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ABSTRACT: This study is to establish a new approach to estimate river salinity of semi-arid agricultural water-
shed and identify drivers by using hydrologic modeling and machine learning. We augmented the limitations of
the Soil and Water Assessment Tool (SWAT) to model salinity by coupling with eXtreme Gradient Boosting
(XGBoost), a decision-tree-based ensemble machine learning algorithm. Streamflow, precipitation, elevation,
main reach length, and dominant soil texture of the top two layers were used along with NO3, NO2, and total
phosphorus (TP) output from a calibrated SWAT model are used as predictors to Total Dissolved Solids (TDS) in
the XGBoost algorithm. Then, the SWAT model simulations of streamflow, NO3+NO2, and TP from 2000 to 2015
are used as inputs of the XGBoost model to predict monthly water TDS distribution along the river. The pre-
dicted river water TDS showed a higher concentration as going downstream from El Paso (inlet) through the
Hudspeth canal to Fort Quitman (outlet). Finally, this study carried out cause analysis focusing on soil physical
characteristics. The soil salinity level is directly affected by the soil permeability and irrigation water. As a
result, the highest TDS is shown in sites with silt loam, whereas the lowest TDS was shown in sites with very
cobbly soil. Silt soils can hold more water and are slower to drain than soils of a sand type. These analyses can
be used to better understand the mitigation of water salinity.

(KEYWORDS: watershed management; machine learning; SWAT; water salinity; soil texture; irrigation; water-
shed; surface water/groundwater interactions.)

INTRODUCTION

Over the last 50 years, irrigated area had more than
doubled and contributed significantly to the world agri-
culture output and food supply (FAO 2011). Irrigation
has mainly been used to control the water content in
the fields, compensate for the lack of precipitation
(PCP), and suppress weed growth. Nevertheless, such
expansion happened with severe consequences to the

environment. The most pressing of these consequences
is irrigation-induced salinity that has become an
increasing problem in several countries (Umali 1993).
Nearly one-third of the irrigated land worldwide is
affected by salinization (Schwabe and Kan 2006) and
saline environments tend to hinder agricultural pro-
duction by lowering crop yields. With a predicted
increased temperature, declined rainfall, and reduced
snowmelt due to climate change, agriculture in the
majority of arid and semi-arid regions needs to rely
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even more on irrigation (Postel 1999; Ragab and Prud-
homme 2002; Adhikari and Nejadhashemi 2015).

Salinity is a significant factor limiting the usability
of the water in El Paso of the Lower Rio Grande
Basin (Moyer et al. 2009). Salinity increases dramati-
cally from 40 mg/L in the headwater in Colorado to
2,000 mg/L in a series of stretches along the river in
the Lower Rio Grande Basin (Phillips et al. 2003;
Hogan et al. 2007). The influences of natural sources
are more evident at lower flows. The operational
schedule of the river results in higher salinity concen-
trations during times of reduced releases of freshwa-
ter in the winter nonirrigation season (Doremus and
Lewis 2008; USACE 2011). Like the surface water
quality, groundwater quality in El Paso has also dete-
riorated with depth and to the southeast (Sheng
2013). The groundwater level declines caused by
pumping have resulted in brackish groundwater intru-
sion in the El Paso area, and the loss of several
municipal supply wells (Sheng and Devere 2005; Mon-
tegomery & Associates and Hutchison 2016). This
deterioration of groundwater quality is mainly charac-
terized by increased chloride and Total Dissolved
Solids (TDS) concentrations (Heywood and Yager
2003; Hutchison 2004). To better understand the pat-
tern and trend of the salinity condition we need to
improve our capacity for simulating the salinity in the
river. In turn, it will help us develop guidelines for
salinity management and better uses of marginal
quality water, securing water supplies for future agri-
cultural production and municipal water supplies
across the United States (U.S.) and Mexico Border.

