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A B S T R A C T   

Water resources in semi-arid and arid regions are critical for sustainable agricultural development, and climate 
change imposes great challenges and brings about large uncertainties in water resource management and crop 
production. In this study, the effects of future climate change on hydrology and corn production in the U.S. High 
Plains region were assessed using a newly developed SWAT-CO2 model and GCMs under the RCP4.5 and 8.5 
scenarios. Specifically, a new method to dynamically input annual CO2 concentration into SWAT was developed. 
This method, along with the SWAT default CO2 concentration (330 ppm), and a constant CO2 input option (one 
average CO2 concentration for a simulation period) were compared for simulating hydrology and corn yield in 
21st century (2031–2100). Results showed the default CO2 concentration continuously simulated the highest 
crop evapotranspiration (ETc) and irrigation but the lowest water yield and corn yield among three methods, 
especially under the RCP8.5 scenario. However, the ETc and irrigation were higher for the dynamic input method 
before the mid-21st century and lower between mid- to late-21st century than for the constant input method. The 
contrast results were found for the corn yield simulations. Additionally, the improved SWAT-CO2 model was 
applied to predict the changes in hydrology and corn yields for three centuries (2031–2298) relative to the 
historical period (1970–1999). Results indicated that the overall trend of future irrigation, ETc, and corn yield 
could decrease significantly at the three sites compared to the historical period. The impacts of dramatically 
elevated CO2 and logarithmic increase in air temperatures were the key factors for the above changes. The study 
highlighted the necessity of considering the dynamic CO2 input for the SWAT applications in climate change 
studies. Long-term projected results of this study can inform local producers about the risks of future climate 
change in this water shortage environment.   

1. Introduction 

The rapid development of modern societies, along with an increased 
global population and economy have been fueled by a steady increase in 
the burning of fossil fuels for decades. As a result, climatic change has 
emerged due to the rising concentrations of greenhouse gases. The most 
visible evidence of climate change is rising air temperatures which are 
closely associated with changes in the global water cycle (El-Shehawy 

et al., 2012). The 2015 Paris Agreement on Climate Change committed 
to limiting global average temperature increases to <2 ◦C, and pursuing 
efforts to achieve temperature increases of <1.5 ◦C above pre-industrial 
levels (United Nations Framework Convention on Climate, 2015). This 
agreement attempts to mitigate the overall impacts of climate change 
and reduce the occurrence of extreme events (Lewis et al., 2019). 
Therefore, assessing the potential impacts of future climate change 
provide an invaluable and essential contribution to achieving carbon 
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emission reductions for reducing global temperatures and associated 
negative impacts for the world (Qian et al., 2021). 

Simulation modeling has shown that climate change can have great 
impacts on hydrology and crop yields (Chen et al., 2021). For instance, it 
is predicted that by the end of 21st century, climate change may result in 
a 16.3% reduction in global water use efficiency under a high emission 
scenario and a 2.2% reduction under a low emission scenario (Pan et al., 
2018). Agriculture and climate change are inseparably linked, and 
agricultural systems are vulnerable to the impacts of climate change. 
Factors related to agricultural production such as CO2 concentration, air 
temperature, precipitation, solar radiation, and other factors are 
affected by climate change (Feng et al., 2021; Marras et al., 2021). 
Therefore, global climate change is widely recognized as one of the most 
significant challenges faced by agriculture today. It is necessary to 
explore the impact of climate change on the hydrologic cycle and crop 
production, particularly across various climatic regions. 

Climate projections from the IPCC Fifth Assessment Report (AR5) 
were based on the fifth phase of the Coupled Model Intercomparison 
Project (CMIP5), which focused on Representative Concentration Path
ways (RCPs) for future climate projections by various General Circula
tion Models (GCMs) (Rogelj et al., 2012; Sheffield et al., 2013). The GCM 
outputs of CMIP5 have been widely used to study climate change related 
scenarios at regional and global scales (Zhang et al., 2019). Thus, CMIP5 
projections could provide a good basis for the assessment of hydrological 
variables and crop growth parameters (Yuan et al., 2020). The use of the 
watershed-scale Soil and Water Assessment Tool (SWAT) facilitates the 
study of the impact of climate change on the regional water balance and 
crop production (Tan et al., 2022; Wang et al., 2020). 

Water resources are limited in the southwest United States (U.S.), 
and irrigated agriculture is a major economic contributor to the U.S. 
High Plains region, which relies heavily on the Ogallala Aquifer as an 
irrigation source (Rudnick et al., 2019). Corn (Zea mays L.) is one of the 
major field crops planted under irrigated conditions in the U.S. High 
Plains (National Agricultural Statistics Service; NASS, 2021). Therefore, 
three corn production sites in the U.S. High Plains were selected for 
climate change evaluation in this study, including fields in Nebraska, 

Kansas, and Texas, ranging from north to south representing different 
regional climates. 

The existing method for simulating CO2 concentration in SWAT is 
problematic in that it only allows for a static input value for CO2 con
centration that remains constant for the entire simulation period, which 
has limitations for long-term future climate change simulations. In this 
study, a dynamic CO2 input method was developed to allow for varying 
annual CO2 values in the SWAT model. This development is both more 
flexible and realistic for long-term continuous simulations and essential 
for assessing future climate change on water balance and crop growth 
(Tan et al., 2020; Wang et al., 2017). Such an approach is also more 
convenient and computationally efficient than splitting long-term sim
ulations into numerous, smaller simulation scenarios. It also likely al
lows for prediction results to be more representative and accurate. In 
addition, the previous studies of climate change lack long-term simu
lations, such as those from 2031 to 2300. In this study, climate data from 
four GCMs and two RCP scenarios (RCP4.5 and RCP8.5) based on the 
CMIP5 for three sites, Nebraska, Kansas, and Texas in the U.S. High 
Plains, were used to drive an improved SWAT model with the man
agement allowed depletion (MAD) auto-irrigation algorithm and dy
namic CO2 input method. An assessment was undertaken to determine 
the impact of projected future climate change on hydrology and corn 
yields in the U.S. High Plains. Specifically, the objectives of this study 
were to (1) develop a new method for dynamically inputting CO2 annual 
concentrations into the SWAT model; (2) compare the differences in the 
effects of three CO2 input methods (SWAT default CO2 input − 330 ppm, 
constant CO2 input – one average value, and dynamic CO2 input) on the 
hydrologic cycle and corn yields in the U.S. High Plains during 2031 to 
2100; and (3) assess the long-term impacts of climate change on hy
drology and corn yields across the U.S. High Plains from 2031 to 2298 
using the newly developed dynamic CO2 input method compared with 
the historical period (1970–1999). 

