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A B S T R A C T   

Quantifying the impact of global climate change on the water cycle and crop production is essential for water 
resource management and agricultural production planning. This study compared multiple GCM (General Cir
culation Model) projections of CMIP5 (Coupled Model Intercomparison Project 5) and CMIP6 and further used 
the selected GCMs to quantify the impact of future climate change on hydrology and crop production under 
intensive irrigation management in the North China Plain using an improved SWAT model (SWAT-MAD). 
Taylor’s skill score was used firstly to screen out six groups of GCMs with better simulation performance from 10 
pairs of homologous GCMs of CMIP5 and CMIP6. The selected GCMs of CMIP5 and CMIP6 were further used to 
drive SWAT-MAD for a robust evaluation of climate change impacts. Results showed that during winter wheat 
growing season, average actual evapotranspiration (ETa) increased by 3%, 3%, 4%, and 5%, respectively, under 
2041–2070 RCP4.5, 2041–2070 SSP2-4.5, 2041–2100 RCP4.5, and 2071–2100 SSP2-4.5 scenarios, compared to 
the historical period (1971–2000). During summer maize growing season, those changes in ETa were 4%, 2%, 
− 0.2%, and − 3%. Predicted future precipitation, air temperatures, and surface runoff could increase, while 
irrigation could decrease as precipitation increased. The dynamic patterns of leaf area index of winter wheat and 
summer maize indicated that there is a tendency for early emergence and maturity of both crops in the future, 
and the daily total biomass elevated with a corresponding increase in final yields. The highest increases in yields 
of winter wheat and summer maize were 18.9% and 16.7%. The findings not only contribute to enhancing the 
confidence of future projections using CMIP6 but also facilitate our understanding of the relative uncertainty of 
GCMs. This study provides technical and data support for pre-selections of GCMs and decision making in best 
management practices for groundwater conservation and agricultural production.   

1. Introduction 

The growth of the world’s population and consumption level 
increased the global demand for fossil fuels. Studies have shown that 

atmospheric carbon dioxide (CO2) is one of the major causes of climate 
change (IPCC, 2014). According to a series of CO2 emission scenarios 
published by the IPCC, projected global atmospheric CO2 concentrations 
can elevate from the current level of 330 ppm to 800 ppm by the end of 
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the 21st century (Van Vuuren et al., 2011). Therefore, it is an indis
putable fact that human activities have increased atmospheric CO2 
concentrations and amplified global warming (Stocker, 2014). The 
complexity and uncertainty of the future climate will affect the hydro
logical cycle, and thus alter the spatial and temporal distributions of 
regional water resources, which is closely related to the irrigation water 
availability and crop growth (Piao et al., 2010; IPCC, 2015). 

Due to the negative impacts of climate change on agriculture, global 
food security has become one of the greatest challenges in the 21st 
century (McGuire, 2015). Changes in climatic conditions are expected to 
bring noticeable impacts on global food production (Teixeira et al., 
2018). The increase in atmospheric CO2 concentrations will induce the 
change in global temperature, rainfall pattern, and solar radiation, 
which are key factors that can influence crop productivity (Lobell et al., 
2011). As an essential component for photosynthesis, the atmospheric 
CO2 can directly affect crop growth and development and thus crop 
yield (Sreeharsha et al., 2015; Xu et al., 2016). Solar radiation is the 
energy source for crop growth, and an increase in solar radiation may 
mitigate the negative impacts by elevated air temperatures on crop 
yield. Study indicated that for every 1 MJ m− 2 increase in solar radia
tion, the yields for maize and wheat increased by 17.6 and 45.1 kg ha− 1, 
respectively (Xiao et al., 2020). Therefore, the interaction between 
climate change and crop growth is complex, and the evaluation of future 
climate change impacts on crop production is critical for global food 
security and sustainable production. 

General Circulation Models (GCMs) are one of the primary tools for 
understanding future climate projections. Currently, the Coupled Model 
Intercomparison Project (CMIP) has entered its 6th phase (CMIP6), 
CMIP6 represents a greater expansion over CMIP5 and provides higher 
spatial resolution and improved physical parameters, which can support 
a larger amount of simulations. In addition, the key difference between 
CMIP5 and CMIP6 is the future scenarios. Compared to the Represen
tative Concentration Pathways (RCPs) in CMIP5, CMIP6 uses a new set 
of emission scenarios, the Shared Socioeconomic Pathways (SSPs). The 
SSPs contain a series of projected future economic and social changes 
based on different socioeconomic assumptions. Some studies have 
revealed that CMIP6 models showed better simulation performance in 
predicting the future climate than CMIP5 models. For example, Hamed 
et al. (2022) compared two scenarios of CMIP5 (RCP4.5 and RCP8.5) 
with their CMIP6 counterparts (SSP2-4.5 and SSP5-8.5) in Egypt. The 
results showed that CMIP6 presented lower uncertainty in simulating 
seasonal air temperatures and rainfall changes than CMIP5. By 
comparing the CMIP5 and CMIP6 models in simulating daily precipi
tation periodicity of the global and regional scales, air temperature of 
the troposphere in East Asia, and long-term variation trends of surface 
air temperature in the Pacific Ocean, Wu et al. (2019) found that CMIP6 
showed obvious improvements compared to CMIP5. Nevertheless, some 
studies also reported the CMIP6 GCMs displayed poorer performance 
than the CMIP5 GCMs. For instance, Zhu and Yang (2020) found that 
CMIP6 models exhibited lower simulation performance in simulating air 
temperature and precipitation in humid regions of the Tibetan Plateau 
compared to CMIP5 models. Song et al. (2021) simulated the changes in 
precipitation and air temperature in the middle and the end of the 21st 
century in South Korea under the RCP4.5 & RCP8.5 (CMIP5) and SSP2- 
4.5 & SSP5-8.5 (CMIP6) scenarios. The results showed that the SSP 
projections had higher uncertainty in simulating the precipitation, while 
the RCP projections showed higher uncertainty in terms of predicting air 
temperature. Therefore, it is necessary to evaluate the simulation per
formance of CMIP5 and CMIP6 GCMs at a specific regional scale first 
before using them for assessing the climate change impacts. 

Commonly used hydrological models are the Soil and Water 
Assessment Tool (SWAT; watershed-scale model), the Agricultural Pol
icy/Environmental eXtender (APEX; small watershed/field-scale 
model), the Variable Infiltration Capacity (VIC; a grid basis model), 
the McMaster University Hydrologiska Byrans Vattenbalansavdelning 
(MACHBV; rainfall-runoff model), etc. Among these, the physically- 

based SWAT model is more suitable for a large watershed simulation 
with a high computation efficiency (Chen et al., 2018; Darbandsari and 
Coulibaly, 2020; Gassman et al., 2014; Kumari et al., 2021; Wang et al., 
2020). In addition, unlike many hydrological models, SWAT is an open- 
source model (Arnold et al., 1998). In this study, an improved SWAT 
model with the management allowed depletion (MAD) auto-irrigation 
was used due to the source code is not restricted to the developers 
(Holzworth et al., 2015). The SWAT model can be coupled with GCMs to 
simulate dynamic changes in the hydrological cycle and crop growth, 
and thus analyze the spatial and temporal distributions of water re
sources and crop yields within a watershed. Using climate data from 
GCMs as input for the SWAT model is a common method to simulate the 
response of hydrological processes to climate change at the regional 
scale and has been widely used in various regions of the world (Marek 
et al., 2018; Chen et al., 2019; Tan et al., 2022). 

The Daqing River Basin (DRB) in the North China Plain, which is 
densely populated and plays an important role in politics and the 
economy. At the same time, the basin is also a major national grain 
production region; however, the extreme shortage of water resources 
has become one of the critical factors limiting agricultural development 
(Jia et al., 2006). The winter wheat-summer maize rotation (double- 
cropping system) with intensive irrigation management is the main 
planting structure in the DRB (Zhang et al., 2022). The climate change 
on double-cropping system can have a significant effect on hydrological 
fluxes (Srivastava et al., 2020; Aghsaei et al., 2020; Tan et al., 2022). In 
the context of climate change, it is necessary to clarify the potential 
changes in irrigation water availability, actual evapotranspiration (ETa), 
surface runoff, and crop production in the DRB for making better de
cisions on the management of soil and water resources to ensure the 
safety and reliability of food production. Therefore, the overall goal of 
this study is to more robustly assess the impacts of projected future 
climate change on the hydrological cycle and crop yields of winter 
wheat and summer maize in the DRB. The specific objectives of the study 
were to (1) screen out GCMs with high simulation accuracy from 10 
groups of homologous GCMs of CMIP5 and CMIP6 using the Taylor 
Diagram method; (2) compare the key differences in the simulated hy
drological cycle and crop growth in the study basin using an improved 
SWAT model driven by the selected homologous GCMs of CMIP5 and 
CMIP6; and (3) clarify the changing trends and reasons for the SWAT- 
MAD simulated hydrological components and crop yields in the study 
basin in future climate scenarios according to the final selection results 
of CMIPs and GCMs applicable to the study basin. 

