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Abstract: In recent years, large-scale watershed modeling has been implemented broadly in the
field of water resources planning and management. Complex hydrological, sediment, and nutrient
processes can be simulated by sophisticated watershed simulation models for important issues
such as water resources allocation, sediment transport, and pollution control. Among commonly
adopted models, the Soil and Water Assessment Tool (SWAT) has been demonstrated to provide
superior performance with a large amount of referencing databases. However, it is cumbersome
to perform tedious initialization steps such as preparing inputs and developing a model with each
changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS)
is introduced to serve as a national-scale Decision Support System (DSS) to conduct challenging
watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A &
M University, and supported by the U.S. Environmental Protection Agency. Three different spatial
resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12) and three temporal scales (time
steps in daily/monthly/annual) are available as alternatives for general users. In addition, users can
specify preferred values of model parameters instead of using the pre-defined sets. With the aid of
HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only
providing the ending HUC number of the targeted watershed and the simulation period. In the case
study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and
associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS
framework while conducting relevant topics or policies in the future.

Keywords: decision support system; watershed modeling; web-based application; model
calibration; SWAT

1. Introduction

In recent years, large-scale watershed modeling has been implemented broadly in the field of
water resources planning and management [1,2]. Complex hydrological, sediment, and nutrient
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processes can be simulated by sophisticated watershed simulation models so that substantial issues
such as pollution control, sediment transport, water resources allocation and reservoir operation can be
further explored [3,4]. Modelers and decision-makers can take advantage of the scientifically credible
results as a reference to conduct corresponding acts or general policies in practice [5].

Several commonly adopted models such as the Agricultural Policy/Environmental eXtender Tool
(APEX [6]), Hydrological Simulation Program-Fortran (HSPF [7]), and Soil and Water Assessment
Tool (SWAT [8]) are suitable for large-scale analysis. SWAT has been demonstrated to have acceptable
performance in terms of model predictions by reflecting anthropogenic activities in detail [9]. SWAT
is developed and maintained by the Agricultural Research Service, U.S. Department of Agriculture
(USDA-ARS), for the past 30 years. More than 2000 peer-reviewed journal articles are available online
for SWAT users as a reference of applications [10]. The operation of SWAT can be fairly straightforward
by implementing the user-friendly ArcSWAT interface maintained by Texas A & M University.
Similar to the Geographic Information System (GIS), users can delineate the targeted watershed
and incorporate essential information such as soil properties, land use type, and conservation practices
through step-by-step tutorials. Details of theories and regulated format can be found in the SWAT
manual [11].

The calibration/validation of SWAT prior to application is not strictly necessary [11]. However, it
is rarely the case that SWAT is deployed without carrying the additional effort of calibration in practice.
It is generally performed because better model performance is always more favored in terms of model
predictions and referable statistical guidelines [12,13]. In addition, interactions among hydrologic,
sediment and nutrient processes may not be reflected accurately by default values of model parameters.
To date, model calibration/validation can be conducted by multiple optimization tools such as the
Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT [14]) and the SWAT Calibration
and Uncertainty Procedures (SWAT-CUP [15]). Users are able to perform the calibration/validation
process within an affordable timespan depending on the choice of optimization schemes [16].

In considering the efficient tools available to alleviate great effort (specifically the calibration/
validation procedure) during watershed modeling, it is still cumbersome to perform tedious
initialization steps such as preparing inputs and developing a model with a changing targeted study
area. Therefore, a Decision Support System (DSS) that could incorporate input watershed information
(e.g., soil data, land use, etc.) with simulation models is required to provide essential assistance [17,18].
In this study, the Hydrologic and Water Quality System (HAWQS [19]) is introduced as a national-scale
DSS capable of performing challenging watershed modeling topics. HAWQS is a web-based DSS
(designed for the contiguous United States with 48 states) supported by the U.S. Environmental
Protection Agency (USEPA) and developed/maintained by Texas A&M University. With the aid of
HAWQS, users can generate a SWAT project (default parameters generated by HAWQS have been
preliminarily calibrated) within a few minutes by only providing the ending Hydrologic Unit Code
(HUC) and the simulation period (note that any watershed project initiated through ArcSWAT may
require a further calibration routine to ensure the quality of the simulation performance). The SWAT
project provided by HAWQS can be conducted in three different spatial resolutions (HUC8, HUC10,
and HUC12) and varying temporal scales (time steps in daily/monthly/annual). In addition, users
can specify preferred values of model parameters instead of using the pre-defined sets.