Interests in surface and groundwater salinity mod-
eling using a variety of approaches (numerical model-
ing, stochastic analysis, and machine learning) have
steadily grown. For example, the Hydrus and MOD-
FLOW numerical models coupled with MT3D have
been used to evaluate salinity dynamics (Hanson and
Hopmans 2008; El-Bihery 2009; Kanzari et al. 2012;
Ibrahimi et al. 2014; Eissa et al. 2016; Ghorbani
et al. 2017). More recently, Wu et al. (2018) presented
spatial distribution and severity of salinity by com-
bining satellite and radar datasets using machine
learning. Moreover, Vermeulen and Niekerk (2017)
reported the most accurate algorithm for the predic-
tion of salinity among various machine learning algo-
rithms using ensemble machine learning algorithms.

Various numerical models have been developed to
simulate the more complex process in the system of
water, soil, crop, and salinity. But the models require
large numbers of input parameters as big data. Such
model simulations often require considerable time
and effort to compile input data and larger computa-
tion resources that can handle the increasing refine-
ment and complexity of numerical models (Chen
et al. 2020). In contrast, machine learning approaches

have been applied over the past decades for simulat-
ing various hydrological processes including water
dynamics and water quality with significant predic-
tion accuracy (Karandish and Simunek 2016). The
prediction capability of the machine learning algo-
rithms is limited by the information contained in the
data and they do not enable intuitive interpretation
(Lamorski et al. 2013) of the evaluated processes.
Nevertheless, machine learning is the most popular
algorithm nowadays that can overcome the disadvan-
tages of other modeling approaches. Coupling machine
learning and numerical modeling in such a way that
one complements the weakness of the other could offer
a significant improvement in prediction accuracy while
also maintain a reasonable representation of complex
processes (Vandenberghe et al. 2007; Tuv et al. 2009).
The main purpose of this study was thus to predict
spatiotemporal river water TDS as the indicator of
salinity in the semi-arid agricultural watershed of the
Lower Rio Grande using a machine learning algorithm
with monitoring data and Soil and Water Assessment
Tool (SWAT) model output. The specific objectives of
the study are as follows: (1) to develop an eXtreme
Gradient Boosting (XGBoost) algorithm to estimate
the river TDS using observed salinity monitoring data;
(2) to evaluate the accuracy of developed the XGBoost
algorithm after optimization of parameters; (3) to sim-
ulate streamflow and water quality components with
the calibration process of SWAT model in the whole
river by replacing observed data with SWAT-
calibrated results; and (4) to distribute river salinity
from SWAT output results as input variables for
machine learning algorithm and identify the reasons
why the river TDS changes along the river.

MATERIAL AND METHODS

Characteristics of Study Watershed

In this study, the Rio Grande watershed from El
Paso Gaging Station to Fort Quitman Gaging station
was selected as the study site in the Far West Texas
(Figure 1), which is located within the latitude range
of 30°4809″ N to 31°59037″ N and longitude range of
106°39012″ W to 107°24055″ W. The study watershed
includes the Hueco Bolson aquifer. The Hueco Bolson
aquifer spans about 2,500 square miles (6,475 km2),
or 1.6 million acres in New Mexico, Texas, and Chi-
huahua (Figure 1). The study area includes all of the
El Paso County, Texas, and adjacent portions of Do~na
Ana and Otero counties, New Mexico, and Hudspeth
County, Texas. The metropolitan areas of El Paso,
Texas, and Ciudad Juarez, Chihuahua, Mexico
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located in the study area (Montegomery & Associates
and Hutchison 2016).

Observed Data for Development of XGBoost
Algorithm and SWAT Model

In the study area, there are fourteen weather sta-
tions of the National Oceanic and Atmospheric
Administration (NOAA), two streamflow gauging sta-
tions at the watershed inlet (El Paso) and outlet (Fort
Quitman), and nine water quality gauging stations
from S1 to S9 along the river channel operated by
International Boundary and Water Commission
(IBWC). Within the study watershed, six major canals
(American, International, Franklin, Riverside, Tor-
nillo, and Hudspeth) located along the river provide
irrigation water in the crop areas of the U.S. and Mex-
ico (Figure 1). The American Diversion Dam diverts
water into the International Diversion Dam, about
3.2 km below the American Diversion Dam, for the
Mexican side of the El Paso Valley. The 3.2-km-long
American Canal diverts the water into the Franklin
Canal and Riverside Canal to use for irrigation of the
140-km-long El Paso valley on the U.S. side.