Fig. 1. Locations of the U.S. High Plains and the three study sites.  
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2. Materials and methods 

2.1. Study sites 

Three field study sites located in the U.S. High Plains were chosen for 
use in this study. Their locations were North Platte, Nebraska (41.2◦N, 
100.9◦W, approximately 861 m above sea level); Garden City, Kansas 
(38.0◦N, 100.8◦W, approximately 887 m); and Bushland, Texas (35.2◦N, 
102.1◦W, approximately 1171 m) (Fig. 1). All three study sites are 
classified as having a semi-arid climate (Peel et al., 2007) although air 
temperature and rainfall regimes vary. The U.S. High Plains area is the 
most important region for irrigated corn production in the nation. The 
average annual precipitation for the Nebraska site was ~506 mm. The 
mean annual maximum air temperature was ~17.3◦C and the minimum 
air temperature was ~2.8◦C. The soil type at the Nebraska site was 
classified as Cozad silt loam (Soil Survey Staff, 2010). The Kansas site 
had an average annual precipitation of ~439 mm, an average annual 
maximum air temperature of 21.2◦C, and a minimum air temperature of 
4.3◦C. The soil type was Ulysses silt loam at the Kansas site. For the 
Texas site, the average annual precipitation was less than those for 
Nebraska and Kansas, at ~346 mm, with average annual maximum and 
minimum air temperatures of 22.3◦C and 3.7◦C, respectively. The soil 
type at the Texas site was Pullman silt clay loam. 

2.2. CMIP5 future climate data 

The CMIP5 future climate data used in this study were downloaded 
from the C3S Climate Data Store (https://cds.climate.copernicus. 
eu/cdsapp#!/dataset/projections-cmip5-daily-single-levels?tab=form). 
Only four GCMs were available with climate projection up to year 2300 
for both RCP4.5 and RCP8.5 scenarios, namely CCSM4 (NCAR, USA), 

CSIRO-MK3-6-0 (CSIRO, Australia), IPSL-CM5A-LR (IPSL, France), and 
MPL-ESM-LR (MPI, Germany). The RCP4.5 scenario was a medium 
forcing scenario, which had a stable radiative forcing of 4.5 W m− 2 by 
2100, and the RCP8.5 scenario was a high forcing scenario, which had a 
stable radiative forcing of 8.5 W m− 2 by 2100 (van Vuuren et al., 2011). 

2.3. SWAT, SWAT-MAD, and SWAT- CO2 models 

2.3.1. SWAT model 
The SWAT model is a continuous-time, semi-distributed, process- 

based, watershed-scale model (Arnold et al., 2012). It is a physically 
based hydrologic model that simulates crop growth, hydrology, and 
water quality. Its primary model components include a weather simu
lator, hydrology, plant growth, and land management, as well as loads 
and fluxes of sediment, nutrients, pesticides, bacteria, and pathogens. 
The SWAT model is described in detail by Neitsch et al. (2011). The 
SWAT2012 revision 664 was used in this study. 

The SWAT model simulates hydrological processes in the soil profile 
based on the water balance equation [Eq. (1)], including precipitation, 
irrigation, surface runoff, evapotranspiration, lateral flow, and perco
lation (Arnold et al., 1998; Neitsch et al., 2011): 

SWt = SWo+
∑n

i=1
(Rday + Iday − Qsurf − ETa − Qlat − Wseep) (1)  

where SWt is the final soil water content (mm); SWo is the initial soil 
water content (mm); t is the time step (day); Rday is the amount of pre
cipitation on day i (or snowmelt; mm); Iday is the amount of irrigation on 
day i (mm); Qsurf is the amount of surface runoff on day i (mm); ETa is the 
amount of actual evapotranspiration on day i (mm); Qlat is the amount of 
lateral flow on day i (mm); and Wseep is the amount of percolation on day 
i (mm). 

The surface runoff is determined by a modified Soil Conservation 
Service (SCS) curve number method (Mishra and Singh, 2013). A kine
matic storage model is used to calculate lateral flow (Sloan and Moore, 
1984). A “tipping-bucket” algorithm is used to simulate soil water flow 
(Arnold et al., 2011; Neitsch et al., 2011). Percolating water from the 
lowest soil layer enters the vadose zone and is ultimately recharged to 
the aquifer. Evapotranspiration for the SWAT model can be calculated 
by three different methods, which include the Penman-Monteith method 
(Monteith, 1965), the Priestley-Taylor method (Priestley and Taylor, 
1972), and the Hargreaves method (Hargreaves and Samani, 1985). The 
Penman-Monteith method was used to simulate evapotranspiration in 
this study. 

Plant growth was modulated using heat unit theory according to 
plant-specific input parameters, which were summarized in the plant 
growth database (Neitsch et al., 2011). SWAT first calculates potential 
growth using a leaf area index (LAI) function, determined by accumu
lated heat units, light interception, and converted intercepted light into 
biomass through radiation use efficiency. Actual growth is then calcu
lated from the potential growth attributed to stresses, such as extreme 
temperatures and deficiencies of water and nutrients (i.e., nitrogen and 
phosphorus). Finally, SWAT calculates crop yield as a portion of total 
biomass using harvest index and partitions a part of dry crop biomass as 

Table 1 
Descriptions of the future climate change scenarios.  

Periods Emission scenario* CO2 concentration (ppm) 

2031–2100** RCP4.5 and 8.5 Default CO2 Input (330) 
RCP4.5 Constant CO2 Input (506) 
RCP8.5 Constant CO2 Input (661) 
RCP4.5 and 8.5 Dynamic CO2 Input  

Historical period (1970–1999) – Dynamic CO2 Input  

Future periods 2031–2060 RCP4.5 and 8.5 Dynamic CO2 Input 
2061–2090 
2091–2120 
2121–2150 
2151–2180 
2181–2210 
2211–2240 
2241–2270 
2271–2298 
2031–2298 

* RCP: Representative Concentration Pathway. 
** Five years of data (2026–2030) were used for the SWAT model warm up. 

Table 2 
SWAT model performance statistics in Texas, Kansas, and Nebraska sites.  