HAWQS has the advanced capacity of integrating watershed modeling in multiple spatial and
temporal scales, but there is no research conducted using HAWQS at this time. The major goal of this
study is to introduce the framework of HAWQS and the corresponding applications which include
the comparisons of performance between HAWQS and ArcSWAT. In the case study, the Illinois River
Watershed (IRW) is used to demonstrate the operation of HAWQS in detail. Specifically, the following
objectives are defined: (i) to perform a complete setup procedure of HAWQS; (ii) to provide preliminary
investigation and comparisons between modeling results of water quantity and quality generated by
HAWQS and ArcSWAT; and (iii) to examine watershed output responses using multiple functionalities
of HAWQS.
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2. Framework of HAWQS and Watershed Modeling

2.1. SWAT Model

The SWAT model is a processed-based, semi-distributed watershed scale simulation model
developed by the USDA-ARS [20]. In SWAT, a unique concept of hydrological response units (HRUs)
is implemented in which land use, soil type, and land slope are incorporated within each subbasin,
respectively. Water balance, sediment and nutrient losses are calculated on the basis of HRUs and
summarized for each subbasin for subsequent routing through each reach of the watershed. SWAT has
been implemented on various topics such as hydrologic processes, sediment transport, nutrient/carbon
discharges, bacteria, and plant growth in the field of water resources, and environmental and
agricultural engineering, with a large number of available literature as references [21,22].

SWAT is developed to conduct large-scale watershed simulations with the support of
corresponding information [11]. A complete SWAT project can only be formulated through the use of
ArcSWAT [23]. However, it can also be potentially challenging to collect and perform the initialization
procedure such as collecting field data and delineating the targeted watershed. The development
of HAWQS helps to alleviate the time-consuming steps for future users. In addition, user-specified
thresholds (e.g., land use, soil types during the grouping step for HRUs) and model parameters can be
assigned easily through this tool. Details of HAWQS are introduced in the following sections.

2.2. HAWQS Framework

The operational framework of HAWQS is shown in Figure 1. The HAWQS framework can be
grouped into four major categories: (i) initialization; (ii) customization; (iii) output management; and
(iv) output demonstration. Since HAWQS is a web-based DSS (servers are located at Texas A&M
University), users do not need to have any computational capacity to carry through the process of
delineation, simulation, or demonstration. In addition, scheduled computational work (e.g., SWAT
simulations) will be continuously carried out even when the web interface is closed. Users have the
option to be informed via email when the conducted runs are completed. The data used in HAWQS is
briefly described as follows:

Atmosphere Deposition—National Atmospheric Deposition Program (NADP) [24]
Climate—Parameter-elevation Regressions on Independent Slopes Model (PRISM) [25]
Land Use (non-agricultural)—National Land Cover Database (NLCD) [26]
Land Use (agricultural)—National Agricultural Statistics Service (NASS) [27]
Reservoirs—National Inventory of Dams (NID) [28]
River Discharge—United States Geological Survey (USGS) [29]
Soil—States Derived from the NRCS State Soil Geographic (STATSGO) [30]
Topography—United States Geological Survey (USGS) [31]
Water Usage—United States Geological Survey (USGS) [32]
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exactly, the watershed will be delineated within the range accordingly. In addition, users can select 
the data resolution during this stage such as HUC8, HUC10, and HUC12. 

Figure 1. Organogram of the HAWQS operational framework.

2.2.1. Initialization

There are two major steps of the initialization stage: (i) watershed selection and (ii) watershed
confirmation. As shown in Figure 2, three alternatives are available to choose (delineate) the targeted
watershed. The first option is designed for beginners who are not familiar with or do not have access
to specific HUC ID numbers. In this case, users can enter the projected (or estimated) latitude and
longitude to find the proper HUC IDs. In the second option, users can input specific HUC IDs and also
check for detail connections as confirmation. If users know the starting and ending HUC IDs exactly,
the watershed will be delineated within the range accordingly. In addition, users can select the data
resolution during this stage such as HUC8, HUC10, and HUC12.
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After the watershed is selected and delineated, users can specify some essential information such 
as the project name, simulation start/end date, number of warm-up years, printout time steps, and 
email notifications, which are required for the following simulation process. As shown in Figure 3, the 
recommended simulation dates are provided in the comments. The total length of the recommended 
simulation dates is based upon the available weather data such as precipitation and temperature. 
However, users can still change/add it later if more data is available. 

Figure 2. Initialization—watershed selection.

After the watershed is selected and delineated, users can specify some essential information such
as the project name, simulation start/end date, number of warm-up years, printout time steps, and
email notifications, which are required for the following simulation process. As shown in Figure 3, the
recommended simulation dates are provided in the comments. The total length of the recommended
simulation dates is based upon the available weather data such as precipitation and temperature.
However, users can still change/add it later if more data is available.
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minimum percentage values, respectively. In this case, HRUs of three different groups under the 
specified thresholds will be eliminated. Meanwhile, users can also select any land use that needs to 
be exempted from the filter. 

In SWAT, model parameters can be categorized as basin and subbasin levels. For basin level 
parameters, the same values will be applied to the entire watershed. On the other hand, subbasin 
level parameters are more flexible and can be defined for each subbasin or single HRUs. As shown 
in Figure 4, basin level settings include basin input data, fertilizer input data, nutrient efficiency, 
urban input data, and land use update. Users can assign preferred values and ranges to basin level 
parameters for water balance (eight parameters), surface runoff (four parameters), nutrient cycling  
(seven parameters), and reaches (12 parameters) (see Tables A1–A4). For fertilizer input data, 54 
combinations of fertilizers are available in the SWAT default. Users can update fertilizer information 
by changing fractions of mineral N (nitrate and ammonia), mineral phosphorus, organic nitrogen, 
and organic phosphorus through HAWQS. Users can also adjust the efficiency of fertilizer 
application in the following table. Similarly, 13 sets of urban input data can also be further tuned by 
10 variables such as fraction of total impervious area in urban land type and curb length density in 

Figure 3. Initialization—watershed confirmation.