SWAT model requires elevation, land use, soil, and
meteorological data corresponded to the study area.
Figure 2 shows the elevation, land use, and soil

information for the study area. The study area is a
semi-arid climate. The average annual PCP of the
study area is about 250 mm, most of which occurs in
the summer months (Heywood and Yager 2003). The
elevation ranged from 1,034 to 2,115 m, and the aver-
age is 1,288 m (Figure 2a). The watershed area is
about 7,988 km2. As for land use, the crops which are
classified into 10 types have been cultivated along Rio
Grande (Figure 2b). Pecans and cotton are dominant
in the crops. The predominant soil types in the water-
shed are very gravelly (26.7%), very fine sandy loam
(22.9%), and loamy fine sand (19.8%) (Figure 2c). And
the soil texture of the area usually has high permeabil-
ity (Montegomery & Associates and Hutchison 2016).

The monthly water quality data for 18 years
(1998–2015) were obtained from IBWC at nine sta-
tions (S1–S9). The average monthly values of TDS
represent two distinct seasons in a year that signifi-
cantly differ from each other. The season from Octo-
ber to February represents a high TDS concentration
period with an average TDS of 1,463 mg/L, while the
season from March to September has lower concen-
trations of TDS with an average value of 763 mg/L.
The difference between them can be explained by the
variation of river flow. Flow with high volumes helps
decrease TDS concentration and accordingly TDS
concentration tends to be high during a nonirrigation
season when the river flow is relatively low (Abudu

FIGURE 1. Location of the study watershed and aquifer including irrigation networks, canals, and gauging stations for the weather,
streamflow, and water quality. MX, Mexico; US, United States
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and King 2012). From the observed stations, the
average chloride is 227.4 mg/L. The others are
7.6 m3/s for flow, 1.7 mg/L for NO3+NO2, 0.8 mg/L for
total phosphorus (TP), 173.4 mg/L for total suspended
solids (TSS). The flow and water quality data used
for specifying independent variables through the cor-
relation analysis include streamflow, TDS, chloride,
NO3+NO2, and TP.

Model Configuration

The correlation analysis has been conducted using
Pearson’s coefficient to identify which variables in
the observed data are contributing to the salinity
(Table 1). Correlations among the variables were not
statistically significant except chloride and TDS,
because both chloride and TDS stand for the indica-
tors which can express the sensitivity of salinity.
Thus, either one of them should be used as a target
variable. In the study, TDS was determined as a tar-
get variable because of good quality data and less
missing data within the watershed. As seen from
Table 1, no certain single variable has a high rela-
tionship with the TDS. This means that the TDS can-
not be predicted using only a simple regression model
with a single value. So, this study should use the
more complex models in the same way that the
ensemble model or a machine learning technique has

a much complex approach to overcome the problem.
To overcome the difficulties identified above, we
develop an innovative approach for the simulation of
water salinity within the study area. It couples the
machine learning algorithms with the SWAT model.
The following sections will explain the model configu-
ration in more detail.

The XGBoost Tree Algorithm. The XGBoost is
an ensemble algorithm for decision-making by mixing
several tree models. The regression tree and the gra-
dient boosting are combined into decision trees with
appropriate trimming. The algorithm consists of mul-
tiple decision trees, with each tree gradient down by
learning from the previous order of the tree. Finally,

FIGURE 2. SWAT topographical input data: (a) elevation (DEM), (b) land cover map including 10 crops, (c) soil texture map for the study
watershed. DEM, Digital Elevation Model; SWAT, Soil and Water Assessment Tool.

TABLE 1. The Pearson’s coefficient for correlation between
observed water quality data.