Site (Year) Calibrated variable Nash-Sutcliffe efficiency (NSE) Coefficient of determination (R2) Percent bias (PBIAS) 

Texas (2013 and 2016) Monthly irrigation  0.81  0.83  0.4 % 
Daily evapotranspiration  0.75  0.81  − 11.7 % 
Leaf area index (LAI)  0.86  0.88  5.9 % 
Aboveground biomass  0.84  0.86  − 5.3 %  

Kansas (2005–2012) Monthly irrigation  0.7  0.71  − 16.4 %  

Nebraska (2003–2006) Monthly irrigation  0.56  0.56  − 3.9 %  
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dry economic yield (Arnold et al., 2011). 
CMIP5 future climate data including daily precipitation and 

maximum & minimum air temperatures were projected by four GCMs in 
this study. The WXGEN weather generator model (Sharpley and Wil
liams, 1990), which was embedded in the SWAT model, was used to 
simulate future daily solar radiation, wind speed, and relative humidity. 
For this weather generator model, it was presumed that the signatures of 
solar radiation, wind speed, and relative humidity would remain 

consistent with current levels under different future scenarios, which 
meant that precipitation and air temperatures were the major contrib
utors to future hydrology and crop growth. 

2.3.2. SWAT management allowed depletion auto-irrigation (SWAT-MAD) 
model 

In practice, producers are willing to allow a maximum percentage of 
plant available water depletion before irrigation is triggered. This 
concept is known as management allowed depletion (MAD), a common 
framework for irrigation scheduling as outlined by Merriam (1966). 
MAD irrigation management has been widely applied in semi-arid/arid 
regions including Texas, Kansas, and Nebraska in the U.S. (Callison, 
2012; Evett et al., 2011; Payero et al., 2008). For most crop production, a 
50% MAD value represents a reasonable overall value for avoiding 
apparent crop water stress (Callison, 2012; USDA-NRCS, 2017). As for 
water sensitive crops or heavily compacted soils, a smaller range of 
depletion may be needed (30%-50% MAD). A larger MAD value can be 
used (50%-70%) for stress-tolerant crops or well-structured soils. The 
current default auto-irrigation function in SWAT is unable to simulate 
MAD irrigation management explicitly. However, irrigation scheduling 
based on the MAD concept is becoming widely used (Marek et al., 2011; 
Evett et al., 2011). As a result, a MAD-based SWAT auto-irrigation al
gorithm is required for accurate simulation of actual irrigation opera
tions. A MAD-based automatic irrigation algorithm based on a user- 
defined permissible percentage of plant available water depletion, 
determined by the maximum crop-specific root depth and soil proper
ties, was developed for SWAT by Chen et al. (2018). MAD values 
approaching zero denote irrigation management frequencies that result 
in low plant water stress. Conversely, values approaching one result in 
irrigation management that leads to greater plant water stress, as 
expressed in Eq. (2). 

(sol sumfc − sol sw) /PAW > MAD (2)  

where sol_sumfc is the amount of water held in the soil profile at field 
capacity (mm); sol_sw is the amount of water stored in soil profile on any 
given day (mm); PAW is plant available water, determined primarily by 
soil texture and plant-specific maximum rooting depth; and MAD is the 
management allowed depletion percentage (user-defined water stress 
threshold that triggers irrigation), expressed as a decimal value ranging 
from 0 to 1. 

2.3.3. SWAT-CO2 dynamic input method 
CO2 concentration is very important for SWAT model simulations. 

SWAT adjusts crop radiation use efficiency (RUE) according to different 
values of atmospheric CO2 concentrations, so as to change both the 
conversion efficiency of crop photosynthesis and the accumulation of 
crop biomass. However, the SWAT default CO2 concentration is set to 
330 ppm. The default value can be changed by SWAT users but remains 
fixed at that value for the duration of the simulation. As such, different 
CO2 concentrations cannot be assigned for different years within a single 
simulation which prevents simulation of increasing CO2 concentrations 
over time in long-term simulations. This condition represents a critical 
deficiency in SWAT as CO2 concentrations increase gradually over time 
under the RCP4.5 and 8.5 scenarios. 

To overcome this problem, some scholars have modified the 
maximum stomatal conductance of crops to reflect the impact of CO2 
concentration changes on crops (Wu et al., 2012a, 2012b; Butcher et al., 
2014); Chen et al. (2019) compensated for the low default CO2 con
centrations in future climate scenarios by dividing the simulation 
duration into multiple time periods and inputting the average CO2 
concentrations for the future climate simulation periods. Furthermore, 
some scholars modified the SWAT subroutine to output CO2 and 
consider the dynamics of CO2 emissions (Melaku et al., 2022; Qi et al., 
2020). However, the above methods cannot fundamentally solve the 
problem of using dynamic CO2 concentration in SWAT and associated 

Table 3 
Ensemble means of four GCMs for changes in ETc, irrigation, water yield, and 
corn yield using three CO₂ input methods from 2031 to 2100 in Nebraska, 
Kansas, and Texas sites.  

Scenario/Site Input 
Method 

ETc 

(mm) 
Irrigation 
(mm) 

Water 
Yield 
(mm) 

Corn 
Yield 
(Mg 
ha− 1) 

