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Nonpoint source pollution from agriculture is the main source of nitrogen and phosphorus in the stream
systems of the Corn Belt region in the Midwestern US. This region is comprised of two large river basins,
the intensely row-cropped Upper Mississippi River Basin (UMRB) and Ohio-Tennessee River Basin
(OTRB), which are considered the key contributing areas for the Northern Gulf of Mexico hypoxic zone
according to the US Environmental Protection Agency. Thus, in this area it is of utmost importance to
ensure that intensive agriculture for food, feed and biofuel production can coexist with a healthy water
environment. To address these objectives within a river basin management context, an integrated
modeling system has been constructed with the hydrologic Soil and Water Assessment Tool (SWAT)
model, capable of estimating river basin responses to alternative cropping and/or management strategies.
To improve modeling performance compared to previous studies and provide a spatially detailed basis for
scenario development, this SWAT Corn Belt application incorporates a greatly refined subwatershed
structure based on 12-digit hydrologic units or ‘subwatersheds’ as defined by the US Geological
Service. The model setup, calibration and validation are time-demanding and challenging tasks for these
large systems, given the scale intensive data requirements, and the need to ensure the reliability of flow
and pollutant load predictions at multiple locations. Thus, the objectives of this study are both to com-
prehensively describe this large-scale modeling approach, providing estimates of pollution and crop pro-
duction in the region as well as to present strengths and weaknesses of integrated modeling at such a
large scale along with how it can be improved on the basis of the current modeling structure and results.
The predictions were based on a semi-automatic hydrologic calibration approach for large-scale and
spatially detailed modeling studies, with the use of the Sequential Uncertainty Fitting algorithm
(SUFI-2) and the SWAT-CUP interface, followed by a manual water quality calibration on a monthly basis.
The refined modeling approach developed in this study led to successful predictions across most parts of
the Corn Belt region and can be used for testing pollution mitigation measures and agricultural economic
scenarios, providing useful information to policy makers and recommendations on similar efforts at the
regional scale.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Elevated concentrations of Nitrogen (N) and Phosphorus (P)
contribute to the water quality impairment of many streams and
rivers in the United States. In addition to local impairments, these
nutrients contribute to eutrophication in downstream lakes, bays
and estuaries, and are primarily responsible for hypoxia in the
Gulf of Mexico (USEPA, 2000, 2007). Under recommendations of
the Clean Water Action Plan in 1998, the US Environmental
Protection Agency (USEPA) developed a national strategy for estab-
lishing water body-specific nutrient criteria for all water bodies
(USEPA, 1998) to reduce nutrient concentrations and improve the
beneficial ecological uses of surface waters. The Mississippi
River/Gulf of Mexico Watershed Nutrient Task Force (2008) estab-
lished a goal to reduce the size of the hypoxic zone in the Gulf of
Mexico to 5000 km2, which has been documented to form on a
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Fig. 1. 8-Digit and 12-digit Hydrologic Unit Codes (HUCs) or watersheds within a
small part of the study region within the US Corn Belt.
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seasonal basis in most years since 1985 (Rabalais et al., 2007;
Turner et al., 2008). This will require substantial reductions in
nutrient loadings from the Misssissippi/Atchafalaya River basin
(MARB) and especially from its most upstream and intensively cul-
tivated region, the 492,000 km2 Upper Mississippi River Basin
(UMRB) and the 528,000 km2 Ohio-Tennessee River Basin (OTRB),
which form the ‘Corn Belt’ Region of the US extended across 12
States of the Midwest. The level of nutrient reduction from these
basins required to achieve the goal of 5000 km2 hypoxic zone has
been estimated at 45% (EPA-SAB, 2007).

Agricultural nonpoint source pollution is the main source of N
and P discharged to the UMRB and OTRB stream systems, primarily
via fertilizer and/or livestock manure applied to cropland or pas-
ture, although point sources are also important nutrient sources.
Specifically, these two basins contribute about 82% of the
nitrate–N (NO3–N), 69% of the total Kjehdahl nitrogen (TKN), and
58% of the total P fluxes to the Gulf despite representing only
31% of the total drainage area (EPA-SAB, 2007). On the other hand,
the UMRB and OTRB areas are the primary agricultural landscapes
of the country with substantial importance for both the regional
and national economies. Apart from the required food and feed
production from the growing of corn and soybean, there is an
ambitious target of biofuel production to be achieved by 2022,
either as grain-based ethanol or from cellulosic feedstock, which
will further increase the economic importance of the region
(USDA Biofuels Strategic Production Report, 2010). Obviously,
within this large area, trade-offs between the interdependent goals
of food and feed production, sustainable biofuel production, and
improved water quality will have significant implications for com-
modity groups, individual producers and other stakeholders in the
region. These implications should also be investigated by con-
sidering possible future changes in climate, which will influence
management planning.

Within this context, the appropriate use of process-based eco-
hydrological models for the evaluation of agricultural management
options with socio-economic and environmental impacts under
climate variability is crucial. A great advantage of such models is
their distributed nature, which is considered indispensable in
identifying and prioritizing cost-effective management actions
toward multiple targets. In order to reliably address what-if sce-
narios, however, extensive calibration of these models using mea-
sured data at multiple locations is necessary. The development and
validation of these models become even more challenging at the
regional scale, because of the considerably large input data and
computational resource requirements. Although calibration and
validation guidelines are increasingly developed to facilitate the
use of such models (Moriasi et al., 2012), manual calibration of a
distributed watershed model such as the Soil and Water
Assessment Tool (SWAT) watershed-scale water quality model
(Arnold et al., 1998; Williams et al., 2008), is difficult and time con-
suming for large-scale applications (Arnold et al., 2012).

SWAT has proven to be an effective tool for evaluating agricul-
tural management simulations for complex landscapes and varying
climate regimes (e.g., see Gassman et al., 2007, 2014; Douglas-
Mankin et al., 2010; Tuppad et al., 2011). To date, SWAT has
already been applied for several studies in the UMRB and to a les-
ser extent in the OTRB, including studies describing model perfor-
mance evaluations and calibration/validation approaches (Kannan
et al., 2008; Srinivasan et al., 2010; Santhi et al., 2008, 2014), cli-
mate change effects on hydrology and water quality (Jha et al.,
2006, 2013; Wu et al., 2012a) and evaluation of land use, best man-
agement practice (BMP) scenarios and conservation practices
(Rabotyagov et al., 2010; Santhi et al., 2014; Secchi et al., 2011;
Demissie et al., 2012; Wang et al., 2011; Wu et al., 2012b; White
et al., 2014). To maintain modeling efficiency at the regional scale
and the feasibility of manual calibration in particular, the
delineation of existing UMRB and OTRB SWAT models into
subwatersheds was based on 8-digit Hydrologic Unit Codes
(HUCs) or ‘‘8-digit watersheds’’ (USGS, 2012, 2014a). Given the
relatively large average area of an 8-digit watershed in these
regions (�3600 km2) and the fact that only one set of climate data
can be input per subwatershed in SWAT, such an approach needs
climate adjustments for each 8-digit watershed, resulting in data
inaccuracies with respect to climate spatial variability, the major
driving force of hydrological processes, water balance and subse-
quently water quality estimations across the basin. On the other
hand, the use of 12-digit subwatersheds (USGS, 2012, 2014a),
which average roughly about 85 km2 in area (each 8-digit water-
shed is comprised of about 40–45 12-digit watersheds – see
Fig. 1 as an example) provides the opportunity to more directly
and accurately capture meteorological inputs from the thousands
of available stations in the Corn Belt, which could not be used in
the model with a coarse 8-digit delineation. Any adjustments of
the available climate data to derive the ‘average’ climate of a vir-
tual station for a particular 8-digit watershed in this case is not
as representative as using directly all the available information
across the basin and assigning it to smaller areas of increased
hydrologic homogeneity. A great advantage of using a large num-
ber of smaller subbasins in a SWAT project is also the consideration
of topography in the calculations. SWAT calculates a single slope
for each subbasin based on the elevation layer inserted at the
beginning of a model’s setup and uses this value by default for
all HRUs within each subbasin. By using the more detailed 12-digit
watershed delineation, slope differentiation is more accurate
across the basin with positive expected impact on the estimation
of water balance components (e.g. surface and lateral flow), ero-
sion calculation and water quality predictions. Moreover, such a
12-digit delineation approach in this large modeling system would
obviously allow in the future for increased flexibility in defining
reservoirs, wetlands and other hydrologic elements close to their
real locations, improved representation of river water routing pro-
cesses at a small time step (daily), more accurate targeting of prac-
tices across the landscape as well as linkages to climate data and
downscaled Global Climate Model (GCM) projections across a
dense grid in a given SWAT simulation.

To be able to address all these issues in an extensive future sce-
nario research in the Corn Belt, we have constructed a SWAT-based
modeling system using 12-digit subwatersheds, which can esti-
mate nutrient loads from the UMRB and OTRB regions. The system
has already provided the flexibility to analyse a wide range of alter-
native cropping, management strategies, and/or future climate
change scenarios and their impacts on water quality and the
hypoxic zone in the northern Gulf of Mexico (Panagopoulos et al.,
2014; Kling et al., 2014). The objectives of this specific study are:
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(a) to demonstrate the first complete effort on the development of
the hydrologic and water quality component of this system by pre-
senting an efficient and effective calibration and validation
approach, appropriate for large scales, (b) to comprehensively
assess the strengths and weaknesses of SWAT to represent current
conditions across different parts of the Corn Belt given the 12-digit
delineation structure and (c) to share our experiences and provide
recommendations to overcome the shortcomings existing in large-
scale integrated modeling.
2. Materials and methods

2.1. Watersheds description

The Upper Mississippi River Basin (UMRB) is a headwater basin
of the Mississippi River and extends 2100 km from Lake Itasca in
Minnesota to just north of Cairo, Illinois, above the confluence with
the Ohio River (Srinivasan et al., 2010). It covers approximately
492,000 km2 (190,000 mi2), including large parts of Illinois, Iowa,
Minnesota, Missouri, and Wisconsin (Fig. 2). The area is referred
to as Region 07 at a ‘‘2-digit watershed’’ scale and is further com-
prised of 131 8-digit watersheds and 5729 12-digit subbasins
(USGS, 2012). The average annual UMRB rainfall within the last
four decades was 900 mm, ranging from 600 to 1200 mm across
Fig. 2. The locations of the UMRB and OTRB within the US, and the main
the basin with values generally increasing from west to east.
Cropland consists mainly of corn–soybean (C–S) rotations and
occupies almost 50% of the total UMRB area, with 75% of the land
area characterized by slopes lower than 5%. According to USEPA
SAB (2007), 43% of the nitrate load and 26% of the total phosphorus
load delivered to the Gulf of Mexico came from the UMRB during
2001–2005, even though the UMRB covers only 15% of the total
MARB drainage area. The mean annual flow of the Mississippi
River at Grafton, Illinois (Fig. 2) is 3500 m3/s, where the mean
annual river loads for N and P have been measured as 500,000 t/
y and 30,000 t/y respectively (USGS, 2013). The 70% of the N load
appears as NO3–N.