Correlation
Chloride
(mg/L)

Flow
(m3/s)

NO3+NO2

(mg/L)
TP

(mg/L)
TDS

(mg/L)

Chloride
(mg/L)

1 �0.279 0.070 0.068 0.852

Flow (m3/s) �0.279 1 �0.188 �0.035 �0.401
NO3+NO2

(mg/L)
0.070 �0.188 1 0.192 0.093

TP (mg/L) 0.068 �0.035 0.192 1 �0.058
TDS (mg/L) 0.852 �0.401 0.093 �0.058 1

Notes: TDS, Total Dissolved Solids; TP, total phosphorus.
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the aggregation of all the trees produces the final
model and decision (Nalenz and Villani 2018).

Machine Learning System — XGBoost. Ma-
chine learning systems provide powerful algorithms.
However, if the algorithm fits the data too well, the
variance term is large, and hence the overall error is
increased. It has been known for overfitting. XGBoost
algorithm prevents the overfitting problem by con-
ducting normalization for each model. The algorithm
is also known for additive training, which learns the
previous result sequentially in the current stage. In
additive training previous results sequentially affect
the training of the current stage (Nalenz and Villani
2018; Mehta et al. 2019). Thus, the training improves
a predicted value approach to the target value itera-
tively. This training will learn from the weakly data,
and gradually get closer to the actual value, unlike
other tree models. The method has the strength in
terms of the bias and the variance. Even if current
data have a high bias because of weakly learning, the
high bias can be sufficiently improved from weak
learning as going sequentially. Besides, the variance of
the predicted result also can reduce sufficiently at the
same time (Srivastava et al. 2014; Mehta et al. 2019).

This method has been widely used in machine
learning for hydrological and environmental prob-
lems. Cisty and Soldanova (2018) predicted time ser-
ies of the river flow at where fewer input data served
for the simulation by using XGBoost. White (2015)
also forecasted streamflow at ungauged sites under-
going drought. As environment issues, Qin et al.
(2018) studied soil hydrological status to succeed in N
demand modeling for corn with the application of
machine learning algorithms including XGBoost.
Compared with the general linear models built with
traditional approaches, most results show that the
XGBoost model achieves better time-series results in
the field of water resource and environment.

Algorithm Structure in This Study. The
XGBoost algorithm in this study is used for its
sequential modeling with weakly learning data com-
pared to simple random forest algorithms. This algo-
rithm has the advantage of lowering the bias by
mixing underfitting models (low variance) and learn-
ing more trees sequentially. This can improve the
variance of predicted results due to the overfitting of
training data, which is known for the biggest vulner-
ability to machine learning. Also, in many existing
studies, XGBoost proved to perform better than Ran-
dom Forest when optimal parameter tuning is per-
formed (Punnoose and Ajit 2016; Zhang et al. 2018).
To optimize the XGBoost, the structure of the
XGBoost is as follows: (1) data splitting (training and
test), (2) k-fold cross-validation, (3) optimal parameter

tuning using grid-search, and (4) prediction of the
results.

In machine learning, two tasks are commonly done
at the same time in data pipelines: cross-validation
and (hyper) parameter tuning. Cross-validation is the
process of training learners using one set of data and
testing it using a different set. Parameter tuning is
the process to select the values for a model’s parame-
ters that maximize the accuracy of the model. As a
cross-validation, k-fold cross-validation was used as a
training method. The k-fold cross-validation separates
the training data into “k” folds without overlap. One
set of k folds is separated by training and validation.
Hence, k models are made, and the models are trained
until k times. To reduce variability, multiple rounds of
cross-validation are performed using different parti-
tions, and the results are averaged over the rounds to
estimate a final predictive model. The next step for
optimizing parameters, Grid Search library exhaus-
tively considers all parameter combinations for optimal
parameters. The library implements a “fit” method and
a “predict” method like any classification or regression
except that the parameters used to predict are opti-
mized by cross-validation. The Grid Search library con-
sists of an estimator (regressor or classifier), a
parameter space, a method for searching or sampling
candidates, a cross-validation scheme, and a score
function. During the call for the Grid Search library to
fit, it selects the parameters on a specified parameter
grid by maximizing a score (the scoring method of the
underlying estimator). The prediction, score, or trans-
form is then delegated to the tuned estimator.