RCP4.5 Nebraska Default 539.47 
±

16.60a 

22.59 ±
17.52a 

154.40 
±

54.19b 

6.93 
±

0.43b   
Constant 503.85 

±

14.76b 

13.61 ±
13.52b 

182.08 
±

57.08a 

7.68 
±

0.49a   
Dynamic 503.84 

±

14.23b 

13.61 ±
13.73b 

182.04 
±

56.95a 

7.67 
±

0.45a  
Kansas Default 645.46 

±

24.53a 

119.83 ±
43.19a 

137.72 
±

54.86b 

7.06 
±

0.49b   
Constant 607.13 

±

22.09b 

100.33 ±
38.61b 

157.77 
±

58.56a 

7.94 
±

0.54a   
Dynamic 606.64 

±

21.26b 

99.97 ±
37.68b 

157.87 
±

58.22a 

7.92 
±

0.47a  
Texas Default 648.78 

±

25.47a 

92.53 ±
51.62a 

51.22 
±

39.64b 

5.05 
±

0.42b   
Constant 602.26 

±

22.53b 

64.68 ±
44.05b 

69.59 
±

47.08a 

6.52 
±

0.53a   
Dynamic 602.25 

±

22.05b 

64.86 ±
43.67b 

69.62 
±

47.05a 

6.50 
±

0.42a  

RCP8.5 Nebraska Default 556.47 
±

29.49a 

29.21 ±
24.92a 

142.67 
±

50.15b 

6.12 
±

0.88b   
Constant 478.34 

±

22.66b 

9.43 ±
12.73b 

203.61 
±

56.96a 

7.02 
±

0.97a   
Dynamic 467.52 

±

35.38c 

6.62 ±
10.05b 

211.16 
±

72.10a 

6.93 
± 0.9a  

Kansas Default 667.65 
±

34.23a 

136.53 ±
42.87a 

115.86 
±

50.06b 

6.20 
±

0.97b   
Constant 581.85 

±

30.42b 

90.08 ±
32.47b 

158.14 
±

58.51a 

7.23 
±

1.12a   
Dynamic 569.81 

±

40.43c 

82.1 ±
29.93b 

162.15 
±

59.12a 

7.12 
±

1.00a  
Texas Default 663.32 

±

30.03a 

109.95 ±
60.35a 

53.29 
±

38.86b 

4.35 
±

0.86b   
Constant 564.27 

±

23.24b 

50.07 ±
40.07b 

90.62 
±

53.13a 

6.38 
±

1.22a   
Dynamic 554.35 

±

56.84b 

44.27 ±
35.36b 

93.32 
±

46.99a 

6.19 
±

0.69a 

Columns with the same alphabets indicated that the differences were not sig
nificant (P > 0.05); different alphabets (a, b, and c) indicated that the differences 
were significant (P < 0.05). 
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simulation results likely include intrinsic errors not easily discerned. 
Therefore, the development of dynamic CO2 input method is both 
necessary and timely given current international interest in climate 
change simulation. In this study, a dynamic CO2 input method was 
developed to incorporate projected IPCC annual CO2 concentration data 
as input data for the SWAT model, thus allowing for simulations using 
changing annual CO2 concentrations. 

In this study, we created an input text file named “CO2con” with 
annual CO2 concentrations derived from IPCC. A subroutine “readco2.f” 

was developed to read annual CO2 concentration values in “CO2con” file 
for dynamic CO2 simulations. Specifically, a global variable “co2con” 
was defined and used to receive the CO2 concentration of current 
simulation year and then used in HRU level subroutines. The escalated 
CO2 concentrations influenced the plant canopy resistance [Eqs. (3) and 
(4)], which further altered the potential evapotranspiration (PET) 
calculation. Furthermore, radiation use efficiency was also adjusted by 
elevated CO2 concentrations [Eq. (5)], given as: 

rc = (0.5*gl,co2 *LAI)− 1 (3) 

Fig. 2. Simulated future climate change impacts on irrigation, ETc, water yield, and crop yields in three sites using three CO2 input methods under RCP4.5 scenarios 
from 2031 to 2100 for the ensemble means of the four GCMs. 

Fig. 3. Simulated future climate change impacts on irrigation, ETc, water yield, and crop yields in three sites using three CO2 input methods under RCP8.5 scenarios 
from 2031 to 2100 for the ensemble means of the four GCMs. 
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gl,co2 = gl*[1.4 − 0.4*
(

CO2

330

)]

(4)  

where rc is the plant canopy resistance (m s− 1); gl is the maximum 
conductance of a single leaf (m s− 1); LAI is the leaf area index of the 
canopy; gl,co2 is the leaf conductance modified to reflect CO2 effects (m 
s− 1); and CO2 is the concentration of carbon dioxide in the atmosphere 
(ppm). 

RUE =
100*CO2

CO2 + exp(r1 − r2*CO2)
(5)  

where RUE is the radiation use efficiency, which was defined as dry 

biomass generated for each unit of intercepted solar radiation (kg/ha⋅ 
(MJ/m2)− 1), and r1 and r2 are shape coefficients. 

2.4. Model setup and evaluation 

The daily meteorological data for Nebraska, Kansas, and Texas sites 
were obtained from the High Plains Regional Climate Center (HPRCC) 
weather network (https://hprcc.unl.edu/) including precipitation and 
maximum & minimum air temperatures. Measured hydrologic and 
agronomic data for the Texas site in 2013 and 2016 included lysimeter- 
measured daily crop evapotranspiration (ETc), actual irrigation, LAI, 
and aboveground biomass for corn, whereas only actual irrigation data 
were collected for the Nebraska and Kansas sites (Chen et al., 2019a). 

Fig. 4. Box plots showing the predicted annual percent changes in precipitation under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 2061–2090, 2091–2120, 
2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 
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The SWAT-MAD simulated irrigation was compared to actual irrigation 
at all three study sites for model evaluation. 

Evaluation was performed at the hydrological response unit (HRU) 
level with measured daily ETc, LAI, and aboveground biomass for Texas 
site. Evaluation of irrigation using the SWAT-MAD model was conducted 
for all three sites. The calibrated parameters for Texas from 2000 to 
2010 were obtained from Chen et al. (2018), while Nebraska and Kansas 
sites used a parameter regionalization calibration method (Chen et al., 
2019a). SWAT-MAD performance for simulated irrigation was analyzed 
using percent bias (PBIAS) (Gupta et al., 1999), coefficient of determi
nation (R2) (Legates and McCabe, 1999), and Nash-Sutcliffe efficiency 
(NSE) (Nash and Sutcliffe, 1970) statistics. 

2.5. Scenario design 

2.5.1. Three CO2 input methods for 2031–2100 
To better represent the impacts of CO2 concentrations in model 

simulations of major hydrologic variables and crop yield under future 
climate change scenarios, three different methods for simulating CO2 
concentration were used: 1) the SWAT default value of 330 ppm, 2) a 
constant value of 506 or 661 ppm, calculated as the average concen
tration over the simulation period of 2031–2100 using the RCP4.5 and 
RCP8.5 scenarios, respectively, and 3) the dynamic CO2 input method 
introduced in this study, which used different concentration values for 
each year (Table 1). These CO2 concentration simulation approaches 

were termed the default input, constant input, and dynamic input 
methods. 

2.5.2. Study periods (1970–1999 and 2031–2298) 
The historical period of 1970–1999 was used as the baseline sce

nario. Future climate change simulations considered the RCP4.5 and 
RCP8.5 scenarios based on four GCMs from CMIP5. The future climate 
projections (2031–2298) were divided into nine 30-year periods: 
2031–2060, 2061–2090, 2091–2120, 2121–2150, 2151–2180, 
2181–2210, 2211–2240, 2241–2270, and 2271–2298. The first five 
years of data (e.g., 2026–2030) before the start of each period (e.g., 
2031–2060) were used for the SWAT model warmup. The dynamic CO2 
input method was used in this long-term simulation (Table 1). 