2.2.2. Customization

There are three major steps of the customization stage: (i) HRU settings; (ii) basin level settings;
and (ii) subbasin level settings. As shown in Figure 4, users can set the grouping thresholds in
percentage for the SWAT project. Land use, soil type, and slope class can be categorized based on
minimum percentage values, respectively. In this case, HRUs of three different groups under the
specified thresholds will be eliminated. Meanwhile, users can also select any land use that needs to be
exempted from the filter.

In SWAT, model parameters can be categorized as basin and subbasin levels. For basin level
parameters, the same values will be applied to the entire watershed. On the other hand, subbasin
level parameters are more flexible and can be defined for each subbasin or single HRUs. As shown
in Figure 4, basin level settings include basin input data, fertilizer input data, nutrient efficiency,
urban input data, and land use update. Users can assign preferred values and ranges to basin level
parameters for water balance (eight parameters), surface runoff (four parameters), nutrient cycling
(seven parameters), and reaches (12 parameters) (see Tables A1–A4). For fertilizer input data, 54
combinations of fertilizers are available in the SWAT default. Users can update fertilizer information
by changing fractions of mineral N (nitrate and ammonia), mineral phosphorus, organic nitrogen, and
organic phosphorus through HAWQS. Users can also adjust the efficiency of fertilizer application in
the following table. Similarly, 13 sets of urban input data can also be further tuned by 10 variables
such as fraction of total impervious area in urban land type and curb length density in urban land type.
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Lastly, users have a decision (optional) to update land use data during a simulation run. Details and
the corresponding format can be found in the SWAT manual [11].
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For subbasin level inputs, users can specify parameter values (e.g., curve number, pothole
parameters) or relevant inputs (e.g., sediment routing methods, climate inputs, point sources, and
weather generator) in subbasin or HRU levels. For example, the curve number can be adjusted by a
percentage increase/decrease to all or selected HRUs. Pothole parameters shown in Table B1 can be
reassigned as preferred values from users. Five alternative sediment routing algorithms are available
including the simplified Bagnold’s Equation, Bagnold’s Equation with modifications by each particle
size, the Kodoatie model, the Molinas and Wu model, and Yang’s sand and gravel model. Climate
inputs and weather generators such as precipitation, temperature, and solar radiation can be further
adjusted by percentage for each subbasin and also by specified months. For point source inputs, users
can choose to add daily, monthly, yearly, or a constant quantity for pollutants such as nitrate, nitrite,
mineral phosphorus and bacteria.

2.2.3. Output Management

In SWAT, simulation outputs can optionally be printed and are saved by changing the settings in
the “file.cio” file. HAWQS also provides users with selected outputs to be exported and demonstrated
later. As shown in Figure 5, users have optional simulation results for reach output variables (20
in maximum, Table C1), subbasin output variables (15 in maximum, Table C2), and HRU output
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variables (20 in maximum, Table C3). In addition, users can select specified HRUs (20 in maximum)
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Figure 5. Output management: (i) reach/subbasin/HRU parameters; (ii) HRU output variables; and
(iii) execution of the SWAT project.

To perform model runs, five tasks are available for SWAT simulations (see Figure 5): (i) write
SWAT input files; (ii) write SWAT editor tables; (iii) run SWAT 2012 rec. 636 (or the latest SWAT
revision); (iv) process SWAT output files; and (v) create downloadable zip of project files. Users
can take advantage of these steps as a part of the operating procedure (e.g., manual calibration) by
changing parameter values to obtain better-calibrated results. In addition, the conducted SWAT project
will be saved as a zip file so that users can use it for the following work with minimum effort.

2.2.4. Output Demonstration

After the SWAT project is conducted (see Figure 6), users have options to check error statistics for
the corresponding reaches and summary chart for major model responses (e.g., surface runoff, lateral
flow, and groundwater). In addition, the post-processing program (SWAT-Check, [33]) and the water
quality index [34] are linked with HAWQS to provide professional assessment of model outputs.

SWAT-Check was developed to conduct a stand-alone evaluation of SWAT outputs. A wide
variety of model predictions can be demonstrated in graphical fashion so that users can have a better
comprehension of the general performance of the model simulation. In HAWQS, it is one of the output
options for users to perform SWAT-Check with one click. As shown in Figure 7, hydrological processes
such as precipitation, infiltration, and ground water flow can be validated by visually assessable
model outputs.
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HAWQS provides a Water Quality Index (WQI) which is a composite indicator that combines
information from user-defined measurement thresholds from eight water quality parameters into a
single overall value (on a 0-to-100 scale). The eight water quality parameters and their measurement
thresholds are shown in Figure 8. If no user-defined thresholds are provided, the HAWQS uses the
default threshold as recommended by USEPA. The Water Quality Index (0–100) is further used to
assign the water bodies as highly impaired (WQI: 0–24.9), boatable (WQI: 25–49.9), fishable (WQI:
50–69.9), swimmable (WQI: 70–94.9), or safe for drinking (WQI: 95+), and associated tabular and
spatial information is provided as an output summary. Such information provides guidance for states
and tribes to use in adopting water quality standards. It further assists in protecting aquatic life as
well as human health.
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3. Implementation of the HAWQS

HAWQS was used to conduct watershed simulation on the IRW (Figure 9) at the resolution level
of HUC 8. A SWAT project was initiated and evaluated for IRW by the HAWQS web interface. The
operational steps and the associated analysis are as follows:
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Figure 9. Location of the Illinois River Basin (IRW).