2. Materials and methods 

2.1. Study area 

The DRB lies between latitude 38◦10′N-40◦102′N and longitude 
113◦39′E-117◦34′E, and its elevation varies between − 16 to 2,687 m 
above mean sea level (Fig. 1). The total area of the basin is 43,060 km2, 
of which 43.3% (18,659 km2) is a mountainous and hilly area, and 
56.7% (24,401 km2) is plain and lowland area (Li et al., 2019). The DRB 
is located in the middle of the Haihe River Basin, which stretches 
approximately 275 km from east to west and approximately 200 km 
from north to south and runs through four provinces/cities, including 
Beijing, Tianjin, Hebei, and Shanxi. The study area has a semi-arid and 
semi-humid continental monsoon climate. The mean annual air tem
perature is 12.5◦C; the mean annual air temperatures in the mountains 
and plains are 7.6◦C and 13.1◦C, respectively. The mean annual pre
cipitation is approximately 500–600 mm, with great interannual vari
ability. The annual sunshine hour ranges from 2,154 to 2,673 h. The 
major soil types are Mollic Gleysols, LITHOSOLS Eutic Cambisols, and 
Chromic Cambisols soils (Fig. 2). The predominant land use type in the 
study area is arable land, with approximately 48.94% coverage (Fig. 2), 
in which winter wheat and summer maize are the major crops. 
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2.2. Future climate data of CMIP5 and CMIP6 

2.2.1. Climate change scenarios 
From 33 GCMs provided by the CMIP5 and 27 GCMs provided by the 

CMIP6, this study selected 10 groups of homologous GCMs from CMIP5 
(RCP4.5 and RCP8.5 scenarios) and CMIP6 (SSP2-4.5 and SSP5-8.5 
scenarios). The projected climate data were divided into two 30-year 

periods: 2041–2070 and 2071–2100, using 1971–2000 as a historical 
period. The list of the GCMs used in this study and the description of 
different scenarios are shown in Table 1 and Table 2, respectively. Under 
the same emission scenario, CO2 concentrations increased from 
2041–2070 to 2071–2100. Over the same time period, the CO2 con
centrations elevated from 4.5 to 8.5 scenarios. The simulation perfor
mance of all GCMs was evaluated by integrating four climate factors, 

Fig. 1. Location of Daqing River Basin and distributions of weather and hydrological stations.  

Fig. 2. Map of land uses (a) and soil types (b) in Daqing River Basin.  
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mean annual precipitation, mean annual maximum air temperature 
(Tmax), mean annual minimum air temperature (Tmin), and mean annual 
solar radiation. The climate data from better performed GCMs were used 
as input data for an improved SWAT model to analyze the differences 
between CMIP5 and CMIP6 data in simulating the future changes in the 
hydrological cycle and crop growth. Furthermore, the CMIP (5 or 6) and 
GCMs with the best performance were chosen to evaluate the response of 
the hydrological cycle and crop growth to future climate change in the 
DRB. 

2.2.2. Data processing for future climate 
Daily weather data for the 1971–2000 period were obtained from 11 

meteorological stations in the study basin, including Tmax, Tmin, pre
cipitation (PCP), sunshine hours, relative humidity (HMD), and wind 
speed (WND). All the data were available at the Meteorological Data 
Center of the China Meteorological Bureau (CMA) (https://data.cma. 
cn). The daily solar radiation (SLR) within the study basin was calcu
lated by using the Angstrom equation (Allen et al., 1998) from sunshine 
hours. Projected monthly weather data from 10 groups of GCMs were 
retrieved from the Coupled Model Intercomparison Project Phase 5 
(CMIP5) (Taylor et al., 2012) and Phase 6 (CMIP6) (https://esgf-node.ll 
nl.gov/projects/cmip6). RCP4.5, SSP2-4.5 (updated RCP4.5), RCP8.5, 
and SSP5-8.5 (updated RCP8.5) scenarios were selected in this study 
because they are more closely aligned with current socioeconomic 
development conditions. Under the moderate emission scenarios 
(RCP4.5 and SSP2-4.5), global CO2 emissions are expected to peak 
around 2040 and then decline in the late 21st century; the atmospheric 
CO2 concentrations will maintain stable at the end of the 21st century. 
RCP8.5 and SSP5-8.5 represent the high emission scenarios (Jones et al., 
2013). 

This study used a weather-generator based statistical (NWAI-WG) 
downscaling method developed by Liu and Zuo (2012) to transform the 
monthly climate data of 20 GCMs into daily data through spatial 
downscaling, deviation correction, and time downscaling. To reduce the 
uncertainty of the GCMs, this study used the projected climate data from 
GCMs developed by multiple countries (Liu et al., 2017) and the GCM 
projected outputs were changed using a second deviation correction, 
Equation 1 denoted the calculation method for the second deviation 
correction (Xiao et al., 2021). A 5-year warm-up period was adopted in 

this study. 

Δoutputvar,GCM =
(SGCM − Shist)

Sob
× 100% (1) 

where Δoutputvar,GCM is the relative change; SGCM, Shist, and Sob are 
SWAT simulated values driven by GCM projected climate for future 
period, GCM projected climate for historical period, and observed 
climate from weather stations, respectively. 

2.2.3. Comparison and selection method of GCMs 
The Taylor Diagram, proposed by Taylor in 2001, attracted wide 

attention of researchers because of its ability to effectively and intui
tively demonstrate the performance difference of multiple models and 
the magnitude of errors between the simulated and actual values (Tay
lor, 2001). This study used the Taylor Diagram for the comparison and 
selection of GCMs. The basic principle involves three parameters, 
including the standard deviation, correlation coefficient, and root-mean- 
square error, which satisfy the cosine theorem relationship within the 
Taylor Diagram. Therefore, it is possible to identify the difference 
(indicating model accuracy) between the simulation values represented 
by scattering points on the Taylor Diagram and the actual values; on this 
basis, models can be compared and evaluated, and the models with the 
best performance will be selected. The calculation equations for the 
parameters are given as follows: 

σr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ri − r)2

√

(2)  

σf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(fi − f )2

√

(3)  

R =
1
n

∑n
i=1(fi − f )(ri − r)

σf σr
(4)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
[(fi − f ) − (ri − r) ]2

√

(5)  

Table 1 
List of 10 pairs of GCMs from CMIP5 and CMIP6 used in this study.  

Model ID Institute ID Country CMIP5 CMIP6 

GCM Abbreviation GCM Abbreviation 

01 CSIRO-BOM Australia ACCESS1.0 AC1 ACCESS-CM2 ACC1 
02 CSIRO-BOM Australia ACCESS1.3 AC2 ACCESS-ESM1-5 ACC2 
03 BCC China BCC-CSM1.1(m) BC2 BCC-CSM2-MR BCCC 
04 CCCMA Canada CanESM2 CaE CanESM5 Can1 
05 EC-EARTH Europe EC-EARTH ECE EC-Earth3 ECE1 
06 NOAA GFDL USA GFDL-CM3 GF2 GFDL-CM4 GFD2 
07 INM Russia INM-CM4 INC INM-CM4-8 INM1 
08 IPSL France IPSL-CM5B-LR IP3 IPSL-CM6A-LR IPSL 
09 MIROC Japan MIROC5 MI2 MIROC6 MIR1 
10 MPI-M Germany MPI-ESM-LR MP1 MPI-ESM1-2-LR MPI2  

Table 2 
Scenario design and description.  

Time period Emission scenario Radiative forcing Change rate of radiative forcing Assumed average CO2 concentration (ppm)* 

RCPs SSPs (W/m− 2) 

Historical (1971–2000) — —  — — 330 
2041–2070 RCP4.5 SSP2-4.5  4.5 Stabilizing 497 
2071–2100 RCP4.5 SSP2-4.5  4.5 Stabilizing 533 
2041–2070 RCP8.5 SSP5-8.5  8.5 Rising 578 
2071–2100 RCP8.5 SSP5-8.5  8.5 Rising 807 

* Meinshausen et al. (2011) and Van Vuuren et al. (2007). 
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S =
4(1 + R)2

(
σf
σr
+ σr

σf

)2
(1 + R0)

2
(6) 

where n is the sample size; r is the observed value; f is the simulation 
value of the model; -r and‾f are mean values of the observation data and 
simulation data, respectively; σr and σf are standard deviations of the 
observation data and simulation data, respectively; R is the correlation 
coefficient; R0 is valued as 0.999; S is Taylor’s skill score, and the larger 
S value indicates the better simulation performance of GCMs. 