Description of SWAT. SWAT is a physically
based, continuous, long-term, distributed-parameter
model designed to predict the effects of land manage-
ment practices on hydrology and water quality in
agricultural watersheds under varying soil, land use,
and management conditions (Arnold et al. 1998).
SWAT is based on the concept of hydrologic response
units (HRUs), which are portions of a subbasin with
unique land use, management, and soil attributes.
The runoff, sediment, and nutrient loadings from
each HRU are calculated separately based on
weather, soil properties, topography, vegetation, and
land management and are then summed to determine
the total loading from the subbasin (Neitsch et al.
2009; Park et al. 2011, 2014).

Linkage of XGBoost Algorithm with SWAT
Model. At the last step, we coupled the machine
learning algorithms, namely XGBoost with the SWAT
model. This approach was used to predict river TDS
by using a calibrated SWAT model outputs as an
input to a machine learning algorithm (Figure 3).
Among these processes, the SWAT model simulated
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both all hydrological and water quality variables,
which can be spatially distributed, however, the cur-
rent SWAT model cannot directly simulate TDS due
to the unavailability of the required data. Therefore,
a machine learning approach that can predict TDS
from the flow and water quality is implemented by
employing distributed SWAT output in lieu of
observed independent variables.

RESULTS AND DISCUSSION

SWAT Model Evaluation

For improving the calibration of the SWAT model,
this study used a variety of input data such as eleva-
tion, land use, soil, meteorological/hydrological data,
and canal discharge/irrigation. Especially, canal dis-
charge and irrigation are necessary input data to
introduce a water path and improve model calibra-
tion. In addition, streamflow and water quality are
calibrated and validated at Fort Quitman streamflow
gauging station for 11 years (2000–2010) and S9
gauging station for 10 years (2002–2011) at the

watershed outlet. The calibration and validation peri-
ods show different periods between streamflow and
water quality data because of the missing data. The
SWAT model was simulated for streamflow and water
quality including NO3+NO2 and TP. Then, the SWAT
model was calibrated and validated. Afterward, the
verified SWAT model results were used as the input
variables of XGBoost for the prediction of TDS con-
centrations on the whole river.

A comparison of the observed and simulated
monthly streamflow, NO3+NO2, and TP are shown in
Figures 4 and 5. SWAT model was calibrated for six
years (2000–2005) and validated for five years (2006–
2010) of monthly streamflow at Fort Quitman. The
average coefficient of determination (R2), Nash–Sut-
cliffe efficiency (NSE), and the root mean square
error for streamflow were 0.60, 0.45, and 3.0
(m3/month). According to the guidelines for SWAT
calibration (NSE ≥0.5, and R2 ≥0.6, Moriasi et al.
2007), the results are found to be satisfactory. As for
the water quality, the SWAT model was calibrated
for five years (2002–2006) and validated for another
five years (2007–2011) of monthly data at the S9
gauging station and the Fort Quitman. The average
R2 of NO3+NO2 at the S9 and the Fort Quitman were
0.88 and 0.89, respectively. Also, the average R2 of

FIGURE 3. Flowchart of the study in terms of linkage between the eXtreme Gradient Boosting (XGBoost) algorithm and the SWAT model
for implementation of the XGBoost algorithm and SWAT model.
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TP at the S9 and the Fort Quitman were 0.68 and
0.82, respectively.