2.6. Statistical analysis 

To compare the differences between the three CO2 input methods 
from 2031 to 2100 for hydrology and corn yield at the three sites of 
Nebraska, Kansas, and Texas, the one-way ANOVA method was used to 
determine significant differences in the means of multiple samples under 
the influence of a single control variable. Samples having significant 
differences (P < 0.05) were indicated using letter designations (e.g., a, b, 
and c). In addition, a linear fit method was used to test the significance of 
the long-term trends for 2031–2100 and 2031–2298. The t test (Stu
dent’s t test) was used to test the significance level for the ensemble 

Fig. 5. Box plots showing the predicted annual percent changes in maximum air temperature under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 
2061–2090, 2091–2120, 2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 
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mean of four GCMs from 2031 to 2298 (i.e., nine 30-year time periods) 
with respect to the historical period. A nonparametric test, namely 
Wilcoxon’s rank sum test (a rank-based reciprocity test) was used for 
data that were not normally distributed. 

3. Results 

3.1. Model performance evaluation 

The model performance demonstrated satisfactory agreement be
tween simulated and observed ETc, LAI, and aboveground biomass for 
the Texas site. The NSE, R2, and PBIAS values for daily ETc were 0.75, 
0.81, and − 11.7% for the 2013 and 2016 simulation periods, respec
tively (Table 2). LAI matched well with observed data with NSE, R2, and 
PBIAS values of 0.86, 0.88, and 5.9%, respectively. The simulated and 
observed values of aboveground biomass also agreed well with NSE, R2, 
and PBIAS of 0.84, 0.86, and − 5.3%, respectively (Table 2). The NSE, R2, 
and PBIAS values for the SWAT-MAD simulated monthly irrigation 
amount at the Texas site were 0.81, 0.83, and 0.4%, respectively 
(Table 2). Compared to the actual irrigation amounts, the SWAT-MAD 
simulated monthly irrigation amounts for the Kansas site had NSE, R2, 
and PBIAS values of 0.70, 0.71, and − 16.4%, respectively, from 2005 to 
2012. For the Nebraska site, the NSE, R2, and PBIAS were 0.56, 0.56, and 
− 3.9%, respectively, using the SWAT-MAD model for monthly irrigation 
amounts from 2003 to 2006 (Table 2). The results indicated a satisfac
tory model performance for all three sites. 

3.2. Comparisons of simulated ETc, irrigation, water yield, and corn yield 
using three CO2 input methods 

3.2.1. Difference in simulated ETc 
Under the RCP4.5 scenario, the default CO2 input method simulated 

the greatest ETc across locations from 2031 to 2100 (P < 0.05) while 
there was no significant difference in ETc simulations using the constant 
and dynamic input methods across the three sites (Table 3). Further
more, the default and constant input methods indicated a significant 
increasing trend in simulated ETc from 2031 to 2100 under the RCP4.5 
scenario (Fig. 2a1–a3), whereas the dynamic input method did not show 
a marked trend (Fig. 2a1–a3). It is worth noting that the margin of 
difference for the simulated ETc between the default input method and 
the other two input methods tended to increase with the decreasing 
latitude at the three sites (Table 3; Fig. 2a1–a3). 

Similar to the RCP4.5 scenario, the default method predicted the 
greatest ETc among the three input methods under the RCP8.5 scenario 
(Table 3; Fig. 3a1–a3), and there was a significant increasing trend 
(greater slope than RCP4.5) for both the default and constant input 
methods from 2031 to 2100. Contrary to the RCP4.5 scenario, predicted 
ETc for the dynamic input method showed a significant decreasing trend 
(Fig. 3a1–a3) while the simulated ETc using the dynamic input method 
was greater than that of the constant input method before 2065 and less 
than that of the constant input after 2076. For the Nebraska and Kansas 
sites, the predicted average ETc among the three methods all showed 
significant differences (Table 3). Similar to the RCP4.5 scenario, the 
difference in simulated ETc among the three methods became more 
pronounced in the lower latitudes (Figs. 2 and 3). 

3.2.2. Comparison of simulated irrigation 
Similar to the ETc results, the default CO2 input method also simu

lated the greatest amount of irrigation relative to the other two input 
methods under the RCP4.5 scenario (P < 0.05) (Table 3; Fig. 2b1–b3). 
However, there were no significant differential trends over time using 
different input methods across the three sites (Fig. 2b1–b3). In general, 
the average irrigation was larger for the Kansas (ranging from 100.0 to 
119.8 mm) and Texas (ranging from 64.7 to 92.5 mm) sites as compared 
to the Nebraska site (ranging from 13.6 to 22.6 mm) (Table 3). For the 
RCP8.5 scenario, predicted average irrigation using the default input 

method was significantly greater than values for the constant and dy
namic input methods (Table 3). Moreover, predicted irrigation showed a 
significant upward trend from 2031 to 2100 under the default and 
constant input methods at all three sites, whereas there were significant 
decreasing trends for the Kansas and Texas sites using the dynamic input 
method (Fig. 3b1–b3). 

3.2.3. Influence on water yield by three CO2 input methods 
Under the RCP4.5 scenario, the average annual water yield for the 

constant and dynamic input methods were significantly greater (P <
0.05) than the default input method (Table 3; Fig. 2c1–c3) across three 
sites (Table 3). No significant differential trend from 2031 to 2100 was 
found for predicted water yield using the three input methods across the 
three sites (Fig. 2c1–c3). Water yield decreased with decreasing latitude 
for all three CO2 input methods (Table 3; Fig. 2c1–c3). Under the RCP8.5 
scenario, average annual water yield simulated by the default input 
method remained significantly less than the other two methods across 
locations (Table 3). Unlike the RCP4.5 scenario, the trendline in water 
yield increased significantly using the dynamic method for the Nebraska 
site (Fig. 3c1), and for the Kansas and Texas sites, the trendlines 
decreased significantly with the default and constant input methods 
(Fig. 3c2 and c3). 

3.2.4. Impact on corn yield using three input methods 
The constant and dynamic input methods showed no significant 

difference for corn yield but their predictions were significantly greater 
(P < 0.05) than the default input method under the RCP4.5 scenario 
(Table 3; Fig. 2d1–d3). Furthermore, the trendlines for all three methods 
were significantly decreased at all sites (Fig. 2d1–d3), and the yield gap 
between the constant/dynamic input methods and the default input 
method increased with the decreasing latitudes. Under the RCP8.5 
scenario, predicted average corn yields were lowest using the default 
input method (Table 3; Fig. 3d1–d3). Simulated yields using the dy
namic input were less than those using the constant input in the first half 
of the study period (2031 to mid-21st century) for the Texas site and 
greater for those in the later part (late-mid 21st century to 2100) 
(Fig. 3d3). This can be explained by the CO2 fertilizer effect when a 
dynamic increase in CO2 concentration was simulated using the dy
namic CO2 input method. Predicted corn yield showed a significant 
declining trend for all three input methods across all three sites (Figs. 2 
and 3d1-d3). 