2.3. SWAT model 

2.3.1. Overview of SWAT and SWAT-MAD 
SWAT model can be used for simulating the hydrological cycle, 

pollution migration, and crop growth (Kim et al., 2020). In the SWAT 
model, the crop growth module uses a simplified version of the Envi
ronmental Policy Integrated Climate (EPIC) model to simulate crop yield 
based on the harvest index, potential biomass, water and temperature 
stress, etc. In the SWAT model, the agricultural management module 
provides the setting options for planting, harvest, fertilization, and 
irrigation based on the user requirements and actual conditions (Arnold 
et al., 1998). 

The automatic irrigation algorithm in SWAT has some limitations. 
For example, the default automatic irrigation function of the soil water 
content method cannot reasonably simulate the irrigation demand of 
crops during a specific growth stage, which will also continue the irri
gation in non-growing seasons and after harvest (Marek et al., 2017). In 
North China, with limited water resources, excessive irrigation will 
easily intensify the water resource shortage, and insufficient irrigation 
usually can result in a decrease in crop yield. For the aforementioned 
issues, Chen et al. (2018) developed a new set of auto-irrigation algo
rithms (management allowed depletion; MAD) by Fortran code in the 
SWAT model and completed a full testing and validation at the both field 
and watershed scales (Chen et al., 2018; Chen et al., 2020). Compared to 
the default automatic irrigation algorithm in SWAT, the improved MAD 
method has significantly improved the simulation of irrigation schedule 
with a relative deviation of 5% in the Texas High Plains, and has been 
widely used in the High Plains of Texas. The algorithm implements 
irrigation based on a water stress identifier of plant available water, in 
which MAD is the percentage of plant available water in soil and is 
usually set as 50%. When the soil water content is reduced to the user- 
defined MAD value, the irrigation will be triggered to recover soil 
water content according to the user-defined irrigation depth. This study 
used the “trial and error method” to determine the MAD thresholds of 
irrigation for winter wheat and summer maize, which were 0.3 and 0.4, 
respectively, and the irrigation depth was 25 mm for both crops (Tan 
et al., 2022). 

2.3.2. SWAT model setup and data collection 
This study is based on the SWAT model established by Tan et al. 

(2022), and the detailed SWAT model setup was initially reported in it. 
The required database and description of related data were listed in 
Table S1. The study basin includes 119 subbasins and 374 Hydrological 
Response Units (HRUs) according to the land use map (Fig. 2a), soil type 
map (Fig. 2b), and slope characteristics. 

To better simulate agricultural conditions within the basin, this study 
divided the study basin into four zones (Fig. 1) based on the sowing and 
harvest time, irrigation regime, irrigation source, fertilization regime, 
and crop-growing parameters (Tan et al., 2022). Based on the collected 
data on four field experimental stations in Xiongxian, Luancheng, 
Langfang, and Nanpi in the plain area (Fig. 1) and the crop cultivation 
zone in Hebei Province, crop-growing parameters were calibrated and 
extended from field scale to regional scale after calibration. In this study, 
the agricultural management practices corresponding to the HRUs in the 
SWAT model in the plain area were established based on the data 

collected from field experimental stations. 

2.4. Calibration, validation, and evaluation of SWAT model 

2.4.1. Calibration of model parameters and source of validation data 
The monthly average streamflow at three hydrological stations 

(Zijingguan, Zhongtangmei, and Fuping stations) in the mountainous 
areas were used to calibrate related parameters, and aboveground 
biomass, LAI (leaf area index), and crop yield in plains and at field 
experimental stations were used to calibrate crop parameters of winter 
wheat and summer maize; the Surface Energy Balance System (SEBS) 
model, which was established based on the MODIS remote sensing data 
and observed daily climate data in the plain area of the DRB, was used to 
generate monthly actual evapotranspiration (ETa) data from 2007 to 
2016 to calibrate and validate the related parameters of the basin (Tan 
et al., 2022). Specifically, in the mountainous area of the DRB, this study 
calibrated the hydrological parameters with the monthly streamflow at 
three hydrological stations. The calibration period was 2010–2014, the 
validation period was 2015–2016, and the warm-up period was 
1998–2009. In the plains, the ETa from remote sensing data was used to 
calibrate SWAT parameters, with the warm-up period from 1998 to 
2006, calibration period from 2007 to 2011, and validation period from 
2012 to 2016. The periods for evaluating LAI, biomass, and crop yield of 
winter wheat and summer maize in the field experimental stations were 
1999–2004, 2000–2014, and 1999–2016, respectively. 

2.4.2. Evaluation of SWAT model 
This study used nine performance indexes to evaluate the model, 

including the coefficient of determination (R2), Nash-Sutcliffe coeffi
cient (NSE), percentage bias (PBIAS), Willmott consistency index (d), 
mean error (ME), root-mean-square error (RMSE), normalized root- 
mean-square error (NRMSE), deviation of measured data (RSR), and 
Kling-Gupta coefficient (KGE). NSE is a normalized dimensionless sta
tistical magnitude, which determines the relative size of residual vari
ance and variance of measured data, with values ranging from -∞ to 1. 
The larger the value is, the higher the simulation accuracy will be. 
Similar to NSE, the closer the KGE is to 1, the better the simulation 
performance will be. PBIAS represents average variation trends of 
simulation data compared to the observed data. The closer the absolute 
value of PBIAS is to 0, the better the simulation outcome will be. RSR 
varies from the optimal value 0 to ∞, where 0 represents no residual 
variation. As a result, the lower the values of RSR and RMSE are, the 
better the simulation performance of the model will be. d and NRMSE 
are used for evaluating model accuracy in simulating crop growth var
iables. When d and NRMSE are closer to 1 and 0, respectively, the 
simulation results are more accurate, in which the simulation results will 
be very good if NRMSE < 10%; the simulation results are good if NRMSE 
ranges between 10% and 20%; the simulation results are acceptable if 
NRMSE ranges between 20% and 30%; and the simulation result are not 
acceptable if NRMSE greater than 30% (Kumar et al., 2017; Mirsafi et al., 
2016; Willmott, 1982; Gupta et al., 2009). The calculation equations 
were listed in Appendix A. 

3. Results and discussion 

3.1. Calibration and validation results of the SWAT model 

The calibrated values of hydrological parameters in the study area 
were shown Table S2. The fitting curves of the simulated and observed 
values of streamflow during the calibration period (2010–2014) and 
validation period (2015–2016) for the Zijingguan, Zhongtangmei, and 
Fuping hydrological stations in the DRB are shown in Fig. S1. Overall, 
the simulated and observed values during the calibration and validation 
periods at three hydrological stations fitted well, in which the peak flows 
were well simulated. The values of R2 and NSE at the Zijingguan, 
Zhongtangmei, and Fuping hydrological stations were larger than 0.7 
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and 0.6, respectively, during the calibration period (Table S3), which 
fulfilled the calibration requirement for streamflow (Li et al., 2016). The 
PBIAS, RSR, and KGE ranged from − 4.4% to 10.9%, 0.34 to 0.53, and 
0.82 to 0.92, respectively. During the validation period, values of R2 and 
NSE at three hydrologic stations were greater than 0.87 and 0.75, 
respectively, the PBIAS and RSR were − 9.7% to − 3.4% and 0.23 to 0.43, 
respectively, and KGE was larger than 0.87, which indicated the devi
ation between simulated and observed values was small. Overall, the 
simulated monthly streamflow during the calibration and validation 
periods well matched the observed data. During the calibration and 
validation periods, the NRMSE values of LAI, biomass, and yield for 
winter wheat and summer maize in experimental stations were smaller 
than 30%, with d greater than 0.67 and RSR < 1.64, indicating a good 
simulation (Table S4). More detailed model performance results can also 
be found in Tan et al. (2022). 

3.2. Direct comparison of the climate data between CMIP5 and CMIP6 

By calculating the S value of annual precipitation, Tmax, Tmin, and 
solar radiation during the historical period (1971–2000), this study 
found that not all CMIP6 GCMs showed obvious improvement from their 
CMIP5 counterparts for future climate projections (Table 3). Compared 
with CMIP5 models, some CMIP6 GCMs showed poorer performance in 
simulating precipitation; for example, GFD2, IPSL, and MIR1. ACC1 and 
MIR1 models in CMIP6 performed worse in simulating the historical 
annual Tmax and Tmin than CMIP5 models. Similarly, GFD2, IPSL, and 
MIR1 models in CMIP6 showed poorer performance in simulating his
torical solar radiation than in CMIP5 models. Nevertheless, CMIP6 
outperformed CMIP5 in simulating climate variables in the DRB. This 
study finally selected six CMIP5 GCMs and their corresponding updated 
versions in CMIP6 (six pairs of homologous GCMs from CMIP5 and 
CMIP6) (AC1-ACC1, BC2-BCCC, CaE-Can1, ECE-ECE1, GF2-GFD2, and 
MI2-MIR1), which showed reliable simulation results and an average 
score of S greater than 0.3. This pre-selection could reduce the uncer
tainty caused by different GCMs in simulating future climate change. 