Evaluation of TDS Performance in Developed
XGBoost Algorithm Using Observed Data

In this study, (1) all 2,505 datasets which consist of
nine variables (flow, NO3+NO2, TP, PCP, elevation,
main reach length, dominant the topsoil texture, and
dominant sublayer soil texture, and observed TDS) per
a dataset from 1992 to 2010 at nine stations were ran-
domly divided by 70% (1,753 datasets) and 30% (752
datasets) as training and test datasets, (2) then data
were provided to train and test indices using k-fold
cross-validation with 15 folds, (3) the parameters of
XGBoost were optimized using grid-search. The param-
eters are Max_depth, Booster, Colsample_bytree, and
Gamma. The Max_depth is the maximum depth of a
tree. Increasing this value will make the model more
complex and more likely to overfit. The Booster is the
model of xgboost, that contains low-level routines for
training, prediction, and evaluation, which are gbtree,
gblinear, or dart. The Colsample_bytree and Gamma
are subsample ratio of columns when constructing each
tree and minimum loss reduction required to make a
further partition on a leaf node of the tree. The opti-
mized parameters of this model were 10.0 for Max_-
depth, gbtree for Booster, 0.2 for Colsample_bytree,
and 2.0 for Gamma, respectively.

Prior to coupling of the XGBoost and the SWAT
model, TDS results of XGBoost trained from observed
data were evaluated at nine stations. As mentioned
before, all independent data based on measurements
are flow, NO3+NO2, TP, PCP, elevation, main reach
length, dominant topsoil texture, and dominant sublayer
soil texture from Yu et al. (2014). From the optimized
XGBoost model for algorithm parameters, the TDS con-
centrations were predicted at all gauging stations. As a

result, the average prediction efficiency, expressed as
the R2 value, was 0.98 at nine gauging stations (Fig-
ure 6). The average R2 for each station were 0.97 at S1,
0.99 at S2, 0.98 at S3, 0.94 at S4, 0.98 at S5, 0.86 at S6,
0.90 at S7, 0.97 at S8, and 0.98 at S9. The average R2

was typically >0.60, which indicates a satisfactory simu-
lation according to Moriasi et al. (2007).

Distribution of River Water TDS Using XGBoost and
SWAT Model Results

The TDS distributions on the whole river were pre-
dicted by XGBoost based on simulated SWAT results
of streamflow, NO3+NO2, and TP of each subwater-
shed. The yearly spatial distribution maps of river
TDS were generated from the monthly results of
SWAT (Figure 7). As seen from Figure 7, the distri-
bution of TDS shows higher concentration as going
downstream. From three gauging stations, El Paso
(inlet), Hudspeth canal, and Fort Quitman (outlet)
are selected as watching sites to investigate the pro-
gress of increasing TDS (Figure 7).

Figure 8 shows the average TDS concentrations at
major three watching sites for 16 years (2000–2015).
The average TDS concentrations at three watching
sites were 962.6, 1,227.3, and 2,315.4 at El Paso,
Hudspeth canal, and Fort Quitman, respectively (Fig-
ure 8a). As mentioned before, the TDS increased as
the water flows downstream. Figure 8b shows the
boxplot of the average TDS at three watching sites.
The boxplot is a standardized way of displaying the
distribution of data based on five numbers summary
such as minimum, first quartile (Q1), median, third
quartile (Q3), and maximum with outliers removed.
It can also show if the data are symmetrical and how
tightly it is grouped or skewed.

To compare the TDS distribution between a wet
year and dry year at three watching sites, the

FIGURE 4. The calibration and validation results of observed streamflow vs. simulated SWAT streamflow at Fort Quitman.
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FIGURE 5. The calibration and validation results of observed vs. simulated NO3+NO2 and TP at (a) the S9 gauging station (top two figures)
and (b) the Fort Quitman (bottom two figures).

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION1182

JUNG, AHN, SHENG, AYANA, SRINIVASAN, AND YEGANANTHAM

 17521688, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1752-1688.12958 by T

exas A
&

M
 U

niversity L
ibraries, W

iley O
nline L

ibrary on [01/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2007 year as a wet year and 2003 year as a dry year
were selected. The PCPs of the wet year and dry year
are 371.7 and 138.7 mm, respectively. As shown in
Table 2, average TDSs in the dry year were higher
than the results of the wet year at all watching sites.
On average, the TDSs at El Paso, Hudspeth canal, and
Fort Quitman (outlet) in the dry year increased by
8.9%, 4.2%, and 19.7% compared to the results of the
wet year, respectively. The groundwater contributions
at El Paso, Hudspeth canal, and Fort Quitman, which
is the ratio of groundwater discharge divided by total
runoff, are 34.6%, 40.9%, and 27.6%. The TDS at Hud-
speth Canal in a dry year showed a slight change,
which may be attributed to a lower groundwater