The OTRB consists of two of the six 2-digit water resource
regions that comprise the overall Mississippi River system:
Region 05 (Ohio) and Region 06 (Tennessee). The Ohio River starts
in Pennsylvania and ends in Illinois, where it flows into the
Mississippi River. The Tennessee River joins the Ohio River at
Paducah, Kentucky just upstream of the confluence of the Ohio
and Mississippi rivers (Fig. 2). The OTRB covers about
528,000 km2 (204,000 mi2) and includes a significant portion of
seven states as shown in Fig. 2. The region is comprised of 152
8-digit watersheds and 6350 12-digit subwatersheds. The basin
receives a high amount of annual rainfall, averaging nearly
1200 mm/y over the last 40 years. The dominant land use in the
watershed is forest (50%), cropland (20%) and permanent
tributaries, and monitoring site locations, within each study region.
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pasture/hay (15%). Corn, soybean and wheat are the major crops
grown (Santhi et al., 2014). Compared to the UMRB, the OTRB’s
slopes are much steeper, especially across much of the forested
Tennessee basin, with more than 60% of the total land area
characterized by slopes above 5%. The mean annual flow of the
OTRB is 8400 m3/s. Similarly to the UMRB, the OTRB contributes
0.5 Gt of N to the downstream Mississippi river on a mean annual
basis, with about 65% of this load occurring as NO3–N. Phosphorus
loads have been measured at the most downstream USGS station
equal to 48,000 t/y (USGS, 2013).

2.2. SWAT model description

The SWAT model was developed by the US Department of
Agriculture in collaboration with Texas A&M University
(Williams et al., 2008) and is continuously upgraded with
improved versions and interfaces (Arnold et al., 2010; Bosch
et al., 2010; Rathjens et al., 2014). A recent release of SWAT version
2012 (SWAT 2012, revision 615) in combination with the ArcGIS
(version 10.1) SWAT (ArcSWAT) interface (SWAT, 2013) were used
in this study. In SWAT, a watershed is typically delineated into sub-
basins and subsequently into hydrologic response units (HRUs),
which represent homogeneous combinations of land use, soil types
and slope classes in each subbasin. However, a ‘‘dominant HRU
approach’’ can also be used in which the dominant land use, soil
and slope class within a subbasin are assumed to represent the
total subbasin area. In this case, a given subbasin is synonymous
with a single HRU, which was the method used in this study to
maintain efficiency of this large scale modeling. This decision
was however driven by the extent and resolution of available data
and justification on why this schematization can be considered
appropriate is given next. The physical processes associated with
water and sediment movement, crop growth and nutrient cycling
are modeled at the HRU scale; runoff and pollutants exported from
the different HRUs are routed downstream. Simulation of the
hydrology is separated into the land and the routing phase of the
hydrological cycle, while sediment yields are estimated with the
Modified Universal Soil Loss Equation (MUSLE; Neitsch et al.,
2009), which simulates the delivered part of sediment material
(and attached nutrients) to the streams accounting for a delivery
ratio. SWAT simulates both N and P cycling, which are influenced
by specified management practices. Both N and P are divided in
the soil into two parts, each associated with organic and inorganic
N and P transport and transformations. Agricultural management
practices can be simulated with specific dates and by explicitly
defining the appropriate management parameters for each HRU.
In-field conservation practices such as contour farming, strip-crop-
ping, terraces and residue management are simulated with
changes to model parameters that represent cultivation patterns
(Arabi et al., 2008). The model is thoroughly described in the
SWAT theoretical documentation (Neitsch et al., 2009).

2.3. The auto-calibration SWAT-CUP program and the SUFI-2
algorithm

SWAT-CUP is a software package with a generic interface,
where any sensitivity or calibration/uncertainty program can
easily be linked to SWAT by manipulating the large number of text
files each project consists of (Abbaspour, 2012). SWAT-CUP offers a
semi-automatic or combined manual/automatic calibration of
SWAT projects, allowing the user to control the initial range of
parameter perturbations and seeking to accurately identify their
optimum values. Parameters can range either by a percentage from
their initial values or within predefined lower and upper bounds.
Among the algorithms included in the SWAT-CUP package 2012
(Abbaspour, 2012), the most efficient to calibrate a SWAT project
is the Sequential Uncertainty Fitting (SUFI-2) algorithm
(Abbaspour et al., 2007; Yang et al., 2008), the use of which has
been found to require fewer simulations to complete a calibra-
tion/uncertainty project (Yang et al., 2008). SUFI-2 has been suc-
cessfully used for regional auto-calibration of very large areas
that comprise large portions of entire continents (Pagliero et al.,
2014; Schuol et al., 2008a,b) and is highly recommended for the
calibration of SWAT models (Arnold et al., 2012).

In SUFI-2, an auto-calibration and uncertainty analysis study
starts with large but physically meaningful, user-defined parame-
ter ranges. Parameter uncertainties are decreased iteratively as
the algorithm evaluates the performance of the model with
updated parameter combinations. The procedure is sequential in
nature, meaning that one more iteration can always be made
before choosing the final estimates. Thus, the termination of the
optimization process provides the best estimate of parameters
and also a narrower range of parameter values for possible con-
tinuation. The degree to which various uncertainties are accounted
for in the simulation is quantified by a measure referred to as the
p-factor, which is the percentage of measured data (flows, sedi-
ments, nutrients) bracketed by the 95% prediction uncertainty
(95ppu). This is calculated at the 2.5% and 97.5% levels of the
cumulative distribution of an output variable obtained through
Latin hypercube sampling, disallowing 5% of the simulations out-
side this confidence interval. The maximum value for the p-factor
is 1 (100%), and ideally all measured data should be bracketed,
except the outliers. The second measure quantifying the strength
of a calibration/uncertainty analysis in SUFI-2 is the r-factor, which
is the average thickness of the 95ppu band divided by the standard
deviation of the measured data. The r-factor represents the width
of the uncertainty interval or the ‘degree of uncertainty’, which
should be as small as possible. Thus, the goal of SUFI-2 is to include
the majority of measured data with the smallest possible uncer-
tainty bands. Moreover, as all uncertainties in the conceptual
model and inputs are reflected in the measurements (e.g., dis-
charge), bracketing most of the measured data in the prediction
95ppu ensures that all uncertainties are depicted by the parameter
uncertainties (Abbaspour, 2012).

2.4. The SWAT UMRB and OTRB parameterization

A SWAT project requires the use of data layers representing land
use, soil and topography as well as climate and management infor-
mation, which, for the study region, are summarized in Table 1. For
building the UMRB and OTRB SWAT models, topography was repre-
sented by a 30 m digital elevation model (DEM; USGS, 2013) and
was used in ArcSWAT to calculate landscape parameters such as
slope and slope length. The delineation of the 12-digit watersheds
was performed by selecting the predefined ArcSWAT subbasins
and streams option, and then inserting the appropriate shape files
through the ArcSWAT interface. The area of a 12-digit watershed
is typically 4000–16,000 ha (10,000–40,000 ac), compared with
around 200,000–400,000 ha (500,000–1,000,000 ac) for an 8-digit
watershed. As a result, the total number of subwatersheds is 5729
in the current UMRB modeling structure versus 131 in previous
SWAT applications. Similarly, the OTRB has been delineated with
6350 12-digit watersheds relative to the 152 watersheds that
would be inserted for a coarser 8-digit schematization.

Historic daily precipitation, maximum temperatures, and mini-
mum temperatures were obtained from the National Climatic Data
Center (NCDC-NOAA, 2013) and input to the model from a total of
more than 2000 climate stations across the study region. Given the
number of 12-digit watersheds used in this study, a climate station
is representative for six subbasins on average. Wind speed, relative
humidity and solar radiation data, required for estimating poten-
tial evapotranspiration using the Penman–Monteith method



Table 1
Summarized information on the data used for the parameterization of the UMRB and OTRB SWAT models.

Data layer Description of data layer Primary data sources

Topographic 30 m digital elevation model (DEM) data used to characterize slopes and slope
lengths

USGS (2013)

Subbasins 12-digit Hydrologic Unit Codes (HUCs). 5729 for UMRB, 6350 for OTRB. Area
ranging from 40 to 160 km2

USGS (2012, 2014a)

Land use Assignment of crop rotations or other landuse to each subwatershed;
dominant rotations were 2-year sequences of corn and soybean

USDA-NASS (2013) and NLCD (2001)

Soil map/layer data 1:250,000 STATSGO soil map; pertinent soil layer attributes included for each
soil type

USDA-NRCS (2013)

Daily climate Daily precipitation and maximum and minimum temperature from around
2000 stations; other meteorological data generated in model

NCDC-NOAA (2013)

Subsurface tile drainage Installed at assumed depth of 1.2 m in poorly drained and relatively flat soils
(<2% slope)

Sugg (2007) and Neitsch et al. (2009)

Tillage practices No-till, mulch till, reduced till, and conventional till practices represented as a
function of tillage passes and residue cover, and other parameters

Baker (2011) and Neitsch et al. (2009)

Other conservation practices Proxy approach used to represent terraces, contouring, and other practices as a
function of slope and slope length

Duriancik et al. (2008), USDA-NRCS (2011, 2012),
Arabi et al. (2008) and Neitsch et al. (2009)

Fertilizer and manure Nitrogen and phosphorus rates applied in inorganic fertilizer and manure;
average rates used for landscapes located within each state

IPNI (2010)

Point sources N and P discharged from thousands of waste treatment plants and other point
sources across the two study regions

Maupin and Ivahnenko (2011) and Robertson
(personal communication, 2013)

Major dams/reservoirs Key reservoirs on main channels of the Ohio and Mississippi Rivers, and major
tributaries – inserted in the model but not simulated at this stage

USACE (2012)
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(which was used in this study), were generated internally in SWAT
using monthly climate statistics provided in the ArcSWAT
database.