Studies for directly comparing the simulation performance of CMIP5 
and CMIP6 have been carried out worldwide. Zhu et al. (2020) found 
that CMIP6 GCMs had a stronger capacity for simulating historical 
precipitation in the arid area of the Tibet Plateau. Zhu et al. (2021) 
evaluated the simulation performance of CMIP5 and CMIP6 models for 
interannual precipitation characteristics in northern Africa, and the re
sults also indicated that CMIP6 GCMs showed better simulation per
formance. However, some studies also indicated that CMIP6 GCMs had 
lower simulation performance compared to CMIP5 models. For instance, 
Song et al. (2021) compared the predicted changes in precipitation and 
temperature in South Korea based on the CMIP5 and CMIP6 GCMs under 
the future climate conditions. The projection results showed higher 
uncertainty under the CMIP6 SSP scenarios compared to the CMIP5 RCP 
scenarios (Song et al., 2021). Therefore, it is necessary to evaluate the 
performance of CMIP5 and CMIP6 GCMs at a regional scale first, and 

then use the outperformed GCMs to drive the hydrological model for 
better assessing the climate change impacts on hydrology and crop 
growth. 

3.3. Comparison of SWAT-MAD simulations driven by CMIP5 and 
CMIP6 GCM projections 

For winter wheat. 
Compared to the historical period, the precipitation during the 

winter wheat growing period simulated by six GCMs ranged from − 2% 
to 45% and 5% to 41% under the RCP4.5 and SSP2-4.5 scenarios during 
the 2041–2070 period, respectively (Fig. 3a1,b1). Under the 2041–2070 
RCP4.5 scenario, the ETa during the winter wheat growing season 
increased from 1% to 5% (Fig. 3a4). The overall magnitude of increase 
in ETa was greater under the SSP2-4.5 scenario than under the RCP4.5 
scenario, and the average increase under both scenarios was approxi
mately 3%. Studies have shown that LAI may increase gradually with 
increasing atmospheric CO2 concentrations (Pritchard et al., 1999). 
Higher LAI indicates a larger contact area for photosynthesis, transpi
ration, and rainfall interception, resulting in the elevated transpiration 
and canopy evaporation and hence increase in ETa (Phong et al., 2011). 
In addition, the increase in air temperature under future climate sce
narios could enhance the transpiration of crops (Wang et al., 1995), 
which further led to the increase in annual irrigation for winter wheat. 
The increase in annual irrigation during the winter wheat growing 
period simulated by six GCMs under the 2041–2070 RCP4.5 scenario 
ranged from − 4% to 11% (Fig. 3a2). Compared to the historical period, 
the annual average irrigation increased slightly under the 2041–2070 
SSP2-4.5 scenario, but with a large variation among the models. Three 
GCMs predicted increasing trends in irrigation ranging from 1% to 6%; 
whereas, the GCMs developed in China, Europe, and Japan projected 
decreasing trends in irrigation (Fig. 3b2). The surface runoff had a small 
change during the growing period of winter wheat under the RCP4.5 and 
SSP2-4.5 scenarios during the 2041–2070 period. 

The projected precipitation showed similar trends under the RCP4.5 
and SSP2-4.5 scenarios at the end of the 21st century (Fig. 3). The 
projected changes in annual precipitation, irrigation, surface runoff, and 
ETa ranged from 5% to 41%, − 4% to 11%, − 0.2 to 2 mm, and 0.1% to 
7%, respectively, under the RCP4.5 scenario at the end of the 21st 
century (Fig. 3a1,a2,a3,a4), and ranged from 11% to 44%, − 4% to 8%, 
− 1 to 2 mm, and 4% to 9%, respectively, under the SSP2-4.5 scenario 
(Fig. 3b1,b2,b3,b4). Under the RCP8.5 and SSP5-8.5 scenarios in the 
middle of the 21st century, the changes in annual precipitation, irriga
tion, surface runoff, and ETa during the winter wheat growing period 
ranged from 6% to 39% & − 6% to 34%, − 1% to 8% & − 7% to 6%, − 0.4 
mm to 1 mm & − 1 mm to 3 mm, and − 3% to 4% & − 2% to 7%, 
respectively (Fig. 4). Compared to the historical period, the annual 
precipitation simulated by the six GCMs under the high emission sce
narios showed increasing trends in the middle and end of the 21st 
century. Under the RCP8.5 and SSP5-8.5 scenarios, the magnitude of 

Table 3 
Evaluation scores for GCMs of CMIP5 and CMIP6.  

CMIP5 CMIP6 

GCM PCP Tmax Tmin SLR Ave. score GCM PCP Tmax Tmin SLR Ave. score 

AC1  0.28  0.54  0.31  0.23  0.34 ACC1  0.41  0.28  0.30  0.47  0.37 
AC2  0.22  0.39  0.23  0.26  0.28 ACC2  0.26  0.41  0.49  0.40  0.39 
BC2  0.30  0.36  0.30  0.42  0.34 BCCC  0.46  0.52  0.39  0.53  0.47 
CaE  0.15  0.23  0.54  0.42  0.34 Can1  0.33  0.44  0.49  0.43  0.42 
ECE  0.27  0.26  0.37  0.45  0.34 ECE1  0.30  0.39  0.41  0.63  0.43 
GF2  0.38  0.19  0.28  0.39  0.31 GFD2  0.22  0.17  0.49  0.37  0.31 
INC  0.22  0.13  0.11  0.16  0.15 INM1  0.36  0.22  0.16  0.38  0.28 
IP3  0.34  0.29  0.15  0.33  0.28 IPSL  0.25  0.31  0.44  0.22  0.31 
MI2  0.42  0.35  0.48  0.51  0.44 MIR1  0.28  0.26  0.33  0.43  0.33 
MP1  0.08  0.25  0.39  0.18  0.22 MPI2  0.31  0.42  0.43  0.28  0.36 

Note: PCP, Tmax, Tmin, and SLR indicate precipitation, maximum air temperature, minimum air temperature, and solar radiation. 
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increases in precipitation was greater at the end of the 21st century 
ranging from 13% to 72% and 24% to 86%, respectively (Fig. 4a1,b1). 
Under the 2041–2070 RCP8.5 scenario, an overall increase in winter 
wheat irrigation was observed, with a range of − 1% to 8% (Fig. 4a2). 
Under the 2041–2070 SSP5-8.5 scenario, the decreasing trends in irri
gation were found, with an average decrease of 1% (Fig. 4b2). 

The irrigation water demand decreased more prominently under the 
high emission scenarios at the end of the 21st century. Under the 
2071–2100 RCP8.5 and 2071–2100 SSP5-8.5 scenarios, the projected 
decreases in annual irrigation during the winter wheat growing period 
ranged from 13% to 28% and 16% to 31%, respectively (Fig. 4a2,b2). 
Also, under the 2071–2100 RCP8.5 and 2071–2100 SSP5-8.5 scenarios, 
the changes in simulated ETa ranged from − 12% to − 6% and − 12% to 
− 4%, respectively (Fig. 4a4,b4). The dramatically elevated atmospheric 
CO2 concentration was the major reason for the decrease in ETa (Kim 
et al., 2013). Studies have shown that high CO2 concentrations might 
lead to partial closure in crop stomata and hence inhibit the transpira
tion of crop leaves (Wand et al., 1999; Medlyn et al., 2001). The future 
average surface runoff simulated by six GCMs under the above two 
scenarios at the end of the 21st century increased by 2 mm and 3 mm, 
respectively (Fig. 4a3,b3). 