3.3. Projected future climate from 2031 to 2298 

3.3.1. Projected precipitation 
For all three sites, average annual precipitation increased signifi

cantly (P < 0.05) over nine 30-year periods from 2031 to 2298 as 
compared to the historical period (1970–1999) under both the RCP4.5 
and 8.5 scenarios, except for 2081–2210 of RCP8.5 for the Texas site 
(Fig. 4). On average from 2031 to 2298, precipitation increased signif
icantly by 42.5% and 40.9% for the RCP4.5 and 8.5 scenarios in the 
Nebraska site, 41.0% and 28.7% in the Kansas site, and 36.9% and 
18.1% in the Texas site, respectively, compared to the historical period 
(Fig. 4). Simultaneously, there were significant increasing trends in the 
simulated precipitation over time for the Nebraska site in both RCP 
scenarios and for the Texas site using the RCP8.5 scenario (Fig. 4a and 
c). The precipitation anomalies were obviously increased for the Texas 
site, with the greatest percentage change anomaly of nearly 300 % be
tween 2121 and 2150 for the RCP4.5 scenario (Fig. 4c). 

3.3.2. Projected maximum and minimum air temperatures 
Maximum and minimum air temperatures increased significantly (P 

< 0.05) over the nine 30-year periods compared to the historical period 
under the RCP4.5 and 8.5 scenarios in three sites (Fig. 5). Both 
maximum and minimum air temperatures showed significant increasing 
trends from 2031 to 2298 under both RCP scenarios with a logarithmic 

Y. Zhang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 614 (2022) 128544

9

form for the RCP8.5 scenario (Fig. 5). Under the RCP4.5 scenario, the 
mean values of maximum air temperature during the entire study period 
(2031–2298) increased by 1.30◦C, 2.07◦C, and 2.09◦C relative to the 
historical period for the Nebraska, Kansas, and Texas sites, respectively. 
Under the RCP8.5 scenario, the average maximum air temperature in
creases were greater as compared to the RCP4.5 scenario, gradually 
increasing with decreasing latitude, with 7.43◦C, 8.39◦C, and 8.56◦C 
from north to south for the three sites (Fig. 5). 

It is worth noting that the increase in the minimum air temperature 
was much greater than that of the maximum air temperature (Fig. 6), 
with the entire period under the RCP4.5 scenario significantly increased 
by approximately 6◦C (the average increases were 6.05◦C, 6.78◦C, and 
6.58◦C for the Nebraska, Kansas, and Texas sites). In addition, minimum 
air temperature increased significantly by approximately 5◦C during the 
initial study period (2031–2060) and by approximately 17◦C at the end 
of the 23rd century (2271–2298) for all three sites under the RCP8.5 
scenario. 

3.4. Long-term climate change impacts on ETc, irrigation, water yield, and 
crop yield using the dynamic CO2 input method for three centuries 

3.4.1. Changes in ETc 
For the Nebraska site, ETc was significantly less (P < 0.05) than the 

historical period from the 21st century to the first half of the 23rd 
century (2031 to 2240) under the RCP4.5 scenario (Fig. 7a) with an 
average decrease of 2.9% over the entire period (2031 to 2298). 

Although predicted ETc was lower relative to the historical period for 
most 30-year periods, the trend increased significantly from 2031 to 
2298. For the RCP8.5 scenario, ETc was significantly lower than the 
historical period for all nine 30-year periods (Fig. 7a). The average 
percentage decrease in ETc was 24.7% over the entire study period for 
the RCP8.5 scenario (Fig. 7a). For the Kansas site, a significant increase 
was found for ETc from 2031 to 2060 and from 2121 to 2210 under the 
RCP4.5 scenario and a significant decrease for the periods of 2061–2298 
were identified under the RCP8.5 scenario compared to the historical 
period. The mean values of percent change in ETc were 2.5% and 
− 19.0% for the RCP4.5 and 8.5 scenarios (P < 0.05). No significant 
differential trend of ETc for the Kansas site was determined under either 
RCP scenario (Fig. 7b). For the Texas site, ETc increased significantly 
from 2031 to 2120 and from 2241 to 2298 as compared to the historical 
period with a significant average increase of ~3.5% for the entire period 
under the RCP4.5 scenario. The average percent decrease in ETc was 
approximately 24.0% from 2031 to 2298 (P < 0.05) with a significant 
declining trend over time under the RCP8.5 scenario (Fig. 7c). 

3.4.2. Variations in irrigation 
In general, average annual irrigation for most future periods was 

predicted to be less than that of the historical period under the RCP4.5 
scenario with an average decrease of ~56.7%, 20.3%, and 56.7% from 
2031 to 2298 for sites in Nebraska, Kansas, and Texas, respectively 
(Fig. 8). However, the trend in irrigation varied across the three sites 
with the Nebraska site having an increasing trend and the Texas site 

Fig. 6. Box plots showing the predicted annual percent changes in minimum air temperature under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 2061–2090, 
2091–2120, 2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 
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having a decreasing trend over time (P < 0.05). For the RCP8.5 scenario, 
predicted irrigation was significantly lower than the historical period 
with an average percentage decrease of ~96.0%, 63.9%, and 87.3% for 
sites in Nebraska, Kansas, and Texas, respectively, and all had a signif
icant decreasing trend in irrigation (Fig. 8). Note that in the Nebraska 
and Texas sites, there was virtually no simulated irrigation between 
2091 and 2298. 

3.4.3. Water yield dynamics 
For the Nebraska and Texas sites, water yield was significantly 

increased (P < 0.05) for nine 30-year periods as compared to the his
torical period under both RCP scenarios (Fig. 9a and c). An average of 
~242.4 and 365.0 mm for RCP4.5 and 8.5 scenarios, respectively, was 
found for the Nebraska site and 569.5 and 855.7 mm for the Texas site 
(P < 0.05). The water yield for the Kansas site also increased signifi
cantly under both RCP scenarios. However, the water yield increase in 
the Kansas site was markedly less than those for the Nebraska and Texas 
sites averaging ~30.4 and 32.7 mm for the RCP4.5 and 8.5 scenarios, 
respectively. The changing trend over time in water yield of all sites was 
not significant except for the Nebraska site under the RCP8.5 scenario (P 
< 0.05) (Fig. 9). 

