, most of the E.colidata for the SH 123 
sampling site were collected between 1998 and 2002 and 
between 2004 and 2010 for theHaberle Road sampling site 
The E. coli loads generated using SELECT for 2010 may 
have been more accurate for the Haberle Road sampling site 
than SH 123 simply because less change would have occurred 
between the earliest sampling date (2004) 2010, and the date 
of the source data determination (2010).   One solution to 
improve the model would be to run SELECT for different 
years or seasons with land use and contributing source 
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densities varying from year to year or season to season.  
Another reason for the discrepancies between the observed 
and predicted E. coli concentrations was the model didnot 
account for point sources contributing E. coli directly to the 
stream.  Direct deposition of fecal material by livestock and 
wildlife was not considered in the model because E. coliwas 
considered to be contributing to the stream only through 
surface runoff.  In reality, E. colicould still be contributed to 
the stream during low flow conditions.  The E. coli 
concentrations for the Haberle and SH 123 sampling sites 
ranged from 44 to 330 CFU/100 mL and 0 to 438 CFU/100 
mL, respectively for both sites for low flow conditions.   

The model also didnot account for bacteria die-off and re-
growth occurring in the stream, soil, and in the fecal material 
itself.  During a rainfall event, sediment located in the stream 
containing bacteria can be stirred up and further contribute to 
the E. coli concentration occuring in the sample.  Coffey et al. 
(2010) elaborated that there are unknown spatial and temporal 
sources of contamination contributing bacteria and the ability 
to accurately account for all of these factors is debateable.   
 
 

CONCLUSIONS 

 

A watershed model was developed in ArcGIS to estimate 
the volume of water from runoff and the E. coli 
concentrations contributing at a sampling site.  Two sampling 
sites for the Geronimo Creek watershed were chosen, 
although there was a lack of observed hydrologic and water 
quality data coinciding with runoff events.  Observed 
streamflow was converted into a volume by multiplying by 
the sampling site outlet traveltime.  A base flow volume was 
added to the predicted runoff volume by multiplying base 
flow by the sampling site outlet travel time.  A model 
calibration using four different methods was applied using a 
delivery factor for the predicted E. coli concentrations.   

The model results for the runoff volume were in very 
good agreement (ENS = 0.95, RSR = 0.21) for the Haberle 
Road sampling site and in very good agreement (ENS = 0.95, 
RSR = 0.22) for the SH 123 sampling site.  The RMSE values 
were less than half of the standard deviation showing a good 
agreement between the observed and predicted runoff 
volumes.  The E. coli concentration results were in 
unsatisfactory agreement for both samping sites using all 
methods. The concentrations calculated with the geometric 
mean delivery factor performed the best for both sites.  The 
Haberle Road sampling site performed consistently better for 
all methods than the SH 123 sampling site.  More temporal 
data points are needed to calibrate and validate the model 
properly to show if it is able to consistently and accurately 
predict runoff volumes and E.coli concentrations. 

The model was unable to accurately predict the E. coli 
concentrations occuring in stream.  One potential reason for 
the model inaccuracies for predicting E. coli concentrations is 
applying the E. coli load resulting from SELECT as a 
constant.  This may be overcome by varying the SELECT E. 

coli loads for different years and/or seasons.  Direct 
deposition was not considered in the model although E. 

colimaycontribute into the stream during periods of low flow 
conditions.  Bacteria die-off and re-growth occuring in the 
stream, soil,and fecal material werenot considered in the 
model,though such inclusion could potentially increase the 
accuracy of the model at predicting E. coli concentrations.  
There are other unknown factors that contribute to E. coli 
bacteria contamination in streams, which make predicting E. 

coli concentrations with a model difficult.  Although the 
model did not accurately predict E. coli concentrations, it can 
be modified in multiple ways to increase the model accuracy 
by varying the E. coli concentration yearly and seasonally, 
accounting for direct deposition, and accounting for die-off 
and regrowth. 
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