For summer maize. 
The increases in precipitation during the summer maize growing 

period under the moderate emission scenarios were greater at the end of 
the 21st century compared to the middle of 21st century (Figs. 9 and 10). 
Under the 2071–2100 RCP4.5 and 2071–2100 SSP2-4.5 scenarios, the 
changes in precipitation ranged from 14% to 53% and − 8% to 67%, 
respectively (Fig. 5a1,b1). Under the 2041–2070 SSP2-4.5 scenario, the 
future precipitation predicted by the Can1 model decreased by 18% 
(Fig. 5b1). The changes in precipitation under the future climate sce
narios could have direct impacts on the surface runoff for summer crop. 
Under the 2041–2070 RCP4.5 and 2041–2070 SSP2-4.5 scenarios, the 
changes in surface runoff were consistent with the trends of predicted 
precipitation. Under the 2041–2070 SSP2-4.5 scenario, in most GCMs, 
the simulated surface runoff increased with elevated precipitation, 
ranging from 3 mm to 111 mm (Fig. 5b3); except for the Can1 model, 
which predicted an 18 mm decrease in the surface runoff during the 
growing period of summer maize. Under the 2041–2070 RCP4.5 sce
nario, the simulated surface runoff increased from 1 mm to 31 mm. 
Overall, the percent increases in ETa during the summer maize growing 
period were within 7% and 9% under the 2041–2070 RCP4.5 and 
2041–2070 SSP2-4.5 scenarios, respectively (Fig. 5a4,b4). Some studies 
indicated that the increase in ETa is mainly attributed to the increased 
LAI caused by rising CO2 concentrations under future climate change 
(Phong et al., 2011; Wang et al., 1995; Shiru et al., 2021; Kim et al., 
2013; Wand et al., 1999; Medlyn et al., 2001; Hickman et al., 2010). 

Fig. 3. Changes in annual precipitation, irrigation, surface runoff, and ETa during the winter wheat growing period simulated by six GCMs under the RCP4.5 and 
SSP2-4.5 scenarios for the period of 2041–2070 and 2071–2100 compared to the historical period (1971–2000). 
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Under the 2041–2070 RCP4.5 and 2041–2070 SSP2-4.5 scenarios, the 
irrigation showed decreasing trends ranging from − 56% to − 28% and 
− 51% to 30%, respectively (Fig. 5a2,b2). The projected increases in 
precipitation in the study area might be sufficient to satisfy the higher 
demands on water for irrigation during the summer maize growing 
period. 

By the end of the 21st century (2071–2100), the projected changes in 
irrigation, surface runoff, and ETa for the RCP4.5 and SSP2-4.5 scenarios 
during the summer maize growing season were similar to the results 
simulated under the moderate emission scenarios for the period of 
2041–2070, ranging from − 80% to − 36% & − 55% to –23%, 10 mm to 
50 mm & − 8 mm to 95 mm, 4%-11% & 2%-11% (Fig. 5a2,b2,a3,b3,a4, 
b4). Under the 2041–2070 RCP8.5 and 2041–2070 SSP5-8.5 scenarios, 
the changes in annual precipitation during the summer maize growing 
period ranged from − 3% to 45% and − 5% to 48%, respectively. Under 
the 2041–2070 RCP8.5 and 2041–2070 SSP5-8.5 scenarios, only the 
ECE and Can1 models predicted decreases in precipitation (Fig. 6a1,b1). 
Under the 2041–2070 SSP5-8.5 scenario, the ETa predicted by ECE1 and 
GFD2 models decreased by 0.2% and 3%, respectively. However, the 
rest of the four GCMs projected increases in ETa with a range from 1% to 
7% (Fig. 6b4). Under the 2041–2070 RCP8.5 scenario, all six GCMs 
consistently predicted increases in the ETa ranging from 1% to 7% 
(Fig. 6a4). Under the RCP8.5 and SSP5-8.5 scenarios for the middle of 

the 21st century, increases in precipitation could have a direct impact on 
the increase of surface runoff. The average value of simulated surface 
runoff was larger under the SSP5-8.5 scenario than under the RCP8.5 
scenario (Fig. 6a3,b3). 

Under the high emission scenarios, the magnitude of increases in 
precipitation was larger at the end of the 21st century than in the middle 
of the 21st century. The surface runoff under the RCP8.5 and SSP5-8.5 
scenarios at the end of the 21st century increased substantially, 
ranging from 25 mm to 90 mm and − 5 mm to 132 mm, respectively 
(Fig. 6a3,b3). Due to the impacts of increased precipitation and CO2 
concentrations under the future climate, the irrigation water demand 
during the summer maize growing period under the RCP8.5 and SSP5- 
8.5 scenarios at the end of the 21st century decreased by 60%-88% 
and 41%-57%, respectively (Fig. 6a2,b2). Excessive CO2 concentrations 
could reduce the irrigation water demand of summer maize by sup
pressing the leaf transpiration (Xiong et al., 2010), which further 
explained why the decrease in irrigation water demand was greater 
under the 2071–2100 RCP8.5 scenario than the rest three scenarios. The 
projected changes in ETa during the growing period of summer maize 
varied greatly between different GCMs. Under the 2071–2100 RCP8.5 
scenario, the increases in ETa predicted by the AC1, CaE, and GF2 
models were under 3%; whereas the other three GCMs projected de
creases in ETa ranging from − 1% to − 3% (Fig. 6a4). The simulation 

Fig. 4. Changes in annual precipitation, irrigation, surface runoff, and ETa during the winter wheat growing period simulated by six GCMs under the RCP8.5 and 
SSP5-8.5 scenarios for the simulation period of 2041–2070 and 2071–2100 compared to the historical period (1971–2000). 
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results under the 2071–2100 SSP5-8.5 scenarios of CMIP6 were rela
tively consistent, with all models showing decreases in ETa ranging from 
1% to 10%, except for ACC1, which predicted a 7% increase in ETa. The 
future ETa of summer maize simulated by both CMIP5 and CMIP6 GCMs 
could decrease under the high emission scenarios at the end of the 21st 
century. Overall, the simulation results of the CMIP6 GCMs showed 
better stability and consistency than the CMIP5 model. Compared to the 
historical period, the changes in annual precipitation, irrigation, surface 
runoff, and ETa of summer maize under the RCP8.5 and SSP5-8.5 sce
narios at the end of 21st century ranged from 22% to 67% & − 6% to 
76%, − 88% to 60% & − 57% to − 41%, 25 mm to 90 mm & − 5 mm to 
132 mm, and − 1% to 3% & − 10% to 7%, respectively (Fig. 6). 

3.4. Comparisons of differences in simulating crop biomass, LAI, and 
yields using CMIP5 and CMIP6 

Compared to the historical period, in the middle of the 21st century, 
the yield of winter wheat under the RCP4.5 and SSP2-4.5 scenarios 
increased by 16%–19% and 13%–25%, respectively. The average values 
of increases in yield simulated by six GCMs were 18% and 19%, 
respectively. The projected winter wheat yield under the RCP8.5 and 
SSP5-8.5 scenarios increased by 13%–23% and 14%–25%, respectively, 

and the average values of increases in yield simulated by six GCMs were 
16% and 19%, respectively. In the late 21st century, the yield of winter 
wheat under the RCP4.5 and SSP2-4.5 scenarios increased by 16%–20% 
and 13%–27%, respectively, and the average values of increases in yield 
simulated by six GCMs were 17% and 20% respectively. The simulated 
winter wheat yield under the RCP8.5 and SSP5-8.5 scenarios increased 
by 9%–20% and 6%–19%, respectively, and the average values of in
creases in yield simulated by six GCMs were 12% and 13%, respectively 
(Fig. 7). The magnitude of increases in winter wheat yield was slightly 
smaller under the high emission scenarios than the moderate emission 
scenarios. Dynamic curves of daily total biomass and LAI of winter 
wheat indicated similar trends under both CMIP5 and CMIP6 scenarios 
(Fig. 7a1,a2,a3,a4). The daily total biomass increased apparently under 
future climate change scenarios. The projected LAI of winter wheat 
increased in the early stage of growing period but declined in the late 
growing period compared to the historical period. Under future climate 
scenarios, the trend towards the earlier maturity of winter wheat would 
become more noticeable with higher CO2 concentrations. This partially 
explained the magnitude of increase in yield was smaller under the high 
emission scenarios than in the moderate scenarios (Fig. 7). 