The land use was derived from USDA-NASS Cropland Data Layer
(CDL) datasets (USDA-NASS, 2013) in combination with the 2001
National Land Cover Data (NLCD, 2001). This approach included
the overlay of CDL datasets in order to create crop rotations used
in the region. Specifically, an overlay of multiple years of CDL infor-
mation has been conducted to produce crop rotation maps with
data of 2000–2006, while the NLCD data were used to judge
whether a given pixel is cultivated or not. If it was, a crop rotation
based on the CDL analysis was assigned, otherwise the non-agri-
cultural NLCD land use type was chosen. The general approach is
described in more detail in Srinivasan et al. (2010). From the analy-
sis of the produced maps, it was concluded that two-year corn–
soybean (C–S) or soybean–corn (S–C) rotations are dominant
within the overall agricultural land portion of the region (>70%)
with a smaller fraction managed with continuous corn (C–C) rota-
tion and much smaller fractions with other multi-year rotations
including other crops. The distinction between C–S and S–C rota-
tions is very important for the simulation since we need to ensure
that both corn and soybean are produced every calendar year in
the Corn Belt, while specific management practices associated to
each one of the crops (e.g. high nitrogen fertilization of corn) are
applied to an appropriate extent across the study area in each sim-
ulation year. Moreover, to consider the relatively recent crop rota-
tion schemes (2000–2006) representative for the past years (back
to 1975) and the most recent ones (2007–2010) we had to rely
on the fact that, traditionally, the rotations in the area were the
ones selected from the recent available data and that changes were
not important in the last decades.

Soil characteristics were represented by the USDA 1:250,000
STATSGO soil data (USDA-NRCS, 2013) with approximately 600
and 1000 soil types lying within the UMRB and OTRB, respectively.
The study area was then divided into three slope classes: (a) <2%,
(b) 2–5%, and (c) >5% based on the needs to assign tiles to flat areas
(<2%) and differentiate the reduction of the management factor
(USLE_P) to represent the extent of existing conservation practices
(described next). Then, we overlaid land use and soils on each of
the 5729 UMRB subbasins and 6350 OTRB subbasins in ArcSWAT
to determine the dominant land use type, soil and slope class in
each subbasin. This choice was essential for keeping the size of
the model at a practical limit; however, the accuracy achieved here
is significantly higher compared to several similar large-scale
applications which used the dominant HRU approach in larger sub-
basins (e.g., Pagliero et al., 2014; Rossi et al., 2009; Schuol et al.,
2008a,b). With the dominant HRU approach in this study we take
advantage of the refined 12-digit watershed schematization to cap-
ture land use, soil and slope information to a high extent by keep-
ing the number of HRUs at the lowest possible level and
maximizing the computation efficiency.

The majority of the STATSGO soil types (80%) remained in both
basins following the HRU delineation. Likewise, slope distribution
within both basins remained very close to the original distribution,
with 75% of the UMRB area defined by slopes <5% and the majority
of OTRB slopes >5%, except for agricultural land in the northwest-
ern part of the region. However, SWAT calculates a single average
slope for each subbasin of a watershed project, which is included in
all subsequent calculations. This, although not ideal, is definitely
more representative than calculating slopes for a larger watershed
(an 8-digit for example) and corresponding them to all HRUs
within it. It should also be noted that in a possible 8-digit model
with multiple HRUs in each subbasin we would have applied a
5–15% threshold for land use, soil and slopes to force the model
to ignore the types of low percentage. Considering that an 8-digit
contains on average 40–50 12-digits it is obvious that the 8-digit
option with the thresholds should have resulted in more than
40–50 different combinations of land/soil/slope in order to disturb
the original percentages less than the ‘12-digit and dominant HRU’
option. Moreover, the dominant approach resulted in slight
increases of total cropland from 46% to 47% and 18% to 19% in
the UMRB and OTRB, respectively, with UMRB cropland concen-
trated across a 230,000 km2 area of Minnesota, Iowa and Illinois
versus a 100,000 km2 OTRB area mainly in Illinois, Indiana and
western Ohio. Despite the preservation of the total cropland, minor
rotations such as corn–corn–soybean or corn–soybean–wheat,
which occupied less than 5% of the total cropland area in most of
the 12-digit subbasins, were eliminated in this process and were
replaced by the dominant rotation types of C–S, S–C and C–C.
The 3-year rotations were however minor, while they always
included the two dominant crops in the region. Therefore, sim-
ulation results are practically not influenced by replacing 3-year
rotations by the typical 2-year rotations in a very small part of
the study area. Forest land also increased, while the fractions of
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the basins occupied by pasture/hay and urban areas decreased
slightly relative to the original map. Overall, the land use dis-
tribution within the dominant HRU models was not deviated sig-
nificantly from the original, while the total cropland area in the
Corn Belt, which is of particular interest for pollutant load sim-
ulation in this study, remained practically unchanged.

Subsurface tile drain systems have been installed in Corn Belt
region subareas that are dominated by poorly drained soils and
have been documented to be key conduits of nitrate from cropland
landscapes to stream systems (David et al., 2010). Detailed maps of
tile drain locations do not exist for most of these subareas.
However, Sugg (2007) estimated the extent of tile drained soils
at the county level for the entire US. Thus, these county-level esti-
mates were first aggregated to the 8-digit watershed level to estab-
lish the same spatial reference with available fertilizer and tillage
data (described below). The tile drains were then assigned to 12-
digit watersheds within a given 8-digit watershed that were
characterized by: (1) cropland land use, slopes <2%, and with
poorly drained soils (hydrologic groups D or C), or (2) cropland,
slopes <2%, and hydrologic group B soils. The group B assignments
were performed only if needed to meet the total tile drained area
within an 8-digit watershed. All tile drains were simulated with
the following assumptions, typical in SWAT studies for the area
(e.g. Schilling and Wolter, 2009): a depth of 1200 mm, the time
to drain a soil to field capacity (24 h), and the amount of time
required to release water from a drain tile to a stream reach
(72 h), which are the SWAT DDRAIN, TDRAIN, and GDRAIN input
parameters, respectively (Neitsch et al., 2009).

Spatial representation of tillage types (conventional, reduced,
mulch, and no-till) were incorporated in the modeling system based
on estimates of the distributions of different tillage types at the 8-
digit watershed level (Baker, 2011). We assumed that the most
recent data of 2004 were the most representative to our work.
These 8-digit% data of each tillage type were disaggregated to the
12-digit subbasin level, within a given 8-digit watershed, in a man-
ner that maintained the same overall distribution of tillage types as
reported at the 8-digit watershed level, to the extent possible. Each
tillage type was represented by two tillage passes (and correspond-
ing levels of crop residue incorporation: 5–95% mixing efficiency
and 25–150 cm tillage depth (with lower values corresponding to
no-till), as well as appropriate values of Manning’s roughness coef-
ficient for overland flow (OV_N), which ranged between 0.14 and
0.20 (higher values for no-till) and crop cover factor (USLE_C), which
is used in the MUSLE erosion estimations (Neitsch et al., 2009).
Specifically, the default USLE_C factor (0.2) for corn and soybean
in the SWAT database was used for conventional tillage and this
value was lowered gradually to represent reduced (0.15) and con-
servation tillage types (mulch (0.10), no-till (0.05)). Based on the til-
lage data used, almost two-thirds of the crop land in both UMRB and
OTRB is treated with conservation tillage. In the typical C–S rotation
simulated in this study, the two tillage passes of each tillage type are
taking place in April and are followed by corn sowing and fertiliza-
tion (information is given next) in May with a crop harvest opera-
tion in October. The alternate rotation year begins again with the
tillage passes, continues with soybean sowing in April, P fertiliza-
tion and ends with the harvest of the crop in October.

Regional estimates of the distribution of other conservation
practices are not currently publicly available. To address this defi-
ciency we used a proxy approach that was based on information
provided in the Conservation Effects Assessment Project (CEAP;
Duriancik et al., 2008) UMRB (USDA-NRCS, 2012), and OTRB
(USDA-NRCS, 2011) studies. These studies report that a significant
part of the cropland in the UMRB and OTRB has at least one in-field
conservation practice (terrace, strip-cropping, contouring), while
highly erodible land is managed to a much greater extent com-
pared to less erodible areas. In our model the in-field conservation
practices are likely to be present in all the HRUs due to their rela-
tively large areas (12-digit subbasins), which aggregate a large
number of farm-fields. Therefore, we simulated the effect of in-
field conservation practices on erosion control in all of them by
reducing the management (P) factor of the MUSLE (Neitsch et al.,
2009), which is the major parameter that governs the representa-
tion of all such practices in the model (Arabi et al., 2008). The P fac-
tor was reduced from the default value of 1.0 (no management) to
values 0.2–0.4 in all of the agricultural 12-digit subbasins (HRUs)
of the basins, followed by appropriate modifications on the slope
length (Arabi et al., 2008). We specified higher reductions of the
P factor in high-sloping agricultural HRUs and slighter reductions
in low sloping ones to address the possible increased level of man-
agement in highly erodible land. Curve number (CN) adjustments,
which can also be used to represent in-field conservation practice
effects (Arabi et al., 2008), were performed during the hydrologic
calibrations (described below); the reduced CN values likely reflect
the expanded adoption of conservation tillage across the Corn Belt
region (USDA-NRCS, 2011, 2012). Land managed with long-term
conserving cover, such as Conservation Reserve Program (CRP), is
represented indirectly in the models as pasture, hay land or other
grassland.

Fertilizer (including recoverable manure) application rates were
calculated based on recent (2007) fertilizer N and P mass estimates
at the 8-digit level obtained from the Nutrient Use Geographic
Information System (NuGIS) for the US. (IPNI, 2010). Specifically,
we divided these 8-digit mass data by the crop areas to calculate
the fertilization rates (kg/ha) needed by SWAT. However, we
encountered unreasonable values for a large number of 8-digit
units, which were mostly attributed to uncertainties of the fertil-
izer sales data used in NuGIS and their correspondence with the
area of their actual usage. Thus a simplified approach was used
based on statewide averages from the NuGIS data (aggregation of
all 8-digit mass information within a state and division with the
crop areas of the state), which resulted in very reasonable annual
average N and P rates applied to C–S and S–C rotations that ranged
between 117–156 and 25–34 kg/ha, respectively, with N applied
only to corn. In C–C rotations, the applied N was increased by
50 kg/ha compared to the C–S rotation of a given state, based on
typical rates used for the two different rotations as reported by
Sawyer (2012). For hay and pastureland we used the auto-fertiliza-
tion routine of SWAT by setting a 70 kg N/ha/y maximum limit of
application to roughly account for the unrecoverable manure
reported in NuGIS for each state (IPNI, 2010).