3.4.4. Corn yield response 
Overall, predicted average crop yield for the nine 30-year periods 

was less than the historical period for all three sites under both RCP 
scenarios (P < 0.05; Fig. 10). Average reductions over the entire study 

period of ~27.3% and 63.7% for the RCP4.5 and 8.5, respectively, were 
found for the Nebraska site, 30.8% and 68.2% for the Kansas site, and 
22.5% and 62.3% for the Texas site. The overall trend in yield over time 
under the RCP4.5 scenario was relatively stable for the Nebraska and 
Kansas sites and increased significantly for the Texas site. However, 
under the RCP8.5 scenario, the trend in yield significantly decreased in a 
logarithmic form across all sites (Fig. 10). 

3.5. Regional differences in simulated ETc, irrigation, water yield, and 
crop yield using dynamic input method across various climatic locations 

For the RCP4.5 scenario, there was a significant difference (P < 0.05) 
in the average ETc from 2031 to 2298 across locations, with ETc values of 
approximately 509.9 mm, 605.5 mm, and 587.4 mm from north to south 
(Table 4). The average amounts of irrigation significantly differed 
among the three sites and the future irrigation requirement for corn 
production was greatest for the Kansas site, at approximately 98.6 mm. 
Water yield decreased significantly with decreasing latitudes for the 
Nebraska, Kansas, and Texas sites by approximately 198.1 mm, 172.5 
mm, and 78.4 mm, respectively. This demonstrated that Nebraska was 
more vulnerable to the risk of runoff in the future. However, corn yield 
was greater for the Nebraska site, at approximately 7.6 Mg ha− 1, and 
significantly larger than the Texas site (Table 4). 

Under the RCP8.5 scenario, the regional variations in simulated 
mean values of ETc and irrigation were similar to that of the RCP4.5 
scenario (Table 4). Both ETc and irrigation were greatest (P < 0.05) for 

Fig. 7. Box plots showing the simulated annual percent changes in ETc under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 2061–2090, 2091–2120, 
2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 
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the Kansas site with 478.5 and 44.7 mm, respectively, and lowest for the 
Nebraska site (P < 0.05) (Table 4). Mean values of water yield decreased 
significantly from north to south with 289.8, 186.4, and 115.9 mm for 
the Nebraska, Kansas, and Texas sites, respectively. Nevertheless, the 
simulated mean values of corn yield for the Nebraska site were numer
ically greater than those for the Kansas site, but no significant difference 
was found between the two sites. Yield for the Texas site was signifi
cantly less than the other two sites and was approximately 3.3 Mg ha− 1, 
thus indicating a noticeable food security issue in Texas in the future 
(Table 4). 

4. Discussion 

4.1. Effects of CO2 input methods on hydrology and crop yield 

When using the SWAT model to predict and analyze the effects of 
future climate change on hydrology and crop growth, the CO2 input in 
the model was an important influencing factor. The lack of an option for 
dynamic input of CO2 concentrations in the current SWAT model limited 
its efficacy for assessing the impacts of future climate change (Gao et al., 
2020; Wang et al., 2017; Zhang et al., 2013). Therefore, this study 
developed and incorporated a dynamic CO2 input method into SWAT 
and compared the differences of major hydrologic variables and corn 
yields by applying three different CO2 input methods from 2031 to 2100. 
Among the three input methods, the default input method simulated the 
highest ETc and irrigation continuously, but simulated the least water 

yield and corn yield (Figs. 2 and 3). Furthermore, the simulated ETc and 
irrigation using the dynamic input method were greater than those of 
the constant input method in the first half of the simulation period and 
lower in the later period, which highlighted the importance of consid
ering the rising CO2 levels in the future for water cycling. In contrast, the 
simulated corn yields using the dynamic input method were less than 
those using the constant input method in the first half period and greater 
than those of the constant input method in the second half period 
generally. Similar results were more evident under the RCP8.5 scenario. 
These findings emphasized the positive effect of CO2 on crop yield boost. 

It is notable that under the RCP8.5 scenario, the simulated yield for 
the Texas site was greater for the constant input method relative to the 
dynamic input method at the beginning of the 21st century. However, by 
the end of the 21st century, greater yield values were simulated by the 
dynamic input approach even though the difference was reduced when 
compared to the constant input method (Fig. 3). This could be explained 
by the fact that at the beginning of the 21st century, the increase in air 
temperature was relatively smaller compared to the historical period 
and there was less temperature stress for corn growth. Yields at this 
stage were likely more sensitive to the CO2 fertilizer effect. However, 
there was a considerable increase in both maximum and minimum air 
temperatures over time under the RCP8.5 scenario. The limiting effect of 
temperature stress on corn far exceeded the extent to which yield was 
positively affected by the elevated CO2 concentrations at the end of the 
21st century. This also explains why corn yields differed less between 
the dynamic and constant input methods later in the study period. 

Fig. 8. Box plots showing the simulated annual percent changes in irrigation under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 2061–2090, 2091–2120, 
2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 
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Furthermore, the logarithmic rise in air temperatures and logarithmic 
drop in yields provided evidence for the above explanations (Figs. 5, 6, 
and 10). Both the constant and dynamic input methods differed signif
icantly from the default input method in simulating hydrologic and yield 
factors. Therefore, this new method for dynamic CO2 inputs was 
necessary for reducing the uncertainty in predicting future climate 
change impacts compared to previous SWAT studies of no change or 
using a single input CO2 value. 

4.2. Exploring the causes of future climate change on hydrology and corn 
yields 

In this study, future ETc, irrigation, and corn yield using the newly 
developed dynamic input method were predicted to decrease for the 
Nebraska, Kansas, and Texas sites, with increasing water yield, espe
cially in the RCP8.5 scenario. Under the future climate scenarios, the 
decreases in ETc and irrigation were mainly due to the closure of crop 
stomata and suppression of transpiration caused by the elevated CO2 
concentrations (Bunce and Nasyrov, 2012). For example, Liu et al. 
(2021) found that stomatal closure and decreased stomatal conductivity 
negatively affected corn evapotranspiration through a two-year field 
experiment in Northeast China. 

This study showed that changes in future corn yield vary distinc
tively with geographic locations, such as with the Nebraska, Kansas, and 
Texas sites from the north to south, which were sequentially lower in 
latitude by 3◦ and spanned different climatic locations. This is consistent 

with other studies showing that spatial and geographic variations could 
affect crop yields (Asseng et al., 2019; Fletcher et al., 2020; Shin et al., 
2017). Under both the RCP4.5 and 8.5 scenarios, corn yield was greater 
for the Nebraska site and significantly larger than the Texas site (P <
0.05). Not only under the future climate, but during the historical 
period, corn yields from Nebraska were greater than those in Kansas and 
Texas, which also had lower yields and large yield gaps (Kucharik et al., 
2020). Nebraska is abundant in precipitation during the corn growing 
season with greater humidity, which has a positive impact on corn 
yields. In contrast, Kansas and Texas are located in the middle and south 
of the U.S. High Plains and often experience extreme climate conditions 
such as high temperatures and drought, which are the main reasons for 
lower corn yields in both regions (Kucharik et al., 2020). 