contribution. Also, each result between wet and dry
years was analyzed with the periods divided into nonir-
rigation (November–March) and irrigation (April–Octo-
ber) seasons. Especially. The results remarkably have
shown a different pattern in the dry year. During the
dry year, the TDS values at El Paso and Hudspeth
canal sites during the nonirrigation season were about
9% and 16% higher than the results for the irrigation
season, but on the contrary, the TDS at Fort Quitman
during the irrigation season was about 5% higher than
that during the nonirrigation season for the study per-
iod. Generally, because PCP during the nonirrigation
season was less than that during the irrigation season,
TDSs at El Paso and Hudspeth canal also have

FIGURE 6. The graph results and R2 of the predicted TDS of the XGBoost model vs. observed data at 9 gauging stations.

FIGURE 7. The spatiotemporal variations of monthly TDS on the whole river using the XGBoost and SWAT simulated results at three
watching sites: (1) El Paso (inlet), (2) Hudspeth canal, and (3) Fort Quitman (outlet).
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negative effects on ramping their concentration up.
But, increasing TDS concentration during the irrigation
season at Fort Quitman means that irrigation return
flow to drains was gathered at Fort Quitman as an out-
let. It could be inferred that more saline water was col-
lected than freshwater. By coupling the XGBoost
algorithm with SWAT model for complex irrigation sys-
tems we can gain a better understanding of the actual
dynamics of salinity in the agricultural area.

Identification of Causes for High River Water TDS by
Soil Texture Scenarios

This study finally tried to figure out the reasons
why the TDS of the river water becomes higher as it

flows downstream. The soil salinity level of upland
soils is related to soil permeability and irrigation.
The salts in these soils were brought in through irri-
gation water or geological origin. Also, the principal
cause of salt accumulation is the low permeability of
silty clay loam and silty clay layers, followed by high
water tables in a certain area. Soil texture helps
determine how much water will be able to pass
through the soil, how much water the soil can store,
and the ability of salinity to bind to the soil. Hence in
this part, changes in TDS can be analyzed and identi-
fied by each soil texture at three watching sites. The
areas transferring other soil textures at El Paso (in-
let), Hudspeth canal, and Fort Quitman (outlet) are
537.1 , 263.8 , and 236.5 km2. The area size will
affect the TDS variations by changing soil scenarios.

FIGURE 8. The results of (a) predicted average TDS and (b) boxplot of the predicted average TDS from 2000 to 2015 at three watching
sites.
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As shown in Table 3, TDS at each site was predicted
by changing assumed soil textures such as very cobbly,
very fine sandy loam, loam, silt loam, and silty clay
loam from the original texture. At each site, original
soil textures are very cobbly for El Paso, very fine
sandy loam at Hudspeth canal, and silt loam at Fort
Quitman. During the simulated period (2000–2015), the
average TDS at El Paso showed the lowest concentra-
tion of 962.6 mg/L in having original soil texture as
very cobbly. On the other hand, TDS with silt loam has
the highest concentration of 1,053.6 mg/L. The TDS
increased by 9.4% compared to TDS of the original soil
texture. At the Hudspeth canal, TDS changes ranged
from �4.4% to +2.2% compared to the original soil tex-
ture as very fine sandy loam. It also showed that TDS
with silt loam has the highest concentration and TDS
with very cobbly has the lowest concentration. In Fort
Quitman at the watershed outlet, the original soil tex-
ture was silt loam. So, TDS changes decreased from
0.2% to 5.5% in comparison to the original soil texture.