3.1. Study Area

IRW has a drainage area of 74,677 square kilometers and drains 44% of the state of Illinois and
about 10,360 square kilometers of area in the states of Indiana and Wisconsin. The Illinois River is
approximately 439 km in length and joins the Mississippi River near Grafton, Illinois, approximately
40 km northwest of St. Louis and about 30 km upstream from the confluence of the Missouri and
Mississippi rivers. The river is one of the largest tributaries of Mississippi and connects Lake Michigan
to the Mississippi River. Major branches and reaches of the IRW include Des Plaines, Kankakee,
Iroquois Fox, Vermilion, Mackinaw, Spoon, Sangamon, and La Moine in the states of Illinois, Indiana
and Wisconsin. Sedimentation and water quality are major issues in the IRW. As a result, the IRW
has become a focus for state and federal agencies and other organizations interested in practices of
integrated water management. Several best management practices (BMPs) are being discussed at
watershed scale to improve sedimentation, water quality and other relevant issues [35].

3.2. Watershed Setup with the HAWQS Interface

3.2.1. Step 1: Initialization of the Watershed

Upon creating an account, the HAWQS interface gives three options for watershed selection
(Figure 2). Option 1 (default option) can be deployed by clicking a point on the map or entering the
location of the latitude and longitude. Options 2 and 3 are for advanced users that are able to enter
the HUC ID directly. In this study, Option 3 was chosen and the ending HUC 8 ID of 07130011 was
entered. This resulted in creating a SWAT model project with 19 subbasins from the head watershed of
07130011 with a start date no earlier than 1960 and an end date no later than 2010.

After the watershed selection is completed, users shall conduct the watershed confirmation
(Figure 3). The start and end date of the model simulation was set from the first day of 1980 until the
end of 2001 (only for demonstration purposes; different time periods were used in the case study of the
later sections) with three years of warm-up period. The printout setting was assigned to be in monthly
time steps.
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3.2.2. Step 2: Customization of SWAT Input Data

In Step 2, options are available to set HRU thresholds, edit general watershed inputs and databases,
edit subbasin inputs, and edit SWAT outputs for printing (Figure 4). In this study, HRU thresholds
were set to 4% each for land use, soil and slope categories to eliminate minor land uses, soils, and
slopes in each subbasin. This resulted in a significant reduction of HRUs from 4856 to 707. As
mentioned previously, users can assign preferred parameter values at HRU, subbasin, and basin levels,
respectively. In addition, it was also noted that the HAWQS is capable of providing preliminarily
calibrated parameters (as the default) in advance. Therefore, none of the other inputs in terms of the
SWAT model parameters were changed in this project.

3.2.3. Step 3: Run SWAT Project Tasks

In Step 3, options are available for writing SWAT input files, writing SWAT editor tables, running
SWAT 2012 (revision 636), processing SWAT output files, and creating a downloadable zip of project
files (Figure 5). In this study, we chose to write SWAT input files, enable SWAT editor tables, run SWAT
executable, process SWAT output files, and a create a downloadable zip of project files so that it can
be used externally by the SWAT editor program which can read the outputs through the interface.
Step 3 is considered not only an easy way of saving/exporting initialized watershed projects, but it
also can be used as an online manual calibration framework (manual calibration can be conducted
by changing values of specific model parameters through the HAWQS interface) for users to derive
results promptly.

3.3. Verification of the SWAT Model

Verification or validation is the process used to demonstrate that the model can produce realistic
results in a particular application [36]. The SWAT model was executed for a period of 1980 to 2001
with three years as the warm-up period (1980 to 1982). The results produced by the SWAT model
were verified using observed data. Observed data of flow, sediment and nitrogen at the United States
Geological Survey (USGS) gauge station (5586100) at Valley City on the Illinois River was used to
evaluate the model performance. Verification was done in two time periods to make sure the model
simulations are temporally reasonable. In the case study, the first time period selected was from 1983
to 1989 and the second period was 1990 to 2001.

3.4. Results

3.4.1. Results of Calibration and Validation

In order to demonstrate the improvement in terms of model performance between HAWQS
and ArcSWAT, another IRW project was conducted by ArcSWAT. Table 1 shows summary statistics
of the Nash-Sutcliffe Efficiency coefficient (NSE (Equation (1) [13,37]) and Percent Bias (PBIAS
(Equation (2) [12,13]) for monthly flow, sediment and total nitrogen (TN) for calibration and validation
time periods. In both questions, yObs

i is the observed data at time step i; ySim
i is the simulated model

output at time step i; yMean
i is the average observed data at time step i; N is the total time span.