Under the 2041–2070 RCP4.5 and 2041–2070 SSP2-4.5 scenarios, 
the yield of summer maize increased from 17% to 23% and 3% to 21%, 

Fig. 5. Changes in annual precipitation, irrigation, surface runoff, and ETa during the summer maize growing period simulated by six GCMs under the RCP4.5 and 
SSP2-4.5 scenarios for the period of 2041–2070 and 2071–2100 compared to the historical period (1971–2000). 
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respectively, and the average values of increases in yield simulated by 
six GCMs were 20% and 12%, respectively, compared to the historical 
period. Under the 2071–2100 RCP4.5 and 2071–2100 SSP2-4.5 sce
narios, the increases in summer maize yield ranged from 19% to 22% 
and 8% to 24%, respectively, and the average values of increases in 
yields simulated by six GCMs were 22% and 17% compared to the his
torical period, which were slightly higher than the scenarios in the 
middle of 21st century. The increase in atmospheric CO2 concentrations 
might enhance the LAI and promote dry matter accumulation of plants 
and grain formation (Wang et al., 1998). Similar to the trends under the 
moderate emission scenarios, the summer maize yield also increased 
under the high emission scenarios due to the influence of increased CO2 
concentrations. Under the 2041–2070 RCP8.5, 2041–2070 SSP5-8.5, 
2071–2100 RCP8.5, and 2071–2100 SSP5-8.5 scenarios, the increases 
in summer maize yield ranged from 18% to 24%, 7% to 23%, 17% to 
34%, and 5% to 25%, respectively, and the average values of summer 
maize yield simulated by six GCMs increased by 21%, 15%, 24%, and 
12%, respectively. In the middle and end of the 21st century, the mag
nitudes of increases in summer maize yields projected by the CMIP6 
GCMs were slightly smaller than the CMIP5 GCMs (Fig. 7). Under the 
future climate scenarios, the increases in daily total biomass and LAI 
during the growing period of summer maize also indicated the tendency 
of early maturing and premature senility, which became more obvious 

at the end of the 21st century, especially under the 2071–2100 SSP5-8.5 
scenario (Fig. 7b1,b2,b3,b4). Generally, the direct comparison and the 
SWAT-MAD simulation results driven by GCMs of CMIP5 and 6 indi
cated better stability and consistency of CMIP6 compared to CMIP5. 
Therefore, the CMIP6 GCMs were further used for assessing the impacts 
of climate change on hydrology and crop production in the DRB. 

3.5. Response of hydrologic cycle and crop growth to future climate 
change based on the selected CMIP6 GCMs 

3.5.1. Evaluation and selection of CMIP6 GCMs 
Among 10 CMIP6 GCMs, most GCMs displayed good simulation 

performance and stability, but there were also some models with low 
performance scores (Fig. 8). For example, the GFD2 and IPSL achieved 
low scores in precipitation projections (Fig. 8a). The IPSL model was 
excluded from CMIP6 due to its worst accuracy in simulating solar ra
diation and lowest Taylor’s skill score (Fig. 8b). In terms of simulating 
the Tmax, the GFD2 and INM1 models with the lowest scores were 
excluded from the study (Fig. 7). Regarding the projections of Tmin, all 
GCMs in CMIP6 performed well with reasonable accuracy and stability, 
except the INM1 model, and hence INM1 model was excluded from the 
study. This study finally selected seven GCMs (ACC1, ACC2, BCCC, 
Can1, ECE1, MIR1, and MPI2) from 10 CMIP6 GCMs. The future climate 

Fig. 6. Changes in annual precipitation, irrigation, surface runoff, and ETa during the summer maize growing period simulated by six GCMs under the RCP8.5 and 
SSP5-8.5 scenarios for the periods of 2041–2070 and 2071–2100 compared to the historical period (1971–2000). 

X. Li et al.                                                                                                                                                                                                                                        



Computers and Electronics in Agriculture 202 (2022) 107408

11

data projected by these GCMs were input into the SWAT-MAD model to 
analyze the changes in future climate, hydrologic cycle, and crop yields 
in the study watershed in the middle and at the end of the 21st century. 

3.5.2. Characteristics of future climate change 
Characteristics of future climate change during the growing period of 

winter wheat. 
Compared to the historical period of GCMs, the increases in annual 

average Tmax during the growing period of winter wheat in the plain 
area of the DRB ranged from 2.1℃ to 4.2℃ under the SSP2-4.5 and 
SSP5-8.5 scenarios for two simulation periods (2041–2070 and 
2071–2100) (Table S5). The magnitude of increase in annual average 

Tmax was greater under the SSP5-8.5 scenario than the SSP2-4.5 sce
nario. Under the moderate emission scenarios, the annual average Tmax 
increased by 2.1℃ and 2.8℃ in the middle and at the end of the 21st 
century, respectively. Under the high emission scenarios, the annual 
average Tmax increased by 2.7℃ and 4.2℃ in the middle and at the end 
of the 21st century, respectively. The ranges of changes in Tmax under 
the moderate emission scenarios and high emission scenarios were 1.4℃ 
to 3.7℃ and 1.8℃ to 5.7℃, respectively (Table S5). Compared to the 
historical period of GCMs, GCMs developed in Australia projected higher 
increases in Tmax, in which the Tmax increased by 2.9℃ and 3.7℃ under 
the 2041–2070 SSP2-4.5 and 2071–2100 SSP2-4.5 scenarios, respec
tively. Germany’s MPI2 model projected a smaller increase in Tmax, in 

Fig. 7. Dynamic changes of daily total biomass, LAI, and yield during the growing season of crops under four scenarios (RCP4.5, SSP2-4.5, RCP8.5, and SSP5-8.5) for 
two simulation periods (2041–2070 and 2071–2100) relative to the historical period (1971–2000). 
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which the Tmax increased by 1.4℃, 2.0℃, 1.8℃, and 3.0℃ under the 
2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5-8.5, and 
2071–2100 SSP5-8.5 scenarios, respectively. The annual average Tmax 
during the growing period of winter wheat simulated by China’s BCCC 
model increased by 1.8℃, 2.2℃, 2.0℃, and 3.1℃, respectively, under 
the 2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5-8.5, 
and 2071–2100 SSP5-8.5 scenarios (Table S5). 

According to the future climate data predicted by seven GCMs, the 
annual average Tmin during the growing period of winter wheat in the 
plain area of the DRB increased by 2.4℃ and 3.1℃ under the 
2041–2070 SSP2-4.5 and 2071–2100 SSP2-4.5 scenarios, respectively, 
compared to the historical period. The increases in annual average Tmin 
were larger under the high emission scenarios. Specifically, annual 
average Tmin increased by 3.1℃ and 4.9℃ under the 2041–2070 SSP5- 
8.5 and 2071–2100 SSP5-8.5 scenarios. The simulation results of annual 

Tmin during the winter wheat growing season varied greatly between the 
GCMs developed in different countries. For instance, the ranges of 
changes in annual Tmin during the growing period of winter wheat were 
1.1℃–4.6℃, 0.8℃–4.8℃, and 1.2℃–7.5℃ under the 2041–2070 SSP5- 
8.5, 2071–2100 SSP2-4.5, and 2071–2100 SSP5-8.5 scenarios, respec
tively, compared to the historical period of GCMs. The predicted annual 
average Tmin increased by 2.2℃, 2.7℃, 2.6℃, and 3.7℃ under the 
2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5-8.5, and 
2071–2100 SSP5-8.5 scenarios, respectively. The projection results of 
Australia’s ACC1 model were higher, and increases in annual Tmin 
ranged from 3.8℃–4.6℃ and 4.8℃–7.5℃ in the middle and at the end 
of the 21st century, respectively. Canada’s Can1 model showed a lower 
prediction value, and the Tmin increased by 0.6℃, 0.8℃, 1.1℃, and 
1.2℃ respectively under the 2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 
2041–2070 SSP5-8.5, and 2071–2100 SSP5-8.5 scenarios (Table S5). 

Fig. 8. Taylor Diagram of simulated precipitation (a), solar radiation (b), maximum air temperature (c), and minimum air temperature (d) for 10 GCMs of CMIP6.  

Table 4 
Relative changes in solar radiation during the growing period of crops in the plain area of the Daqing River Basin under the SSP2-4.5 and SSP5-8.5 scenarios in the 
middle and end of 21st century compared to the historical period (%).  

GCM 2041–2070 2071–2100 

SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 

winter wheat summer maize winter wheat summer maize winter wheat summer maize winter wheat summer maize 

ACC1  12.9  3.3  1.8  1.4  6.7  7.9  4.3  6.7 
ACC2  31.8  3.1  0.6  3.4  0.6  7.5  − 1.5  7.5 
BCCC  15.8  1.3  − 0.6  1.0  4.7  1.7  1.3  2.6 
Can1  28.6  7.3  1.1  4.6  6.2  9.3  − 3.1  − 1.5 
ECE1  13.6  − 5.9  − 4.7  − 6.4  − 0.3  − 4.2  − 6.4  − 6.0 
MIR1  − 5.2  − 5.1  − 2.3  − 4.5  − 0.1  − 2.5  − 2.1  − 2.0 
MPI2  3.7  2.0  − 1.5  3.4  0.7  5.8  − 3.8  0.4 
Maximum  31.8  7.3  1.8  4.6  6.7  9.3  4.3  7.5 
Minim 

um  
− 5.2  − 5.9  − 4.7  − 6.4  − 0.3  − 4.2  − 6.4  − 6.0 

Ave 
rage  

14.5  0.8  − 0.8  0.4  2.6  3.6  − 1.6  1.1  
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In the middle and late 21st century, the annual average solar radi
ation increased by 14.5% and 2.6%, respectively, under the moderate 
emission scenarios, but decreased by 0.8% and 1.6%, respectively, 
under the high emission scenarios (Table 4). There were large differ
ences among various models in predicting future solar radiation. 
Compared to the historical period, for instance, the ranges of changes in 
solar radiation under the 2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 
2041–2071 SSP5-8.5, and 2071–2100 SSP5-8.5 were − 5.2% to 31.8%, 
− 0.3% to 6.7%, − 4.7% to 1.8%, and − 6.4% to 4.3%, respectively. 