This study predicted reductions in corn yields from the 21st century 
to the 23rd century under both the RCP4.5 and 8.5 scenarios. Particu
larly, RCP8.5 suggested crop yield reductions of more than 80% by the 
end of the 23rd century as compared to the historical period. Many 
studies have evaluated the impact of climate change on global agricul
tural systems under the RCP4.5 and 8.5 scenarios and found that crop 
yields were highly vulnerable to future climate change (Ketiem et al., 
2017; Leng, 2018; Tan et al., 2022; Wang et al., 2018). The warming 
climate can negatively affect corn yield, which is mainly due to greater 
air temperatures that increase the rate of development and maturation 
and shorten the growing period of corn (Bassu et al., 2014; Chen et al., 
2019b; Wechsung et al., 2021). In this study, the simulated reduction in 
corn yield was associated with a considerable increase in future air 

Fig. 9. Box plots showing the simulated annual percent changes in water yield under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 2061–2090, 2091–2120, 
2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 
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temperatures at the study sites. The similar trend of logarithmic increase 
in air temperatures and logarithmic decrease in yield under the RCP8.5 
scenario in this study provided further evidence (Figs. 5, 6, and 10). Few 
studies have projected climate change impacts on hydrology and crop 
yield for the next three centuries due to the higher uncertainty associ
ated with longer projections. However, this study is a worthy under
taking to provide valuable insights into long-term climate change 
impacts on water resources and agriculture sustainability. Using the 
RCP4.5 and 8.5 scenarios to constrain projections, this study offers 
possible ranges of what can happen in the future with different feasible 
mitigation efforts. 

5. Conclusions 

An improved SWAT model equipped with a dynamic CO2 input 
method and a MAD automatic irrigation function was used to explore 
the influences of future climate change on hydrology and corn yield in 
the U.S. High Plains. The differences among default, constant, and dy
namic input methods under four GCMs of CMIP5 climate data for the 
RCP4.5 and 8.5 from 2031 to 2100 were investigated in this study. The 

Fig. 10. Box plots showing the simulated annual percent changes in corn yield under RCP4.5 and RCP8.5 scenarios during the 2031–2060, 2061–2090, 2091–2120, 
2121–2150, 2151–2180, 2181–2210, 2211–2240, 2241–2270, and 2271–2298 time periods compared to the historical period (1970–1999). 

Table 4 
Ensemble means of four GCMs for changes in ETc, irrigation, water yield, and 
corn yield using dynamic CO₂ input method from 2031 to 2298 across locations 
(Nebraska, Kansas, and Texas sites).  

Scenario/Site ETc (mm) Irrigation 
(mm) 

Water Yield 
(mm) 

Corn Yield 
(Mg ha− 1) 

RCP4.5 Nebraska 509.87 ±
18.90c 

18.60 ±
19.27c 

198.12 ±
64.52a 

7.56 ±
0.59a  

Kansas 605.51 ±
22.79a 

98.57 ±
37.48a 

172.45 ±
58.21b 

7.63 ±
0.60a  

Texas 587.44 ±
25.93b 

45.90 ±
37.72b 

78.44 ±
48.31c 

6.69 ±
0.72b 

RCP8.5 Nebraska 395.18 ±
50.99c 

1.75 ±
5.89c 

289.78 ±
83.73a 

3.79 ±
2.16a  

Kansas 478.49 ±
61.80a 

44.71 ±
33.72a 

186.43 ±
64.31b 

3.52 ±
2.45ab  

Texas 431.56 ±
82.20b 

13.48 ±
26.80b 

115.94 ±
53.21c 

3.28 ±
2.04b 

Columns with the same alphabets indicated that the differences were not sig
nificant (P > 0.05); different alphabets (a, b, and c) indicated that the differences 
were significant (P < 0.05). 
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results found significantly greater simulated ETc between the default 
input method and the other two input methods under the RCP4.5 sce
nario. The RCP8.5 scenario also exhibited this difference, along with 
statistically significant differences in ETc simulations among each of the 
three input methods for the Nebraska and Kansas sites (default > con
stant > dynamic). Furthermore, ETc and irrigation were both increased 
using the dynamic input method as opposed to the constant input 
method in the first half of the simulation period and decreased in the 
second half. This is reasonable when considering that increased CO2 
concentrations induce the partial closing of corn stomata and reduction 
of ETc and irrigation requirements. In contrast, simulated corn yield 
using the dynamic input method was reduced in the first half of the study 
period and greater in the second half of the period. This highlighted the 
carbon fertilization effect on corn growth with gradual increases in CO2 
concentrations using the dynamic input method in the future. These 
findings demonstrated the usefulness of the dynamic input method for 
SWAT to more representatively predict impact of future climate change. 

The dynamic input method was further used to predict changes in 
hydrology and corn yields under a long-term period from 2031 to 2298 
as compared to the historical period of 1970 to 1999. The future period 
was divided into nine 30-year periods. Both ETc and irrigation declined 
the most for the Nebraska site, with ETc declining by an average of 2.9% 
(RCP4.5) and 24.7% (RCP8.5) over the entire study period (P < 0.05), 
and irrigation decreased by an average of 56.7% (RCP4.5) and 96.0% 
(RCP8.5) (P < 0.05). ETc and irrigation were significantly less than the 
historical period for most of the time periods under the RCP8.5 scenario, 
and ETc for the Texas site, and irrigation at all three sites, trended 
significantly downward under the RCP8.5 scenario. The trendline of 
water yield was relatively stable over the entire simulation period, but 
all scenarios and sites were significantly (P < 0.05) greater than that of 
the historical period. Corn yields at all three sites were significantly less 
than the historical period for different RCP scenarios and periods. Under 
the RCP8.5 scenario, the trendline of corn yield decreased significantly 
in a logarithmic form, with crop failure occurring at the end of the 23rd 
century. The substantially elevated minimum air temperature with the 
logarithmic form was the major reason for the log decline in corn yield. 
Overall, the results indicated that the future irrigation, ETc, and corn 
yield could decrease at the three sites under different climate change 
scenarios and could be severe over time. Generally, water yield was 
increased across different climatic locations under the various climate 
change scenarios. Thereby, this study is informative and alarming for 
irrigated corn production in the U.S. High Plains in the context of the 
severity of the future climate. 
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