As shown in Table 2, the General Performance Ratings (GPR) were implemented as the quantitative
criteria recommended by Moriasi et al. [12] and the monthly time step was used to evaluate the
model performance.

NSE “ 1 ´

řN
i“1

´
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i

¯2

řN
i“1

`
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i
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řN

i“1

´
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i

¯

řN
i“1

`
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i

˘
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Table 1. Error statistics for monthly flow, sediment and total nitrogen (TN) for calibration (1983–1989)
and validation (1990–2001) periods.

Output
Variables

IRW (HAWQS) IRW (ArcSWAT)

Calibration Validation Calibration Validation

NSE PBIAS (%) NSE PBIAS (%) NSE PBIAS (%) NSE PBIAS (%)

Flow 0.70 8.51 0.72 13.91 0.61 7.86 0.49 21.1
Sediment 0.66 26.55 0.67 19.07 ´0.05 61.56 ´0.14 57.86

Total Nitrogen 0.36 ´4.15 0.23 26.78 0.26 45.14 ´0.22 68.54

NSE: Nash Sutcliffe Efficiency coefficient; PBIAS: Percent bias; IRW: Illinois River Basin.

Table 2. Quantitative criteria categorized by the General Performance Ratings [12].

Performance Rating NSE
PBIAS (%)

Streamflow Sediment Nitrogen

Very Good 0.75 < NSE ď 1.00 PBIAS < ˘10 PBIAS < ˘15 PBIAS < ˘25
Good 0.65 < NSE ď 0.75 ˘10 ď PBIAS < ˘15 ˘15 ď PBIAS < ˘30 ˘25 ď PBIAS < ˘40

Satisfactory 0.50 < NSE ď 0.65 ˘15 ď PBIAS < ˘25 ˘30 ď PBIAS < ˘55 ˘40 ď PBIAS < ˘70
Unsatisfactory NSE ď 0.50 PBIAS ě ˘25 PBIAS ě ˘55 PBIAS ě ˘70

NSE: Nash-Sutcliffe efficiency coefficient; PBIAS: Percent bias.

In the first time period (1983–1989), the model performance by HAWQS was considered good for
flow and sediment and unsatisfactory for TN as per NSE criteria. As per PBIAS criteria, the model
performance was considered “Very Good” (also see Table 1) for flow and TN and good for sediment.
In the second time period (1990–2001) period, the model performance was considered good for flow,
sediment and unsatisfactory for TN as per NSE criteria. The model performance was good for flow,
sediment and TN based on PBIAS criteria. On the other hand, results generated by ArcSWAT are
considerably worse than HAWQS. Flow simulation (“Satisfactory”) in the calibration period is the
only output variable that had a performance better than unsatisfactory. Predictions for sediment and
total nitrogen are evidently far away from acceptable (NSE values are mostly negative with fairly high
PBIAS compared to the results from HAWQS).

The time series comparisons between observed and predicted flow, sediment and TN for the
calibration and validation periods are shown in Figure 10. Comparisons of temporal processes show
that the model predictions of HAWQS were in close agreement with the observed data. In addition,
it is clear that temporal processes generated by ArcSWAT are apparently off the major trend and
typically underestimated. It was mentioned previously that further calibration using auto-calibration
tools (e.g., IPEAT, SWAT-CUP) after downloading the SWAT model from the HAWQS interface (or
ArcSWAT) will improve the statistics as well as agreements of temporal time series. However, one
of the major advantages of HAWQS is identifying the targeted area and providing supplementary
information (e.g., model predictions of flow, sediment, and total nitrogen) within fairly short periods
of time which cannot be done by ArcSWAT. The availability of general functions between HAWQS and
ArcSWAT are compared in Table 3. Demonstrated limitations of ArcSWAT indicated that the dominant
improvements by HAWQS over ArcSWAT have shown great advantages not only in timely matters
(e.g., urgent requests need immediate solutions) but also in general applications.
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Figure 10. Time series comparisons between observed and predicted flow, sediment and TN for 
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Figure 10. Time series comparisons between observed and predicted flow, sediment and TN
for calibration and validation periods for the Illinois River Basin. (a) Streamflow; (b) Sediment;
(c) Total Nitrogen.

Table 3. General comparisons between HAWQS and ArcSWAT.

Comparisons HAWQS ArcSWAT

Graphical Demonstration Available Not Available
Available to assign preferred parameter values Available Not Available
Available for remote simulation Available Not Available
Data Collection No Need Required
Calibration requirement No Need Required
Required Software No Need ArcSWAT
Required Hardware Regular Desktop Regular Desktop
Spatial resolution 3 Options Not Available
Operation time Few Minutes Hours at Minimum
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3.4.2. HAWQS Summary Charts

The SWAT model conducted by the HAWQS web interface was re-run, and it produced three
summary charts using the data from 1983 to 2001. The first chart is the average monthly basin values
for snowfall, surface runoff, lateral flow and water yield for each month (Figure 11). The month of
May produced the highest water yield and surface runoff while the month of August produced the
lowest water yield and surface runoff. Snowfall is also a major contributor in this watershed, especially
in the months of December to April. The second chart shows the average monthly sediment yield
for each month (Figure 12). Similar to flow, the month of May produced the highest sediment yield
while the month of August produced the least. The third chart shows the average annual basin values
which are the components of the hydrologic budget in the watershed (Figure 13). Figure 13 helps users
understand various hydrological components in the watershed. For example, the ratios of streamflow
and evapotranspiration to precipitation in this watershed are 0.47 and 0.53, respectively. In addition,
the contributions of baseflow and surface runoff in this watershed are 18% and 82%.