Loads of mineral N and P released directly to the streams and
rivers of UMRB and OTRB were also inserted to the model from
thousands of point sources across the region (Maupin and
Ivahnenko, 2011; Robertson, D. Personal Communication. U.S.
Geological Survey, Lacrosse, WI). Specifically, we obtained annual
effluent data for the years 1992, 1997 and 2002 for almost
15,000 installations along with their locations across the study
area and we aggregated these loads per 12-digit subbasin.
According to the most recent data of 2002, the annual point source
contribution in UMRB was 82,000 t N and 7000 t P, while total
point source loads in the OTRB were 87,000 t N and 5500 t P.
These point sources were simulated as constant daily mineral N
or P loads for the appropriate 12-digit subbasins.

Finally, reservoir data in the basins were obtained from the
national inventory of dams (USACE, 2012), including information
for the surface area and the normal and maximum storage, which
is relevant to SWAT. No operation details were available with
information on release rates and timings. From the thousands of
large, small and very small reservoirs included in the data only
50 were inserted to the UMRB and OTRB models to skip existing
ArcSWAT limitations when their number becomes very high. This
number would be however adequate to reproduce the potential
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reservoir influence on water flow and pollutant transport along riv-
ers as they were the largest ones and represented the vast majority
of total artificial lake volume in the study area. However, no reser-
voir operation was finally modeled in this project due to high
uncertainties in their simulation. Specifically, we encountered sev-
ere problems in simulating pollutants when we used either the
default or adjusted values for the parameters governing sediment
and nutrient settling in the reservoirs. SWAT was consistently
simulating unreasonable sediment and nutrient exports from the
reservoirs disturbing their flow in a way that by no means is
expected in nature. Sediment and nutrient fluxes were either
negligible downstream a reservoir or dramatically increased due
to an unexpected supply from the reservoir itself (resuspension).
Reservoirs operation was thus deactivated by simply defining a
starting operation date at the end of the simulation period.

2.5. Streamflow calibration approach

SWAT was calibrated using monthly streamflow data (1975–
2010) obtained for 12 UMRB and 5 OTRB USGS stations (Fig. 2;
USGS, 2013). To accelerate the auto-calibration process with the
use of SWAT-CUP and SUFI-2, we used only the most recent 14-y
period for calibration and the older data for validation. We cali-
brated the majority (13) of the subregions simultaneously because
they are ‘‘hydrologically independent’’ (Fig. 2 and Table 2). The
only exceptions were Clinton and Grafton in the UMRB and
Cannelton Dam and Metropolis in the OTRB, which receive flows
and pollutants from upstream river basins. Each of the 13 ‘hydro-
logically independent’ subregions corresponds to either the most
upstream part of the main stem (Royalton for Mississippi River
or Greenup Dam for Ohio River) or a major tributary flowing into
them (i.e., the Minnesota, Iowa, Skunk, Des Moines, St. Croix,
Wisconsin, Chippewa, Illinois, and Rock Rivers in UMRB and the
Wabash and Tennessee Rivers in OTRB). The closest 12-digit
subwatershed outlet was used to represent the location of each
of the major subregions (Fig. 2). This approach resulted in only
minor inaccuracies due to the density of the UMRB and OTRB 12-
digit subwatersheds. Table 2 summarizes the information related
to the monitoring points.

Each parameterized subregion was manipulated separately by
the SWAT-CUP interface for streamflow auto-calibration and
uncertainty analysis with SUFI-2. After a manual experimentation
with SWAT parameters in the region and a literature review
Table 2
The gauge sites used for streamflow calibration with SUFI-2 in this study with their offici
SWAT (see also Fig. 2).

Gauge site (Fig. 2) River River basin State USGS station Hydrological

Royalton Mississippi UMRB MN 05267000 Yes
Jordan Minnesota UMRB MN 05330000 Yes
St. Croix Falls St. Croix UMRB WI 05340500 Yes
Durand Chippewa UMRB WI 05369500 Yes
Muscoda Wisconsin UMRB WI 05407000 Yes
Wappelo Iowa UMRB IA 05465500 Yes
Augusta Skunk UMRB IA 05474000 Yes
Keosaqua Des Moines UMRB IA 05490500 Yes
Joslin Rock UMRB IL 05446500 Yes
Valley City Illinois UMRB IL 05586100 Yes
Clinton Mississippi UMRB IA 05420500 No
Grafton Mississippi UMRB IL 05587450 No
Greenup Ohio OTRB KY 03216600 Yes
Paducah Tennessee OTRB KY 03609500 Yes
Mt. Carmel Wabash OTRB IL 03377500 Yes
Cannelton Dam Ohio OTRB IN 03303280 No
Metropolis Ohio OTRB IL 03611500 No

a Yes indicates that the respective system is hydrologically independent. No indicates
area in these SUFI-2 projects is the intermediate area between the gauge site listed in t
(Arabi et al., 2008; Lenhart et al., 2002; Van Griensven et al.,
2006), this study used eight sensitive parameters (Neitsch et al.,
2009): five related to groundwater (ALPHA_BF, GW_DELAY,
GWQMN, RCHRG_DP, and GW_REVAP), the curve number (CN2),
the soil evaporation compensation coefficient (ESCO) and the avail-
able soil water capacity of the first soil layer (SOL_AWC(1)), in
order to calibrate the 13 hydrologically independent individual
watersheds within 500 simulations (auto-calibration termination
criterion). Prior to that we had adjusted the three of the five snow
parameters in the ‘bsn’ file of SWAT by checking snowmelt magni-
tude and hydrograph shapes in a first series of manual SWAT runs.
Both the melt factors SMFMX and SMFMN (Neitsch et al., 2009)
were modified to 1 mm H2O/�C day, while the snow pack tempera-
ture lag factor (parameter TIMP – Neitsch et al., 2009) was set to
0.4. These parameters were not further adjusted within the auto-
matic process since they could not be adjusted at the HRU scale
as all others but only at the entire basin scale. The CN and
SOL_AWC(1) were the only parameters allowed to alter by a per-
centage from the default values (±20%), while all others were
modified with absolute values within realistic ranges. The best
estimate of parameters for each subregion was next adapted as
the calibrated parameter-set to calibrate the same eight parame-
ters of the intermediate watersheds. Calibration on the two sites
of each basin was conducted consecutively. This was done by
allowing SUFI-2 to change the parameters only in the 12-digit sub-
basins that corresponded to these intermediate areas (see Table 2).
In all processes, the SUFI-2 optimization algorithm was seeking to
identify the optimum parameters by using the Nash–Sutcliffe mod-
eling efficiency (NS; Moriasi et al., 2007; Krause et al., 2005) as the
objective function. However, the results of the auto-calibration
were also evaluated according to the percent bias (PBIAS; Moriasi
et al., 2007) and the coefficient of determination (R2) (see Krause
et al., 2005 for more detailed description) as well as the SUFI-2 p
and r uncertainty factors. Satisfactory NS and PBIAS monthly
results were evaluated per criteria suggested by Moriasi et al.
(2007); i.e., NS values P0.50 and PBIAS values 6±25%. Graphical
comparisons between the simulated and measured streamflow
values were also conducted.

2.6. Sediment and nutrient calibration approach

In-stream sediment, nitrate–N (NO3–N), organic N, and organic
and mineral P data were available for some of the stations of
al USGS reported upstream area as well as their total drainage and calibrated area in

ly independent?a Calibrated area (km2) Total upstream drainage area (km2)

29,970 29,970
43,280 43,280
16,250 16,250
24,140 24,140
27,290 27,290
32,710 32,710
11,270 11,270
36,530 36,530
24,550 24,550
69,540 69,540
75,230 222,500
50,600 447,700

159,600 159,600
104,200 104,200

74,810 74,810
90,400 250,000
97,290 526,300

gauge sites that receive water from upstream calibrated watersheds; the calibrated
he first column and the preceding upstream gauge site (see Fig. 2).
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Table 2 on a monthly basis for similar or shorter time-periods than
the streamflow calibration/validation period (1975–2010). All
observed data were obtained from the USGS (2013) and were pro-
vided as complete monthly time-series. Sediment data was avail-
able only for a subset of UMRB gauge sites, primarily at the
outlets of large watersheds as well as along the Mississippi river.
The USGS monthly time-series of nutrient constituents were devel-
oped with the use of LOADEST (Runkel et al., 2004; USGS, 2014b).
The water quality observations reflect increased uncertainty com-
pared to hydrologic observations, in part due to increased inherent
uncertainty in the river basin processes of pollutant transport.
Moreover, SWAT is restrictive in that a large number of sediment
and nutrient-related parameters can only be adjusted at the entire
basin scale, not allowing much heterogeneity. Thus a manual cali-
bration approach was considered more appropriate for performing
the nutrient and sediment calibration.

The pollutant calibration process consisted of ensuring that key
upland sediment and nutrient processes as well as point sources
were accounted for and that the predictions at the monitoring sta-
tions were acceptable. Specifically, our goal was to calibrate the
predicted average annual loads within a minimum percent bias
or prediction difference from the observed data. According to
Moriasi et al. (2007), monthly model simulations can be judged
as satisfactory if PBIAS is measured up to ±55% for sediment and
±70% for N and P. However, to ensure a more realistic simulation
we selected more strict limits with 630% bias for sediment and
640% bias for nutrients (Santhi et al., 2014). The NS efficiency
and R2 were also calculated, although they were not used as the
critical indices for the calibration success here as explained next
in the text.

Simulation of UMRB and OTRB upland erosion was partially
addressed by the previously described tillage and conservation
practice related parameterizations including adjustments in the P
factor and slope lengths and was considered a viable option to keep
spatial heterogeneity of sediment source across the basin. The peak
rate adjustment factor (ADJ_PKR) for sediment routing in the sub-
basins was also reduced to 0.5 from the default value of 1.0 in both
river basins as a final calibration step, which can only be adjusted
at the overall basin level and impacts the amount of erosion gener-
ated in HRUs (Neitsch et al., 2009). Channel erosion parameters can
also be adjusted in SWAT including the peak rate adjustment factor
for sediment routing in the main channel (PRF) and the linear
(SPCON) and exponential (SPEXP) coefficients for sediment that
can be re-entrained during channel sediment routing. The parame-
ters can assist in simulating the contribution of the main channel
to the total sediment river load by considering sediment deposition
and channel degradation, in an attempt to capture phenomena
such as stream bank erosion which is an important sediment
source in many river basins in the Corn Belt region (Belmont
et al., 2011; Schilling et al., 2011). However, quantifying these pro-
cesses is difficult due to the high level of uncertainty and the fact
that the SWAT channel erosion parameters can only be adjusted
at the overall basin level. Thus adjustment of these parameters
was considered unrealistic for these applications. Thus, upland ero-
sion was considered dominant in this study compared with the
channel erosion, which at least for the OTRB is in agreement with
the study of Santhi et al. (2014).