Characteristics of climate change during the growing period of 
summer maize. 

Compared to the historical period, for the periods of 2041–2070 and 
2071–2100, the annual average Tmax during the growing period of 
summer maize increased by 1.4℃ and 1.9℃, respectively, under the 
moderate emission scenarios (Table S6). The annual average Tmax in the 
middle and the end of the 21st century increased by 1.9℃ and 3.0℃, 
respectively, under the high emission scenarios, with a range from 1.4℃ 
to 2.4℃ and 1.4℃ to 4.4℃, respectively. The ACC1 model developed in 
Australia indicated the greatest increase in Tmax under four scenarios 
compared to the rest of GCMs; the annual average Tmax increased by 
1.8℃, 2.6℃, 2.4℃, and 4.4℃, respectively, under the 2041–2070 SSP2- 
4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5-8.5, and 2071–2100 SSP5- 
8.5 scenarios. The ECE1 model developed in Europe showed the 
lowest increase in Tmax under the SSP2-4.5 scenario compared to the rest 
of GCMs; under the 2041–2070 SSP2-4.5 and 2071–2100 SSP2-4.5 
scenarios, the annual average Tmax increased by 0.9℃ and 1.2℃, 
respectively. The Tmax projected by the BCCC model developed in China 
increased by 1.6℃, 1.8℃, and 3.4℃ under the 2041–2070 SSP2-4.5, 
2071–2100 SSP2-4.5, and 2071–2100 SSP5-8.5 scenarios, respectively. 

Four emission scenarios indicated that the annual average Tmin 
during the growing period of summer maize in the plain area of the DRB 
increased, but the magnitude of increases projected varied due to model 
differences (Table S6). In the middle of the 21st century, the annual Tmin 
during the growing period of summer maize among seven GCMs 
increased from 1.3℃ to 4.0℃ and 1.9℃ to 4.9℃ under the SSP2-4.5 and 
the SSP5-8.5 scenarios, respectively. By the end of the 21st century, the 
annual Tmin during the growing period of summer maize among seven 
GCMs increased from 1.4℃ to 5.3℃ and 1.3℃ to 8.1℃ under the SSP2- 
4.5 and SSP5-8.5 scenarios, respectively (Table S6). Compared to the 
historical period of GCMs, the annual average Tmin during the growing 
period of summer maize increased by 2.7℃, 3.4℃, 3.5℃, and 5.3℃ 
under the 2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5- 
8.5, and 2071–2100 SSP5-8.5 scenarios, respectively. The projected 
values of Can1 model developed in Canada were maintained at a low 
level. Simulations results from two models developed in Australia were 
greater, in which the projection values of ACC1 model were highest 
under all scenarios compared to the rest six GCMs; specifically, the 
annual average Tmin during the growing period of summer maize 
increased by 4.0℃, 5.3℃, 4.9℃, and 8.1℃, respectively under the 
2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5-8.5, and 
2071–2100 SSP5-8.5 scenarios. 

Compared to the historical period, solar radiation during the summer 
maize growing period increased by 0.8%, 3.6%, 0.4%, and 1.1% under 
the 2041–2070 SSP2-4.5, 2071–2100 SSP2-4.5, 2041–2070 SSP5-8.5, 
and 2071–2100 SSP5-8.5 scenarios, respectively. Among all GCMs, the 
ECE1 model developed in Europe had the lowest simulation results; in 
the middle and the end of the 21st century, the annual average solar 
radiation decreased by 5.9% and 4.2%, respectively, under the moderate 
emission scenarios, and 6.4% and 6.0%, respectively, under the high 
emission scenarios. The Can1 model developed in Canada showed the 
highest increases in annual solar radiation under the 2041–2070 SSP2- 
4.5, 2071–2100 SSP2-4.5, and 2041–2070 SSP5-8.5 scenarios, which 
were 7.3%, 9.3%, and 4.6%, respectively (Table 4). Xiao et al. (2020) 
predicted increases in solar radiation from 2040 to 2080 in the North 
China region based on 33 GCMs under two RCPs (RCP4.5 & RCP8.5) 
scenarios. 

3.5.3. Effects of future climate change on the hydrological cycle and crop 
yields 

Changes in the hydrological cycle and crop yield during the growing 
period of winter wheat. 

Under the future climate scenarios, the ranges of changes in annual 
precipitation, irrigation, ETa, surface runoff, and yield of winter wheat 
projected by seven GCMs were 22.9% to 57.6%, − 24.6% to − 0.5%, 
− 7.9% to 5.2%, − 0.2 mm to 4.1 mm, and 11.4% to 18.9%, respectively, 
compared to the historical period (Table 5). In the middle and end of the 
21st century, the simulated annual average precipitation increased in 
various degrees under the SSP2-4.5 and SSP5-8.5 scenarios compared to 
the historical period. Under the SSP2-4.5 and SSP5-8.5 scenarios, the 
increases in precipitation in the late 21st century were greater than the 
middle of the 21st century. Future increases in precipitation could lead 
to a decrease in irrigation to a certain extent. In addition, the apparent 
increases in precipitation and atmospheric CO2 concentration under the 
2071–2100 SSP5-8.5 scenario might lead to a decrease in ETa during the 
growing period of winter wheat and a substantial increase in annual 
average surface runoff, which could result in lower irrigation relative to 
the historical period and the other three climate change scenarios. The 
increase in CO2 concentrations might lead to the decrease of crop sto
matal conductance and restrain the transpiration, which could further 
reduce the ETa. However, the increase in LAI due to the elevated CO2 
concentrations could provide a larger surface area for transpiration, 
rainfall interception, and photosynthesis, which might result in in
creases in ETa during the growing period of winter wheat under the 
moderate emission scenarios and the 2041–2070 SSP5-8.5 scenario 
(Hickman et al., 2010). The temperature and water stress days were 
projected to decrease under all emission scenarios compared to the 
historical period. By the late 21st century, the trend towards fewer 
temperature and water stress days would become more prominent, 
particularly under the scenario of SSP5-8.5 (Fig. 9). 

As a C3 crop, winter wheat can benefit from the increase in CO2 
concentrations (Deryng et al., 2016; Cotterman et al., 2018). The pro
jected increases in winter wheat yield were attributed to the sufficient 
supply of CO2 and the decrease in temperature and water stress days. 
Moreover, autumn sowing and summer harvesting of the winter wheat 
could avoid the impact of the extremely hot and dry climate in the 
summer of the North China Plain. In this study, the simulated solar ra
diation during the growing period of winter wheat increased under the 
moderate emission scenarios and decreased noticeably under the high 
emission scenario at the end of 21st century (Table 4). Many studies 
indicated that solar radiation might have a direct influence on crop 
yield. For example, Zhang et al. (2013) observed a positive correlation 
between the wheat yield and solar radiation through field experiments. 
Xiao and Tao (2014) used a wheat module in APSIM (Agricultural 
Production Systems sIMulator) to simulate the impacts of climate 

Table 5 
Simulated annual average irrigation (mm), ETa (mm), surface runoff (mm), and 
yield (kg ha− 1) during the growing period of winter wheat under the future 
emission scenarios compared to the historical period (1971–2000).  

Scenario Precipitation Irrigation ETa Surface 
runoff 

Crop 
yield 

1971–2000 112.8 222.5 376.3 2.5 5498.5 
2041–2070 

SSP2-4.5 
141.5 (24.8) 220.3 

(-0.9) 
391.0 
(3.7) 

2.3 [-0.2] 6468.3 
(17.6) 

2071–2100 
SSP2-4.5 

150.3 (32.5) 221.3 
(-0.5) 

396.9 
(5.2) 

3.0 [0.5] 6535.1 
(18.9) 

2041–2070 
SSP5-8.5 

139.2 (22.9) 220.8 
(-0.7) 

384.9 
(2.2) 

2.9 [0.4] 6522.2 
(18.6) 

2071–2100 
SSP5-8.5 

179.3 (57.6) 162.5 
(-24.6) 

345.3 
(-7.9) 

6.6 [4.1] 6123.7 
(11.4) 

Note: The numbers in () are the percent changes in climate variables under the 
emission scenarios relative to the historical period; the numbers in [ ] are the 
absolute changes in climate variables under the emission scenarios relative to 
the historical period. 
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variables on wheat yields at four sites from 1980 to 2009. The study 
found that the wheat yields declined by 3.0%–12.0% due to the sub
stantial decrease in solar radiation over the past four decades. 