The spatial average annual WQI in the IRW is shown in Figure 14. The WQI ranged from 20
to 28 where 12 HUC 8 watersheds are boatable and six HUC 8 watersheds are highly impaired. Highly
impaired watersheds are generally distributed on the northwestern side of the watershed where
agricultural activities mostly dominate. Figure 14 shows that 69% of the stream length is boatable
while 30% of the stream length is impaired. The water quality of streams in the IRW is neither
swimmable nor safe for drinking according to the WQI with default measurement thresholds used in
the investigated watershed.
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application demonstrated in this study has shown great disadvantages in major categories. With the
aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by
only providing the ending of a HUC number of the targeted watershed and the associated simulation
period. Scientists and decision-makers can take advantage of the propounded tool on a national scale
with minimum effort and without experiencing the tedious procedure of constructing a watershed
project. Therefore, more resources in terms of time and financial support can be invested in other
relevant issues.
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Appendix A

Table A1. Adjustable SWAT parameters for water balance functions.

Water Balance

Parameter Description LB UB Default

SFTMP Snowfall temperature (˝C) ´5 5 1
SMTMP Snow melt base temperature (˝C) ´5 5 0.5
SMFMX Melt factor for snow on 21 June (mm¨ H2O/˝C -day) 0 10 4.5
SMFMN Melt factor for snow on 21 December (mm¨ H2O/˝C -day) 0 10 4.5

TIMP Snow pack temperature lag factor 0 1 1
ESCO Soil evaporation compensation factor 0 1 0.95
EPCO Plant uptake compensation factor 0 1 1

IPET Potential evapotranspiration (PET) method
[Penman-Monteith/Priestley-Taylor/Hargreaves]

Table A2. Adjustable SWAT parameters for surface runoff functions.

Surface Runoff

Parameter Description LB UB Default

CNCOEF Plant ET curve number coefficient 0.5 2 1
SURLAG Surface runoff lag time 0.5 24 4

ICN Daily curve number calculation method [Soil moisture/Plant Evapotranspiration]
ICRK Daily curve number calculation method [No model crack flow/Model crack flow in soil]

Table A3. Adjustable SWAT parameters for nutrient cycling functions.

Nutrient Cycling

Parameter Description LB UB Default

RCN Concentration of nitrogen in rainfall (mg N/L) 0 15 1
CDN Denitrification exponential rate coefficient 0 3 0

SDNCO Denitrification threshold water content 0 1 0
NPERCO Nitrate percolation coefficient 0 1 0.2
PPERCO Phosphorus percolation coefficient (10 m3/Mg) 10 17.5 10
PHOSKD Phosphorus soil partitioning coefficient (m3/Mg) 100 200 175

PSP Phosphorus sorption coefficient 0.01 0.7 0.4

Table A4. Adjustable SWAT parameters for functions within reaches.

Reaches

Parameter Description LB UB Default

MSK_COL1 Calibration coefficient used to control impact of the storage time constant
for normal flow 0 10 0

MSK_COL2 Calibration coefficient used to control impact of the storage time constant
for low flow 0 10 3.5

MSK_X Weighting factor controlling relative importance of inflow rate and outflow
rate in determining water storage in reach segment 0 0.3 0.2

TRANSRCH Fraction of transmission losses from main channel that enter deep aquifer 0 1 0
EVRCH Reach evaporation adjustment factor 0.5 1 0.4

PRF Peak rate adjustment factor for sediment routing in the main channel 0 2 1

SPCON Linear parameter for calculating the maximum amount of sediment that can
be reentrained during channel sediment routing 0.00001 0.01 0.001

SPEXP Exponent parameter for calculating sediment reentrained in channel
sediment routing 1 1.5 1.2

ADJ_PKR Peak rate adjustment factor for sediment routing in the subbasin (tributary
channels) 0.5 2 0.5

IRTE Calibration coefficient used to control impact of the storage time constant for normal flow [Variable
storage/Muskingum]

IDEG Channel degradation code [Channel dimension updated No/Yes]
IWQ In-stream water quality code [In-stream nutrient and pesticide No/Yes]
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Appendix B

Table B1. Adjustable SWAT parameters for pothole functions.