Additional adjustments were made to parameters related to the
N and P cycles to perform the nutrient calibrations. The N per-
colation coefficient (NPERCO) and the CDN and SDNCO parameters,
which govern denitrification from soil (Neitsch et al., 2009), were
adjusted to perform the NO3–N calibration. NPERCO governs the
amount of NO3–N removed from the surface soil layer via runoff
versus removal through percolation, and was set at 0.6 and 0.5
for the UMRB and OTRB, respectively. Denitrification is also a very
uncertain watershed process, whose magnitude cannot be easily
defined. We slightly altered the denitrification exponential rate
coefficient CDN (to 0.1 in both basins) and the denitrification
threshold water content SDNCO (to 1.0 in UMRB and to 0.99 in
OTRB) in order to simulate a reasonable denitrification rate,
expected within a 10–20% of the annual N fertilization rate in crop
areas (Neitsch et al., 2009) and within the range 3.8–21 kg/ha/y
reported by David et al. (2009).

On the other hand, the nutrient parameters included in the bsn
file of SWAT were not adequate to capture organic N and P forms
which are strongly correlated with sediment loads. Thus, following
sediment calibration, the TN and TP loads in several stations
remained moderately and considerably overestimated (almost
double) compared to the observations, respectively, for both simu-
lated regions. Adjustment of the P percolation coefficient
(PPERCO), the P soil partitioning coefficient (PHOSKD), and the P
availability index (PSP) did not result in significant TP prediction
improvements, because these parameters mainly affect soluble P
loss estimates which were a minor component of the overall esti-
mated TP losses in both basins. Thus, we then examined the initial
levels of soil N and P (parameters SOL_ORGN(1) and SOL_ORGP(1))
in the top cropland soil layers which are typically estimated inter-
nally in SWAT as a function of soil carbon (Neitsch et al., 2009). The
relatively soil high carbon contents in the study areas (especially
the UMRB) resulted in initial soil N and P levels that were often
unrealistic with organic N and P amounts; i.e., >5000 ppm and
600 ppm for some soils, respectively. This problem, coupled with
the fact that the high soil N and P levels affected the SWAT sim-
ulations for long durations (well beyond the initial model warm-
up periods) revealed that relying on the SWAT default values for
soil organic N and P was not a viable option. Therefore, these soil
parameters were manually defined for different parts of the
UMRB and OTRB basins to enhance N and P calibration. We applied
a percentage reduction to all the HRUs (12-digit subbasins) located
above the same calibration point to maintain heterogeneity.

Finally, in-stream nutrient processes were not simulated in this
study because such processes are highly uncertain and can only be
simulated in SWAT at the entire basin level, thus ignoring varying
conditions across different order streams and between different
subregions. In addition, there is evidence that the magnitude of
several such processes is not important at large scales. For exam-
ple, denitrification in water (streams, rivers), is considered negligi-
ble in the UMRB and OTRB due to the fast NO3–N transport from
field-level tile-drainage systems to higher order streams (major
tributaries and main channels) within a few days to weeks in the
winter and spring (David et al., 2009).
3. Results and discussion

3.1. Hydrologic performance of the Corn Belt SWAT models

Table 3 summarizes the final hydrologic parameter values that
resulted from the auto-calibration with SUFI-2 for all 17 gauge
sites in UMRB and OTRB. The results clearly show that curve num-
bers (CN2) were reduced in almost all of the UMRB and OTRB sub-
basins, with the greatest reductions occurring within the UMRB.
These results indicate a possible overestimation of the default CN
values in SWAT. On the other hand, ESCO was predicted within a
narrow range around the default value of 0.95, thus the SWAT ini-
tial value could be considered as an acceptable value for the entire
Corn Belt region and its exclusion from the calibration would pos-
sibly not alter hydrologic predictions considerably. The
SOL_AWC(1) does not present a standard behavior with changes
from the default values ranging greatly between different subre-
gions. This could indicate that the coarse STATSGO soils lack accu-
racy which could be potentially mitigated with more detailed soil



Table 3
SUFI-2 best estimates of hydrologic parameters in different areas of UMRB and OTRB.

Calibration point (Fig. 2) GW_DELAY ALPHA_BF GWQMN GW_REVAP RCHRG_DP CN2 ESCO SOL_AWC(1)

Allowable range 0–300 0–1 0–300 0–0.2 0–0.5 ±0.2 0.7–1 ±0.2
Royalton 169 0.09 25 0.01 0.27 �0.13 0.98 �0.05
Jordan 28 0.63 0.7 0.02 0.01 �0.13 0.94 �0.10
St. Croix Falls 27 0.79 55 0.02 0.33 �0.16 0.96 �0.06
Durand 259 0.54 50 0.02 0.21 �0.17 0.83 �0.05
Muscoda 323 0.53 14 0.03 0.15 �0.12 0.94 0.18
Wapello 114 0.63 118 0.03 0.07 �0.12 0.95 �0.18
Augusta 39 0.48 15 0.02 0.21 0.02 0.97 �0.10
Keosauqua 86 0.49 204 0.04 0.05 �0.17 0.90 0.18
Joslin 180 0.85 188 0.01 0.08 �0.13 0.92 �0.15
Valley City 49 0.65 56 0.02 0.04 �0.14 0.95 �0.20
Clintona 68 0.42 61 0.02 0.02 �0.15 0.89 0.04
Graftona 169 0.64 5.3 0.00 0.05 �0.20 0.97 0.02
Greenup 16 0.51 161 0.02 0.02 �0.07 0.89 0.09
Paducah 6.2 0.17 119 0.18 0.24 �0.17 0.83 0.07
Mt. Carmel 33 0.58 20 0.07 0.10 �0.19 0.93 �0.14
Cannelton Dama 13.5 0.14 60 0.03 0.02 �0.09 0.91 �0.05
Metropolisa 58.5 0.75 155 0.05 0.03 0.01 0.99 0.05

a These calibration points receive water from upstream calibrated watersheds and their SUFI-2 calibration was done after the termination of the auto-calibration of the
upstream areas. For CN2 and SOL_AWC(1), both allowable ranges and best estimates express the change from the default value as a fraction, for example, �0.13 corresponds
to 13% reduction and the allowable change of the parameters was within �20% and 20% of the default values.

Table 4
Monthly streamflow calibration and uncertainty analysis statistics for UMRB and
OTRB subregions.

Calibration
point (Fig. 2)

Calibration (1997–2010) Validation
(1975–1996)

p r R2 NS PBIAS R2 NS PBIAS

Royalton 0.67 1.44 0.48 0.46 7.43 0.47 0.44 13.19
Jordan 0.51 0.72 0.79 0.75 21.16 0.85 0.81 9.45
St. Croix Falls 0.65 1.13 0.81 0.67 23.16 0.72 0.57 25.32
Durand 0.77 1.24 0.71 0.69 11.51 0.54 0.44 19.96
Muscoda 0.76 1.81 0.64 0.61 2.70 0.53 0.49 11.92
Wapello 0.43 0.66 0.77 0.75 5.76 0.82 0.81 0.11
Augusta 0.57 0.56 0.90 0.90 2.88 0.90 0.90 �1.18
Keosaqua 0.54 0.62 0.67 0.62 20.56 0.71 0.66 17.44
Joslin 0.38 1.04 0.69 0.59 4.38 0.62 0.55 0.59
Valley City 0.48 0.76 0.66 0.50 �12.17 0.70 0.43 �18.02
Clintona 0.43 0.50 0.66 0.55 10.41 0.70 0.65 10.80
Graftona 0.33 0.17 0.72 0.69 2.92 0.74 0.72 1.37
Greenup 0.71 0.80 0.90 0.89 �5.25 0.87 0.87 3.40
Paducah 0.85 1.05 0.82 0.77 12.74 0.86 0.71 27.17
Mt. Carmel 0.77 0.89 0.83 0.82 �3.47 0.74 0.68 �1.48
Cannelton

Dama
0.52 0.30 0.92 0.92 �1.38 0.89 0.89 2.14

Metropolisa 0.44 0.18 0.90 0.89 6.87 0.88 0.83 14.42

Each calibration point was selected as the outlet of the 12-digit subwatershed
located closer to the existing USGS flow observation station and its exact location is
shown in Fig. 2. The name of each large upstream area is defined from the
homonymous river. In the first two columns with numerical results, p and r are the
percentage of observed data bracketed by the 95% ppu and the degree of uncer-
tainty respectively, R2 is the coefficient of determination, NS the Nash–Sutcliffe
efficiency and PBIAS the percent bias with positive values indicating model
underestimations and negative overestimations (Moriasi et al., 2007).

a These calibration points receive water from upstream calibrated watersheds
and their SUFI-2 calibration was done after the termination of the auto-calibration
of the upstream areas.
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data. Finally, the five groundwater parameters received such val-
ues that optimized groundwater contribution to streamflow in a
way that simulated streamflows are improved toward the
observed. Among the major findings here is that groundwater
revap is negligible in most subregions receiving values close to
the minimum default value of the range implying that
GW_REVAP could be excluded from the calibration. Also, in most
of the forested subregions of the study area there is a considerable
fraction of percolated water which is further percolated to the deep
aquifer and lost from the system (parameter RCHRG_DP > 0.20),
indicating that possible hydrologic/hydrogeologic particularities
exist in these areas.

Table 4 presents the statistical results for comparisons of the
aggregated monthly SWAT simulated streamflows versus
corresponding measured streamflows. The results indicate a high
p factor, acceptable r factor and R2 values, and satisfactory monthly
NS values (>0.5 per the criteria suggested by Moriasi et al., 2007)
for most of the 17 calibrated areas within the UMRB and OTRB.
However, calibration and/or validation NS values were <0.5 for
three UMRB subregions: Royalton, Durand, and Muscoda (see
Fig. 2). Weaknesses were also reflected in the other statistics calcu-
lated for these three regions. This was likely due to the impact of
natural lakes and/or wetlands on hydrology in these areas, which
can attenuate peak flows and maintain considerable flows in
low-flow periods, a situation that could not be well captured by
the current wetlands parameterization.