Results in this study also indicated a lower increase in winter wheat 
yield under 2071–2100 SSP5-8.5 scenarios compared to other scenarios. 
However, a substantial increase in CO2 concentrations and a decrease in 
temperature and water stress days can offset the negative effects of a 
slightly decreased solar radiation (Tao et al., 2008; Zhang, 2012), which 
finally led to an overall increase in yield. Under the condition of suffi
cient irrigation water supply, therefore, the yields of winter wheat might 
increase steadily under the SSP2-4.5 and SSP5-8.5 scenarios in the 
middle and the end of the 21st century due to the combined effects of 
increased CO2 concentrations, air temperatures, precipitation, and 
fluctuation of solar radiation. 

Variations in the hydrological cycle and crop yield during the 
growing period of summer maize. 

Compared to the historical period, the ranges of changes in annual 
precipitation, irrigation, ETa, surface runoff, and yield of summer maize 
simulated by seven GCMs were 29.4% to 46.6%, − 48.9% to –22.7%, 

− 1.8% to 6.2%, 36.5 mm to 68.1 mm, and 12.9% to 16.7%, respectively 
(Table 6). The increase in future precipitation was the main factor that 
led to the decrease in irrigation and increase in surface runoff. Under the 
moderate emission scenarios and the 2041–2070 SSP5-8.5 scenario, the 
ETa during the growing period of summer maize increased slightly, 
which was attributed to the projected increases in precipitation and LAI 
during the summer maize growing season (Wu and Liu, 2012). By the 
end of 21st century, under the high emission scenarios, when the pro
jected CO2 concentration reached 807 ppm, the crop stomata could close 
partially and transpiration could be restrained significantly, resulting in 
a decrease in ETa and thus a decrease in water demand for irrigation 
during the growing period of summer maize (Jonathan et al., 2014; Wu 
et al., 2012). Overall, the temperature stress days during the growing 
period of summer maize increased slightly, while the water stress days 
decreased slightly (Fig. 9). 

The increase in air temperatures and temperature stress days in the 
future can accelerate the early maturing of crops and reduce the growth 
time of summer maize. However, the increase in CO2 concentration, 
solar radiation, precipitation, decrease in water stress days, and suffi
cient irrigation water supply would fully satisfy crop growth needs. 
Therefore, future climate change could eventually have a positive effect 
on the biomass accumulation and yield of summer maize. 

4. Conclusions and limitations 

Out of 33 GCMs from CMIP5 and 27 GCMs from CMIP6, 10 pairs of 
homogeneous GCMs were selected in this study. After analyzing the 
annual precipitation, maximum and minimum air temperatures, and 
solar radiation, six pairs of GCMs of CMIP5 and CMIP6 with better 
simulation performance were screened out. The future climate data from 
the six pairs of GCMs were used as input for the SWAT-MAD model to 
analyze the changes in hydrological cycle and crop growth during the 
growing periods in the DRB under moderate and high emission scenarios 
for the periods of 2041–2070 and 2071–2100. The results showed that 
the annual average precipitation could increase under four scenarios in 
the middle and the end of the 21st century, and the increases of annual 
average precipitation were greater under the CMIP6 SSP scenarios than 

Fig. 9. Changes in annual average temperature stress days and water stress days simulated by 7 GCMs during the growing period of crops under the SSP2-4.5 and 
SSP5-8.5 scenarios for the periods of 2041–2070 and 2071–2100 compared to the historical period (1971–2000). 

Table 6 
Simulated annual average irrigation (mm), ETa (mm), surface runoff (mm), and 
yield (kg ha− 1) during the growing period of summer maize under the future 
emission scenarios compared to the historical period (1971–2000).  

Scenario Precipitation Irrigation ETa Surface 
runoff 

Crop yield 

1971–2000 387.9 34.8 301.4 33.1 6058.3 
2041–2070 

SSP2-4.5 
502.3 (30.1) 21.9 

(–22.7) 
313.4 
(3.8) 

72.9 
[39.9] 

6867.7 
(13.3) 

2071–2100 
SSP2-4.5 

511.9 (32.6) 18.3 
(-29.1) 

320.9 
(6.2) 

73.8 
[40.7] 

7073.2 
(16.7) 

2041–2070 
SSP5-8.5 

499.7 (29.4) 18.7 
(-28.5) 

311.1 
(3.1) 

69.6 
[36.5] 

7021.5 
(15.8) 

2071–2100 
SSP5-8.5 

565.1 (46.6) 7.1 (-48.9) 295.8 
(-1.8) 

101.2 
[68.1] 

6840.2 
(12.9) 

Note: The numbers in () are the percent changes in climate variables under the 
emission scenarios relative to the historical period; the numbers in [ ] are the 
absolute changes in climate variables under the emission scenarios relative to 
the historical period. 
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the CMIP5 RCP scenarios; the maximum percentage increases of pre
cipitation during the growing periods of winter wheat and summer 
maize were 54% and 42%, respectively. By the end of the 21st century, 
the projected changes in hydrological cycle were similar under the high 
emission scenarios of CMIP5 and CMIP6; the decrease in ETa and sub
stantial increase in precipitation during the crop growing periods could 
lead to a decrease in irrigation and a clear increase in surface runoff. 
Under the RCP4.5 & SSP2-4.5 and RCP8.5 & SSP5-8.5 scenarios in the 
middle and the end of the 21st century, the dynamic changes in daily 
biomass and LAI of winter wheat and summer maize in the growing 
period showed similar trends for CMIP5 and CMIP6. In addition, the 
future daily biomass and LAI of winter wheat and summer maize were 
projected to increase in the early growth period with a tendency of early 
maturing and premature senescence. The increases in crop yields of 
winter wheat and summer maize were greater under the moderate 
scenarios than the high emission scenarios due to the reductions in solar 
radiation under the high emission scenarios. 

Overall, the comparisons of GCMs between CMIP5 and CMIP6 
emphasized the higher stability and consistency of CMIP6 than CMIP5. 
Furthermore, seven GCMs with better simulation performance were 
further selected from CMIP6 based on the Taylor Diagram for more 
accurately evaluating the climate change impacts in the DRB. The 
annual average precipitation and air temperatures were increased 
clearly for both the winter wheat and summer maize growing periods 
under the future climate change scenarios. However, the annual average 
solar radiation during the growing period of winter wheat in the middle 
and the end of the 21st century increased by 14.5% and 2.6%, respec
tively, under the moderate emission scenarios, and decreased by 0.8% 
and 1.6% under the high emission scenarios, respectively. Under the 
future climate scenarios, the changes in irrigation, ETa, and surface 
runoff during the winter wheat growing period projected by seven GCMs 
ranged from − 24.6% to − 0.5%, − 7.9% to 5.2%, and − 0.2 mm to 4.1 
mm, respectively, compared to the historical period. Those values for 
summer maize varied from − 48.9% to –22.7%, − 1.8% to 6.2%, and 
36.5 mm to 68.1 mm. Under the conditions of sufficient water supply for 
irrigation, the yields of winter wheat and summer maize in the DRB 
increased steadily under the SSP2-4.5 and SSP5-8.5 scenarios in the 
middle and the end of the 21st century due to the combined effect of CO2 
concentration, solar radiation, precipitation, and air temperatures. 
Compared to the historical period, the maximum increases in yields of 
winter wheat and summer maize were 18.9% and 16.7%, respectively. 
The findings in this study for future climate change and their impacts on 
hydrology and crop production using CMIP5 and CMIP6 can provide 
technical support for the pre-selection of CMIPs and GCMs for other 
climate change studies and offer decision-making support for agricul
tural best management strategies at a basin level. 

Although the spatial variations in soil, land use, and agricultural 
management inputs have been sufficiently considered in this study, the 
SWAT model itself still has some uncertainties inevitably, including 

input data and parameter adjustments, and so on. In this study, Taylor’s 
method was used to select the outperformed CMIPs and GCMs. However, 
due to the complexity of climate change issues and the limitations of 
human cognition, the projected changes in future climate showed a high 
variation among different CMIPs and GCMs. In addition, there were 
many causes of uncertainties in climate projections, e.g., downscaling 
approaches, bias-correction methods, etc. 
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Appendix A 
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RSR =
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where Qs is simulation value; Qm is actual measurement value; n is the number of actual measurements; ‾Qs and ‾Qm are mean values of simulation 
values and actual measurements, respectively; r is the linear correlation between simulation values and observed values; and β is the specific value 
between simulation value and observed value. 
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.compag.2022.107408. 
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