Pothole Parameters

Parameter Description LB UB Default

POT_FR Fraction of HRU area that drains into pothole 0 1 0

POT_TILE Average daily outflow to main channel from tile flow if drainage tiles
are installed in the pothole 0 100 0

POT_VOLX Maximum volume of water stored in the pothole 0 100 0
POT_VOL Initial volume of water stored in the pothole 0 100 0
SED_CON Sediment concentration in runoff, after urban BMP is applied 0 5000 0

ORGN_CON Organic nitrogen concentration in runoff, after urban BMP is applied 0 100 0
ORGP_CON Organic phosphorus concentration in runoff, after urban BMP is applied 0 50 0
SOLN_CON Soluble nitrogen concentration in runoff, after urban BMP is applied 0 10 0
SOLP_CON Soluble phosphorus concentration in runoff, after urban BMP is applied 0 3 0

Appendix C

Table C1. Printable SWAT variables for reach outputs.

Reach Output Variables

Parameter Description

FLOW_IN Average daily streamflow into reach (m3/s)
FLOW_OUT Average daily streamflow out of reach (m3/s)

EVAP Average daily loss of water from reach by evaporation (m3/s)
TLOSS Average daily loss of water from reach by transmission (m3/s)

SED_IN Sediment transported with water into reach (metric¨ tons)
SED_OUT Sediment transported with water out of reach (metric¨ tons)
SEDCONC Concentration of sediment in reach (mg/L)
ORGN_IN Organic nitrogen transported with water into reach (kg¨ N)

ORGN_OUT Organic nitrogen transported with water out of reach (kg¨ N)
ORGP_IN Organic phosphorus transported with water into reach (kg¨ P)

ORGP_OUT Organic phosphorus transported with water out of reach (kg¨ P)
NO3_IN Nitrate transported with water into reach (kg¨ N)

NO3_OUT Nitrate transported with water out of reach (kg¨ N)
NH4_IN Ammonium transported with water into reach (kg¨ N)

NH4_OUT Ammonium transported with water out of reach (kg¨ N)
NO2_IN Nitrite transported with water into reach (kg¨ N)

NO2_OUT Nitrite transported with water out of reach (kg¨ N)
MINP_IN Mineral phosphorus transported with water into reach (kg¨ P)

MINP_OUT Mineral phosphorus transported with water out of reach (kg¨ P)
CHLA_IN Chlorophyll-a transported with water into reach (kg)

CHLA_OUT Chlorophyll-a transported with water out of reach (kg)
CBOD_IN Carbonaceous biochemical oxygen demand transported into reach (kg¨ O2)

CBOD_OUT Carbonaceous biochemical oxygen demand transported out of reach (kg¨ O2)
DISOX_IN Dissolved oxygen transported into reach (kg¨ O2)

DISOX_OUT Dissolved oxygen transported out of reach (kg¨ O2)
SOLPST_IN Soluble pesticide transported with water into reach (mg a.i.)

SOLPST_OUT Soluble pesticide transported with water out of reach (mg a.i.)
SORPST_IN Pesticide sorbed to sediment transported with water into reach (mg a.i.)

SORPST_OUT Pesticide sorbed to sediment transported with water out of reach (mg a.i.)
REACTPST Loss of pesticide from water by reaction (mg a.i.)
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Table C1. Cont.

Reach Output Variables

Parameter Description

VOLPST Loss of pesticide from water by volatilization (mg a.i.)
SETTLPST Transfer of pesticide from water to river bed sediment by settling (mg a.i.)

RESUSP_PST Transfer of pesticide from river bed sediment to water by resuspension (mg a.i.)
DIFFUSEPST Transfer of pesticide from water to river bed sediment by diffusion (mg a.i.)

REACBEDPST Loss of pesticide from river bed sediment by reaction (mg a.i.)
BURYPST Loss of pesticide from river bed sediment by burial (mg a.i.)
BED_PST Pesticide in river bed sediment (mg a.i.)

BACTP_OUT Number of persistent bacteria transported out of reach (# cfu/100 mL)
BACTLP_OUT Number of less persistent bacteria transported out of reach (# cfu/100 mL)

CMETAL#1 Conservative metal #1 transported out of reach (kg)
CMETAL#2 Conservative metal #2 transported out of reach (kg)
CMETAL#3 Conservative metal #3 transported out of reach (kg)

TOT_N Total Nitrogen (kg)
TOT_P Total Phosphorus (kg)

NO3CONC Nitrate Concentration (mg/L)

Table C2. Printable SWAT variables for subbasin outputs.

Subbasin Output Variables

Parameter Description

PRECIP Average total precipitation on subbasin (mm¨ H2O)
SNOMELT Snow melt (mm¨ H2O)

PET Potential evapotranspiration (mm¨ H2O)
ET Actual evapotranspiration (mm¨ H2O)
SW Soil water content (mm¨ H2O)

PERC Amount of water percolating out of root zone (mm¨ H2O)
SURQ Surface runoff (mm¨ H2O)
GW_Q Groundwater discharge into reach (mm¨ H2O)
WYLD Net water yield to reach (mm¨ H2O)
SYLD Sediment yield (metric¨ tons/ha)
ORGN Organic N released into reach (kg/ha)
ORGP Organic P released into reach (kg/ha)

NSURQ Nitrate released into reach (kg/ha)
SOLP Soluble P released into reach (kg/ha)
SEDP Mineral P attached to sediment released into reach (kg/ha)

Table C3. Printable SWAT variables for HRU outputs.