Virtually all of the PBIAS results (Table 4) are acceptable per the
criterion of <25% deviation suggested by Moriasi (2007). The
underestimation of runoff in the majority of subregions (positive
PBIAS) reveals the general tendency of SWAT to satisfy ET require-
ments in advance of runoff simulation. This situation is highlighted
for example, by the Minnesota River basin (Jordan in Table 4) and
St. Croix results, where the calibration PBIAS were the highest of all
the simulated basins. The lowest precipitation occurs in the
Northern subregion of the UMRB and the ET requirements in some
months highly exceeded water availability, resulting in low runoff
simulation in SWAT. Overall, the validation statistics support the
quality of calibration and in many cases were even better.

The results of Table 4 also indicate that for the greatest part of
the two basins SUFI-2 narrowed the uncertainties to acceptable
levels. The p factor is greater than 0.5 for the majority of the cali-
bration points, showing that more than 50% of the observed data
are bracketed by the 95ppu. This is considered highly acceptable
for the large scale of this application and is supported from the
low r values, which were always close to the desirable limit of
unity or lower than that. However, exceptions of the rule are the
r statistics calculated for the three northern UMRB subregions
(Royalton, Durand and Muscoda), where the algorithm captured
most of the observed data but with a relatively increased degree
of uncertainty (high r values). It should also be noted that for all
four gauge sites that were not independently calibrated (indicated
with an asterisk in Table 4), the p and r factors were always low.
Actually, flow in these areas is to a great extent predefined from
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the already calibrated upstream areas, leaving a small degree of
freedom for SUFI-2 to affect total flows in these areas. Therefore,
the r factor was extremely low demonstrating a very small width
of the 95ppu band, which inevitably occurred in an expense of
the p factor. The relatively low p factor values in these areas indi-
cate that the 95ppu at these points did not capture the majority of
observations. However, the fact that the SUFI-2 calibration of these
sites is not independent from other sites (head watersheds already
calibrated) and is based on parameter adjustments within only
part of the total upstream area reduces the reliability of these
statistics for judging the calibration effectiveness. The calibrated
statistics at these sites are influenced significantly from the large
upstream areas which have been already calibrated. Besides, the
success of the process in the upstream areas automatically leads
to good predictions at the most downstream locations, with NS,
R2 and PBIAS strongly supporting this finding, especially in the
OTRB (Cannelton Dam and Metropolis).

Fig. 3 shows the graphs of simulated versus observed monthly
flow data for the entire simulation period including both the most
recent years used for calibration (1997–2010) and those used for
validating model performance (1975–1996). The graphs demon-
strate strong agreement between simulated and observed monthly
flows across the study region. In particular, both peaks and reces-
sion limbs are well predicted at the majority of the gauge sites
within the region, especially for the OTRB. In UMRB, there are suc-
cessful graph predictions with respect to both peaks and recessions
in all the five major agricultural subregions namely: Iowa, Des
Moines, Skunk, Rock and Illinois river basins that is of utmost
importance for capturing the intra-annual variability of non-point
source pollutant load transported to the outlet. On the other hand,
results are porer for the northern forested subregions of Royalton,
St. Croix, Wisconsin and Chippewa, primarily for the reasons stated
previously. However, as crop areas in these subregions are small
their influence on pollutant transport downstream is minor and
thus the results do not greatly impact water quality predictions
for the UMRB. For example, nutrient measurements in St. Croix
show that mean annual NO3–N and TP loads of this subregion
represent the 0.3% and 0.8% of the measured loads at Grafton
respectively.
3.2. Water quality performance of the Corn Belt SWAT models

Table 5 summarizes the mean annual simulated and observed
sediment, TN and TP for the entire simulation period, following
manual calibration of both models. Due to the lack of sediment
observation in the OTRB we report the mean annual observed
value given in Santhi et al. (2014) for the Mt. Carmell and
Metropolis stations and use it for comparison with our simulations.
Moreover, Table 5 includes the lower and upper intervals (95% con-
fidence limits) of the annual nutrient measurements calculated
and provided by USGS (2013). Thus, apart from giving the level
of annual predictions at several gauge sites, the table provides an
additional measure of model performance for nutrients, which is
considered successful when the simulated value lies within the
observed confidence range. Unfortunately, neither the USGS, nor
Santhi et al. (2014) provide lower and upper sediment limits for
the stations of Table 5. As can be clearly observed, the SWAT
annual predictions are acceptable for almost all of the stations
and pollutant types.

Table 6 summarizes the monthly statistics produced from sedi-
ment and nutrient calibration in the study region. The first goal for
these large-scale applications is more to ensure that the predic-
tions replicate observations within an acceptable range rather than
to produce a perfect monthly multi-year reproduction. Therefore,
PBIAS is considered the primary index to judge the model’s
performance here, although both the NS and R2 statistics were also
evaluated.

Monthly sediment time-series were available for only four sites
in UMRB and for a limited number of years, which did not allow
the use of any data for validation. For the particular case of sedi-
ments in OTRB, statistics could not be calculated due to lack of
monthly observed data. However, before moving to nutrient cali-
bration in OTRB, we compared the average annual SWAT sediment
predictions with the respective reported observations (Santhi et al.,
2014) to assess the accuracy of the magnitude of the sediment esti-
mates (see Table 5 and associated discussion). The PBIAS index in
Table 6 shows that sediment predictions in the UMRB are always
within the range of observations as evidenced by the low bias
results. The calibration success is strengthened by the NS efficiency
which was positive in three out of the four sites, while the R2

statistics reveal an acceptable correlation between predicted and
observed sediment loads.

More extensive monitoring records were available to assess the
predicted NO3–N levels which were close to the observations for
several of the gauge sites. The PBIAS values indicated that SWAT
either underestimated or overestimated the measured levels.
However, the difference was always below 40% with only two
exceptions: the Minnesota (Jordan) and Iowa (Wapello) River
basins (Table 6). The NO3–N underestimation was quite high dur-
ing the validation period for these two subregions, and at least
for the first one this can be mostly attributed to the underestima-
tion of runoff as discussed previously. However, the PBIAS index
was highly acceptable at the most downstream calibration points
of both UMRB and OTRB (Grafton and Metropolis respectively),
showing that even with some positive or negative deviations at a
local basis, the magnitude of total NO3–N loads in the entire region
remains acceptable. The NS efficiency is generally lower than for
flows; however, the NS statistics calculated for the majority of
the gauge sites were positive and over half of the NS and R2 values
exceeded 0.5. The simulated loads were also significantly corre-
lated with observed data as revealed by the R2 statistics, of which
the majority exceeded 0.50, showing that the inter- and intra-an-
nual variability of predictions was reasonable.

The TP statistics were weaker than the NO3–N statistics
(Table 6) including an increased number of negative NS values,
which reveals a greater uncertainty regarding the TP estimates.
However, the PBIAS results were definitely within the acceptable
criteria of 40% for all of the gauge sites and simulation periods,
except the Jordan validation period, and were very strong at the
outlet stations of Grafton and Metropolis. The Grafton and
Metropolis NS statistics were relatively weak, but were all positive
except for the negative Grafton NS validation value. However, the
R2 statistics were near 0.5 for both outlet stations indicating that
SWAT tracked the much of the seasonal trends in the measured
data. Overall, the difficulty in obtaining consistently strong
monthly statistics for NO3–N and TP is not unexpected given the
large scale of application and the uncertainty regarding much of
the input data.

Fig. 4 shows graphs of simulated versus observed sediment,
NO3–N and TP data for the entire simulation period including both
the most recent years used for calibration (1997 and onwards) and
those used for validating model performance (before 1996 with
length varying based on the availability). The figure includes gauge
stations which are indicative of the models’ performance. Pollutant
loads at the outlets (Grafton and Metropolis) have been well pre-
dicted on a monthly basis, while at intermediate outlets there is
mostly a mismatch between the highest peaks, which is the main
reason for the poorer statistics in these locations discussed above.
However, recession limbs and the general shape of the graphs
reveal that SWAT predictions do not generally deviate from the
observed patterns.



Fig. 3. Monthly simulated versus observed flows at river gauge sites across the Corn Belt. Locations are listed in Table 2 and depicted in Fig. 2.
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3.3. A broad-scale overview of the SWAT performance for the Corn Belt
region

In this section we further present the SWAT performance on
an annual basis for the entire UMRB and OTRB areas in order to
give a clear picture of the results at the large river basin scale.
Thus, we refer to the most downstream monitoring sites in
the areas (Grafton and Metropolis; see Fig. 2), which are the
reference points of the presented annual river-basin scale
results.



Table 5
Mean annual (1975–2010) observed, simulated and confidence limits of the observed sediments, TN and TP loads in UMRB and OTRB (all in 1000 tonnes).

obs sim obs sim obs obs obs sim obs obs
Sed Sed TN TN TN LI TN UI TP TP TP LI TP UI

Jordan 1065.0 850.0 82.3 45.6 31.1 194.1 1.3 1.8 1.0 1.7
St. Paul 61.9 63.5 49.4 77.3 3.1 3.8 2.8 3.5
Clinton 4088.0 4000.0 142.4 106.7 105.6 191.9 8.5 9.2 7.1 10.1
Wapello 2091.9 2054.1 86.1 50.2 59.3 122.8 3.3 3.2 2.6 4.1
Valley City 4794.4 5270.5 134.0 131.9 115.4 155.0 7.8 8.3 6.8 9.0
Grafton 21161.0 21933.3 509.9 452.9 413.6 624.8 31.0 34.1 26.1 36.6
Mt. Carmell 5307.0 5520.0 132.9 135.9 103.6 168.9 7.9 7.7 6.7 9.2
Paducah 40.0 28.5 31.7 50.0 4.1 4.2 3.4 4.8
Greenup Dam 122.3
Cannelton Dam 241.8 181.6 213.5 274.0 27.2 21.0 21.3 34.5
Metropolis 35681.0 39400.0 498.3 428.4 415.7 594.4 47.1 48.7 38.9 56.7

obs: observed, sim: simulated, LI: lower interval of the observation, UI: upper interval of the observation.

Table 6
Monthly calibration and validation water quality statistics for the UMRB and OTRB subregions.