HRU Output Variables

Parameter Description

PRECIP Total precipitation on HRU (mm¨H2O)
SNOFALL Precipitation falling as snow, sleet, or freezing rain (mm¨H2O)
SNOMELT Amount of snow or ice melting (mm¨H2O)

IRR Amount of irrigation water applied to HRU (mm¨H2O)
PET Potential evapotranspiration (mm¨H2O)
ET Amount of water removed by evapotranspiration (mm¨H2O)

SW_INIT Soil water content at beginning of time period (mm¨H2O)
SW_END Soil water content at end of time period (mm¨H2O)

PERC Amount of water percolating out of the root zone (mm¨H2O)
GW_RCHG Amount of water entering both aquifers (mm¨H2O)
DA_RCHG Amount of water entering deep aquifer from root zone (mm¨H2O)

REVAP Water in shallow aquifer returning to root zone (mm¨H2O)
SA_IRR Amount of water removed from shallow aquifer for irrigation (mm¨H2O)
DA_IRR Amount of water removed from deep aquifer for irrigation (mm¨H2O)
SA_ST Amount of water in shallow aquifer storage at end of time period (mm¨H2O)
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Table C3. Cont.

HRU Output Variables

Parameter Description

DA_ST Amount of water in deep aquifer storage at end of time period (mm¨H2O)
SURQ_GEN Surface runoff generated during time step (mm¨H2O)
SURQ_CNT Surface runoff contribution to reach (mm¨H2O)

TLOSS Amount of water removed from tributary channels by transmission (mm¨H2O)
LATQ Lateral flow contribution to reach (mm¨H2O)
GW_Q Groundwater discharge into reach (mm¨H2O)
WYLD Net amount of water contributed by the HRU to the reach (mm¨H2O)

DAILYCN Average curve number for time period
TMP_AV Average air temperature for time period (˝C)
TMP_MX Average of daily maximum air temperatures for time period (˝C).
TMP_MN Average of daily minimum air temperatures for time period (˝C).
SOL_TMP Average soil temperature in time period (˝C)

SOLAR Average daily solar radiation for time period (MJ/m2)
SYLD Amount of sediment contributed by the HRU to the reach (metric¨ tons/ha)
USLE USLE soil loss (metric¨ tons/ha)

N_APP Amount of N fertilizer applied in regular fertilizer operation (kg¨N/ha)
P_APP Amount of P fertilizer applied in regular fertilizer operation (kg¨P/ha)

NAUTO Amount of N fertilizer applied automatically (kg¨N/ha)
PAUTO Amount of P fertilizer applied automatically (kg¨P/ha)
NGRZ Nitrogen applied to HRU in grazing operation during time step (kg¨N/ha)
PGRZ Phosphorus applied to HRU in grazing operation during time step (kg¨P/ha)

CFERTN Nitrogen applied to HRU in continuous fertilizer operation during time step (kg¨N/ha)
CFERTP Phosphorus applied to HRU in continuous fertilizer operation during time step (kg¨P/ha)
NRAIN Nitrate added in rainfall (kg¨N/ha)

NFIX Amount of N fixed by legumes (kg¨N/ha)
F-MN Transformation of N from fresh organic to mineral pool (kg¨N/ha)
A-MN Transformation of N from active organic to mineral pool (kg¨N/ha)
A-SN Transformation of N from active organic to stable organic pool (kg¨N/ha)
F-MP Transformation of P from fresh organic to mineral (solution) pool (kg¨P/ha)

AO-LP Transformation of P from organic to labile pool (kg¨P/ha)
L-AP Transformation of P from labile to active mineral pool (kg¨P/ha)
A-SP Transformation of P from active mineral to stable mineral pool (kg¨P/ha)
DNIT Amount of N removed from soil by denitrification (kg¨N/ha)
NUP Nitrogen uptake by plants (kg¨N/ha)
PUP Phosphorus uptake by plants (kg¨P/ha)

ORGN Organic N contributed by HRU to reach (kg¨N/ha)
ORGP Organic P contributed by HRU to reach (kg¨P/ha)
SEDP Mineral P attached to sediment contributed by HRU to reach (kg¨P/ha)

NSURQ NO3 contributed by HRU in surface runoff to reach (kg¨N/ha)
NLATQ NO3 contributed by HRU in lateral flow to reach (kg¨N/ha)
NO3L NO3 leached below the soil profile (kg¨N/ha)

NO3GW NO3 contributed by HRU in groundwater flow to reach (kg¨N/ha)
SOLP Soluble phosphorus contributed by HRU in surface runoff to reach (kg¨P/ha)
P_GW Soluble phosphorus contributed by HRU in groundwater flow to reach (kg¨P/ha)

W_STRS Number of water stress days
TMP_STRS Number of temperature stress days

N_STRS Number of nitrogen stress days
P_STRS Number of phosphorus stress days
BIOM Total plant biomass (metric¨ tons/ha)
LAI Leaf area index
YLD Harvested yield (metric¨ tons/ha)

BACTP Persistent bacteria in surface runoff (# cfu/m2)
BACTLP Number of less persistent bacteria in surface runoff (# cfu/m2)
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