Calibration point (Fig. 2) Sediments NO3–N TP

Cal Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val

PBIAS NS R2 PBIAS PBIAS NS NS R2 R2 PBIAS PBIAS NS NS R2 R2

Jordan 6.19 56.50 0.25 0.13 0.56 0.16 �6.64 �45.75 0.33 0.34 0.50 0.34
Wapello 1.81 0.54 0.61 42.08 52.03 0.38 0.16 0.54 0.39 �4.99 5.38 �0.19 0.32 0.56 0.62
Augusta 8.60 0.56 0.57
Clintona 20.58 �9.92 0.38 �0.07 0.51 0.33 �27.42 13.03 �1.56 �0.77 0.37 0.21
Valley City �9.93 �0.53 0.56 1.12 �1.64 0.60 0.56 0.61 0.60 3.55 �12.05 �1.92 �1.04 0.32 0.44
Graftona �3.65 0.30 0.47 7.53 5.69 0.40 0.36 0.61 0.57 �9.62 �9.78 0.02 �0.40 0.52 0.43
Paducah �8.32 22.76 0.56 0.68 0.57 0.73 �12.14 4.71 �0.17 �0.07 0.24 0.61
Greenup 12.28 24.07 0.61 0.46 0.73 0.74 9.70 35.38 0.54 0.29 0.53 0.45
Mt. Carmel 0.47 �28.73 0.60 �0.55 0.66 0.62 �5.56 15.52 0.06 0.31 0.53 0.55
Canneltona 1.99 17.77 0.76 0.70 0.77 0.77 20.77 25.30 0.51 0.42 0.58 0.46
Metropolisa �4.90 12.49 0.72 0.61 0.75 0.63 �7.64 �0.51 0.37 0.36 0.49 0.44

a These calibration points receive water and pollutants from upstream calibrated watersheds and their water quality calibration was done after calibrating the upstream
areas. R2 is the coefficient of determination, NS the Nash–Sutcliffe efficiency and PBIAS the percent bias with positive values indicating model underestimations and negative
overestimations.
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Fig. 5 shows the comparison between the simulated annual
flows, NO3–N and TP loads with the respective observed ones for
the entire simulation period (1975–2010). Annual flow predictions
for both basins are excellent and are very strongly correlated with
the observed flows. On the other hand, annual nutrient loads are
well correlated at Grafton (UMRB) but less at Metropolis (OTRB).
Table 7 summarizes the annual NS, R2 and PBIAS statistics for both
of these gauge-sites for the calibration and validation periods.

Absolute PBIAS values are highly acceptable as can be seen in
the table as they are consistently lower than 10% for both flows
and nutrients in the two regions. The resulting annual flow NS
and R2 values were above 0.90 for both the calibration and val-
idation periods in the UMRB and for the validation period in the
OTRB, showing an excellent match between the SWAT annual pre-
dictions and the observations. Moreover, the UMRB NO3–N NS and
R2 values were 0.66 and 0.72, respectively, for the calibration per-
iod and above 0.80 for the validation period. Here, the aggregation
of monthly numbers leads to a significant improvement of SWAT
performance at the annual basis, which is the case for almost all
monitoring points in the region. The results for TP were quite simi-
lar and can be judged as acceptable or marginally acceptable as
regards the NS efficiency of the validation period, when the value
was below 0.5. For the OTRB, the annual water quality performance
of SWAT was somewhat poorer with statistics being however
acceptable for the calibration period. The rather low NS and R2

statistics of the validation may be associated to a reduced
representativeness of the parameterized model for the old years
of this period (1975–1996) in the OTRB area.

Table 8 presents the mean annual calibrated water balance
components in both basins with reference to the total simulation
period (1975–2010). The mean annual actual ET was 593 and
638 mm for the UMRB and OTRB, representing 68% and the 53%
of the annual precipitation, respectively. Total annual runoff in
the UMRB (262 mm) is comprised of surface runoff (30%), baseflow
(50%) and lateral and tile flow (20%). In the OTRB, the relative con-
tribution is somewhat different, with baseflow representing 40% of
the total annual runoff, lateral and tile flow 25%, while surface run-
off is almost one third of total runoff. However, tile flow in the
OTRB is considerably less as compared to the UMRB, due primarily
to the significantly lower amount of agricultural (and tile-drained)
land in the basin.

Table 9 demonstrates the annual nutrient source apportion-
ment in both basins as estimated by SWAT. The data included in
this table indicate that agricultural diffuse losses are responsible
for more than 70% of both the TN and TP losses to surface waters
in the UMRB, and approximately 50% in the OTRB. Point sources
contributed 16% of the total UMRB N and P loads, in contrast to
the corresponding contributions in the OTRB, which exceeded
20% for the total N load but only about 11% for the total P load.
Diffuse losses from non-agricultural land (named natural back-
ground losses in the table) are quite high in OTRB due to the sig-
nificantly smaller crop areas compared to the UMRB where
cropping systems occupy almost half of the basin’s area. The esti-
mates in Table 9 can be considered reliable since point sources
are measured numbers (no uncertainty) and diffuse sources of N
and P have been resulted from spatially well-parameterized and
calibrated models that maintain heterogeneity.

The seasonal hydrologic and nutrient transport regime in the
region was also assessed by estimating the mean monthly flows,
and TN and TP river loads, for the period 1975–2010 at the most



Fig. 4. Monthly simulated versus observed pollutants in several river gauge stations across the Corn Belt. Locations are listed in Table 2 and depicted in Fig. 2.
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downstream gauge sites of UMRB and OTRB (Grafton and
Metropolis; Fig. 2). Fig. 6 demonstrates this temporal variation.
From the graphs it can be clearly concluded that the temporal
variation of the TN and TP loads is highly pronounced with the
highest simulated loads occurring in late spring/early summer.
This is the most critical period for water pollution due to the com-
bined effect of crop fertilization, highest precipitation amounts,
and high tile flow volumes in the basin. With regard to TN, which
is mostly comprised of NO3–N associated with sub-surface runoff,
April, May and June are also the months with the highest rate of



Fig. 5. Annual (1975–2010) comparison of simulated and observed flows, NO3–N and TP loads at the most downstream monitoring points of the UMRB (Grafton) and OTRB
(Metropolis).

Table 7
Annual NS, R2 and PBIAS statistics at the UMRB and OTRB outlets.

NS R2 PBIAS

Calibration
(1997–2010)

Validation
(1975–1996)

Calibration
(1997–2010)

Validation
(1975–1996)

Calibration
(1997–2010)

Validation
(1975–1996)

UMRB Flows 0.95 0.94 0.95 0.95 1.91 2.08
NO3–N 0.66 0.81 0.72 0.80 7.71 3.97
TP 0.78 0.41 0.89 0.67 �9.74 �10.46

OTRB Flows 0.80 0.60 0.91 0.95 6.22 13.86
NO3–N 0.56 0.47 0.64 0.55 �4.22 8.97
TP 0.60 0.34 0.60 0.39 �7.12 �0.96

Table 8
Water balance components (in mm) on a mean annual basis in UMRB and OTRB.

1975–2010 1975–2010
UMRB OTRB

Precipitation (mm) 878 1194
Snow (mm) 99 81
Surface runoff (mm) 77 159
Lateral flow (mm) 10 97
Tile flow (mm) 44 28
Baseflow (mm) 131 194
Total runoff (mm) 262 478
Actual evapotranspiration (mm) 593 638
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simulated runoff in the intensely cultivated UMRB. Fig. 6 also
includes the observed temporal variation of all variables based
on the data obtained (USGS, 2013), showing a general good agree-
ment of the shapes of the graphs in all cases; however, it reveals
that N and P observed peaks occur 1–2 months earlier than the
simulated ones. This indicates that, as both models predicted well
the hydrologic temporal variations, they may require additional
calibration with respect to the timing of fertilizer and manure
nutrient inputs in order to better capture the temporal variability
of nutrient loads. Such information may also increase all monthly
nutrient statistics presented previously but needs extensive collab-
oration with stakeholders to be reliably defined in such a large
region.

3.4. Mapping results across the Corn Belt

The water yield and pollution pattern across the UMRB and
OTRB is finally presented in Fig. 7 demonstrating the spatial differ-
entiation of water, sediment and nutrient losses at the HRU (12-
digit) scale. The simulated annual runoff was very high in parts
of the OTRB, especially the northwestern and central part. The gen-
erated runoff in the UMRB was significantly lower on a mean
annual basis and is minimized in the north and north-western part,
especially in the area of the Minnesota River basin where annual
precipitation depths are also the minimum within the entire
Corn Belt region (�700 mm). On the other hand, sediments origi-
nate from many areas across the landscape but most importantly
from the agricultural land of Iowa, Illinois, Indiana and Ohio. The
majority of erosion factors excluding management (climate, sur-
face runoff, slopes) are considered to have been quite accurately



Table 9
Source apportionment of TN and TP loads in UMRB and OTRB (1975–2010).

UMRBa OTRBa

TN (kg) % TL TP (kg) % TL TN (kg) % TL TP (kg) % TL

Point sources 73,761 16.3 5404 15.9 87237 20.4 5562 11.4
Agricultural diffuse losses 329,039 72.6 24,612 72.2 213,343 49.8 21,021 43.2
Natural background diffuse losses (forest, hay, pasture, etc.) 50,124 11.1 4050 11.9 127,542 29.8 22,065 45.4

Total Losses (TL) 452,924 100 34,066 100 428,122 100 48,648 100

a Based on simulated loads at Grafton for the UMRB and Metropolis for the OTRB (Fig. 2).

Fig. 6. Temporal variation of observed and simulated flow, TN and TP at the most downstream monitoring points of UMRB (Grafton) and OTRB (Metropolis).
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assigned across the landscape to support the validity of this map,
which indicates the 12-digit areas with the highest susceptibility
to erosion. However, some management information such as the
distribution of different tillage practices (conservation, non-con-
servation), which is one of the factors governing erosion, were
applied randomly within each 8-digit watershed.

Fig. 7 includes the TN and TP loads occurring annually in the
region. Apart from runoff and erosion mechanisms, N and P pres-
sures play a significant role in the definition of the most vulnerable
areas in nutrient losses to waters. SWAT calculated significantly
higher TN and TP losses from the agricultural HRUs, where nutri-
ents are applied to row crops. Geomorphological and hydrom-
eteorological factors subsequently govern the magnitude of
pollutant losses from these areas, which are mainly concentrated
in the same areas with erosion vulnerability for TP as well as in
the Des Moines lobe in Iowa and the upstream part of the
Wabash River in Indiana and Ohio for TN. The TP map indicates
the strong linkage of sediment and P losses in SWAT, while the
TN map reveals the role of tile drainage in N losses, which rapidly
transfers leached NO3–N to streams and rivers. The areas with high
tile drainage density are mostly concentrated in central and north-
ern Iowa, Indiana, western Ohio and central Illinois, where the
greatest N losses were simulated.

If these maps are studied in detail, HRUs (12-digit watersheds)
with substantially different sensitivity in losses of various kinds of
pollutants can be identified. Thus, an HRU with very high vulnera-
bility in P losses may be of moderate vulnerability in N losses. This
can be attributed less to the uneven N and P input to this HRU and
more to the different mechanisms governing N and P movement on
the land, which are associated with surface and subsurface
pathways of pollutant transport. Such differences are crucial for
the selection of appropriate management alternatives, which
should be selected according to the environmental target (kind of
pollutant) that policy makers set as an objective.

Further, Fig. 7 provides the mean annual corn and soybean
yields predicted by SWAT in the Corn Belt Region. Corn yield is
clearly greater within the State of Iowa, especially in the Des
Moines lobe as well as in scattered areas across Minnesota and
the States lying within the OTRB. In all these areas corn production
exceeds 10 t/ha/y. Soybean yield on the other hand exceeds the
value of 3 t/ha/y. In this particular case however, the model main-
tained the highest yields across a wider area within the Corn Belt
including significant areas of all States in the region. This can be
attributed to the fact that as a legume, soybean does not meet N
stress in areas with significant runoff and N leaching such as those
in the eastern Corn Belt, namely the areas within the OTRB.

3.5. Discussion and recommendations on large scale integrated
modeling

To the best of our knowledge the present study is the first to
report an extensive evaluation of SWAT hydrologic results on a
monthly basis and at multiple sites within the wider UMRB and
OTRB areas, compared to previous studies that reported hydrologic
performance numbers either at a coarser time step and/or at a lim-
ited number of gauge sites (Demissie et al., 2012; Jha et al., 2006,
2013; Kannan et al., 2008; Srinivasan et al., 2010; Santhi et al.,
2008, 2014; Secchi et al., 2011; Wang et al., 2011; Wu et al.,
2012a, 2012b). This study is also the first which is based on a
12-digit model development to such a large spatial extent and



Fig. 7. Mean annual water yield, sediments, TN and TP loads to the surface water system of UMRB and OTRB as well as average corn and soybean yields per 12-digit subbasin
as simulated by SWAT within the entire simulation period 1975–2010.

Y. Panagopoulos et al. / Journal of Hydrology 524 (2015) 348–366 363
presents the most extensive assessment of aggregated SWAT
monthly pollutant estimates performed to date for these two
regions. For example, Santhi et al. (2014) reported only mean
annual estimates of sediments and nutrients for the OTRB with
similar SWAT performance to our models. On the other hand,
Secchi et al. (2011) presented annual R2 and NS statistics only for
Grafton in the UMRB with marginally acceptable values for an
annual time step. Zhang and Wu (2013) also reported SWAT results
only at Grafton, which is the only previous study presenting water
quality results on a monthly basis. However, the graphs they pre-
sent for suspended sediments, TN and TP show a clear mismatch
between observed and simulated peaks. Jha et al. (2013) on the
other hand, reported mean annual N loadings from the 8-digit
HUCs of the UMRB and compared them with the respective
SPAtially Referenced Regressions On Watershed attributes
(SPARROW) predictions, showing a relatively weak correlation, in
part due to the lack of accounting for manure applications.

Within the extensive presentation of this modeling effort we
tried to share our experiences with data manipulation, model
development and results evaluation. A clear objective of this paper
however, is to end with a list of recommendations for large scale
SWAT modeling either in the Corn Belt or everywhere around the
globe. This list is presented next in the form of critical discussion
points related to the modeling presented.

� The use of 12-digit watersheds to model the large Corn Belt
region in the US assisted the model to capture the key informa-
tion of climate and topography and provide acceptable hydro-
logic and water quality estimates all across the region. Given
the increased accuracy in capturing climate and slope differ-
entiation it seems that the ‘12-digit and dominant HRU’ option
used in this study is better even if land complexity is similar or
a bit coarser compared to the option of having bigger subbasins
with multiple HRUs. Moreover, given the resolution of the avail-
able soil and management data in the region (and mostly in every
large scale project) we do not see the need for the division of the
12-digit watersheds into multiple HRUs at this stage. Soils are
coarse and most management data types (fertilizers, tillage, con-
servation practices, tiles) are not available at a more refined spa-
tial scale other than the 8-digit watershed level. Therefore, to
introduce HRUs within the current 12-digit watershed of the pro-
ject we would need the more detailed SSURGO soils for the US as
well as more detailed and reliable management information such
as fertilization rates, tile drainage, tillage types and other con-
servation practices, from extensive surveys across the area.
� In our opinion the use of 8-digits for modeling these large areas

does not make sense any more given the large number of pre-
cipitation stations located in the area, the resolution of the
available digital elevation models and the progress that has
been done with SWAT versions and interfaces in supporting
large watershed projects. Subbasins in SWAT govern mostly
hydrologic processes with climate, slopes and routing processes
being associated with their number/size/location, thus, it is
advisable, when possible, to rely on a large number of subbasins
in SWAT projects instead of large number of HRUs.
� Calibration of such large and detailed watershed schematized

projects need however efficient approaches and tools. The
Sequential Uncertainty Fitting algorithm embedded in the
auto-calibration and uncertainty analysis SWAT-CUP program
can facilitate the calibration of such models in reasonable time
and at multiple locations simultaneously, which is generally
unfeasible by following a manual approach. As proved from
the results of this study, SWAT-CUP is an indispensable tool
for identifying the magnitude of hydrologic processes across
different parts of large river basins by narrowing the uncer-
tainty of predictions.
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� On the other hand, SWAT water quality calibration is recom-
mended to be done manually (no-automatically). One reason
is that water quality (sediments, nutrients) is governed by
parameters that are defined at the entire basin level, thus, an
automatic calibration at several gauge-sites is not very useful.
A manual calibration keeps the model manipulation under con-
trol preventing the user from being lost in highly uncertain
paths. From our analysis it is also shown that although SWAT
contains a large amount of water quality parameters, in practice
only a few of them are sensitive and very useful in calibration.
This may be attributed to the reduced ability of the model to
simulate pollutant transport compared to hydrology and its
shortcomings in appropriately considering the effect of specific
parameters on water quality simulations, such as for example,
the initial levels of nutrient pools in soils.
� To evaluate water quality performance of SWAT at a very large

scale we also recommend the use of the PBIAS index as a first
evaluation criterion. In such large projects what is of utmost
importance is to ensure that predictions are within a good range
of observations instead of simulating a very successful graph.
Pollutant load dynamics, although important, are more difficult
to predict and what can be more reliably addressed is the accu-
mulated load within a specific time period. This is however
appropriate to address several environmental problems such
as the water quality degradation of water bodies and estuaries,
for example the guld of Mexico hypoxia (Kling et al., 2014).
� To this end, the consideration of maps showing spatial differ-

entiation of a variable across large areas can be more reliable
(reduced uncertainty) when these maps depict annual or mean
annual estimates. Even if the depicted data (absolute values) of
these maps include uncertainty they are highly informative in
showing the relative importance of an area in water pollution
or crop growth compared to others. This study strongly agrees
with the consideration of SWAT as a powerful tool for spatially
allocating pollutant loads and crop yields under large time steps
when appropriately parameterized (Niraula et al., 2012;
Panagopoulos et al., 2011), while this argument becomes stron-
ger with the 12-digit schematization of the Corn Belt area due
to the detailed consideration of climate and slope variability.
In the particular case of the depicted crop yields, uncertainties
may increase due to other factors such as the inability of the
model to consider pest diseases in specific areas and years or
genetic improvements of crop varieties that have resulted in
increased yields in areas of low productivity.
� This study also tried to face reservoir operation difficulties. We

found that reservoir water quality simulation in SWAT with the
use of the settling rate parameters has severe problems of
rationality. However, the fact that most reservoirs in the study
region have not water supply as primary purpose (they have
the production of hydroelectricity, navigation or flood control)
implies that no water is practically lost from its natural path.
This can support the decision in this study to exclude pollutant
trapping simulation in the reservoirs by deactivating them. As
water from the reservoirs in the Corn Belt is released down-
stream rather frequently, it can be assumed that both sediments
and nutrients have no significant time to be settled and are
mostly transported downstream. However, reservoirs operation
should definitely be improved in SWAT to be able to simulate
properly their potential impact on pollutant transport. To this
end, real and frequent measurements upstream and down-
stream reservoirs should be conducted to relate inflows, reser-
voir characteristics and operation rules with measured
outflows. Given our gained experience the simulation of reser-
voirs is not suggested in water quality SWAT studies.
� Finally, it would also be ideal to have complete time-series of

measured pollutant loads all across the Corn Belt region. Due
to the reduced length of observed data in some stations the
uncertainty of model predictions increases there. However, for
such a large area and long simulation period we are rather satis-
fied with the data obtained, while the use of PBIAS to evaluate
our estimations can face the problem of data length in some cir-
cumstances. The use of other evaluation indices is certainly
recommended in future updates of the current model.

4. Summary and conclusions

This study presented a refined SWAT modeling approach for the
Corn Belt region of the Midwestern US, which was based on an effi-
cient combination of a semi-automatic hydrologic calibration and
uncertainty analysis and a manual water quality calibration,
appropriate for large-scale projects. One key point of the present
research is that the calibration and validation of such large hydro-
logic systems is an intensive task, which can be gradually
improved as more accurate data and improved model algorithms
become available, allowing more robust assumptions of reality.
Incorporation of HRUs within the 12-digit subwatersheds is an
important future improvement which will allow better representa-
tion of different combinations of cropland landscapes, soils and
management practices within the two simulated regions when
detailed layers of these data are disclosed. It is anticipated that
the needed improvements in several SWAT routines in com-
bination with the improved representation of existing con-
servation practices, wetlands, and reservoirs, fertilizer and
manure inputs, and other refined inputs such as the use of
SSURGO soil data, will improve the current large modeling effort
and should be incorporated in the future versions of the models.

In the UMRB and OTRB, both flow and pollutant predictions at
the monthly basis were in most cases impressively good given
the size and the complexity of the landscape simulated. Thus, the
first complete phase of calibration and validation results presented
in this study underscore that the system can replicate the key
hydrologic and nutrient loss dynamics occurring in the basins.
The 12-digit watershed based modeling system that has been
developed promises to enhance targeting of cropping systems
and management practices on sensitive cropped landscapes in
relation to local water quality issues and the seasonal hypoxic zone
that forms annually in the northern Gulf of Mexico. It is believed
that despite possible limitations and needs for improvements,
the current modeling system provides a reliable approach to sup-
port the evaluation of environmental and economic impacts of
agricultural management in the Corn Belt under existing and
future climates, and the identification of possible implications for
all interested parties.
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