As for the TDS changes, it could come from soil struc-
ture and physical characteristics. Because soil is com-
posed of small particles, silt soils can hold more water
and are slower to drain than coarse-textured soils. Smal-
ler particles can pack closely together, block the spaces

between particles, and prevent water from passing
through. Whereas sand particles are larger and therefore,
have larger pore spaces for water to pass through. Under
normal irrigation practices, sandy soils will naturally be
able to flush more water through the root zone than clay
soils. The end result is that sandy soils can withstand
higher salinity irrigation water because more dissolved
salts will be removed from the root zone by leaching. For
soil salinity mitigation from these results, a soil reclama-
tion plan can be implemented. Especially, if the soil to be
reclaimed has a heavy texture (i.e., silt or clay soils), the
mixing of sand in an appropriate quantity can change
the soil texture permanently; the soil becomes more per-
meable and is easier to reclaim. Changing the soil tex-
ture is a difficult and costly task, though where sand is
readily available, such as in a desert, this practice can be
accomplished more easily (Shahid et al. 2018).

DISCUSSIONS

Even though the streamflow and water quality
simulation from the results has relatively good

TABLE 2. Statistical summary of TDS concentrations in the nonirrigation and irrigation periods during wet and dry years at three watching
sites.

Period

Wet year (2007) Dry year (2003)

PCP (mm)

El Paso
(TDS,
mg/L)

Hudspeth
canal

(TDS, mg/L)

Fort
Quitman

(TDS, mg/L) PCP (mm)
El Paso

(TDS, mg/L)

Hudspeth
canal

(TDS, mg/L)

Fort
Quitman
(TDS,
mg/L)

Nonirrigation
(November–March)

78.7 946.1 1,201.9 2,079.8 24.2 1,069.1 1,253.1 2,424.5

Irrigation
(April–October)

265.4 923.5 1,036.2 2,087.5 114.5 978.9 1,078.9 2,544.0

Mean 344.1 mm/year 932.9 1,104.8 2,084.3 138.7 mm/year 1,016.2 1,151.0 2,494.5

Note: PCP, precipitation.

TABLE 3. Summary of changed average TDS with soil scenarios by assuming other soil texture compared to TDS concentration of the origi-
nal soil for 16 years (2000–2015).

Soil texture

Sites

El Paso (very cobbly) Hudspeth canal (very fine sandy loam) Fort Quitman (silt loam)

Concentration
(mg/L) Change (%)1

Concentration
(mg/L) Change (%)1

Concentration
(mg/L) Change (%)1

Very cobbly 962.6 Original soil 1,173.1 �4.4 2,189.0 �5.5
Very fine sandy loam 1,046.2 +8.7 1,227.3 Original soil 2,280.0 �1.5
Loam 1,011.0 +5.0 1,235.7 +0.7 2,288.3 �1.2
Silt loam 1,053.6 +9.4 1,254.0 +2.2 2,315.4 Original soil
Silty clay loam 1,052.0 +9.3 1,231.0 +0.3 2,311.2 �0.2

1(TDS concentration of the original soil � TDS concentration of the other soil)/(TDS concentration of the original soil) 9 100.
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accuracy according to Moriasi et al. (2007), some
limitations should be analyzed. The study area is
the semi-arid region and the river in the area is
almost kept dry. Also, most of the surface water has
been artificially consumed as agricultural water into
each canal. So, the streamflow in this area cannot
be defined as a natural flow. Due to the artificial
system, the model has some limitations for the
prediction of streamflow and led to lower model
performance.

In the general process of fitting the regression
method, when one independent variable is nearly a
combination of other independent variables, there
will affect parameter estimates. This problem is
called multicollinearity. While multicollinearity is
not a violation of the assumptions of regression, it
may cause serious difficulties (Neter and Wasserman
1989; Lin 2008): (1) variances of parameter esti-
mates may be unreasonably large, (2) parameter
estimates may not be significant, and (3) a parame-
ter estimate may have a significant difference from
what is expected, and so on. For solving or alleviat-
ing this problem in certain regression, the best way
is to drop redundant variables from this model
directly, that is to try to avoid it by not including
redundant variables in the regression method (Bow-
erman and O’Connell 1993; Lin 2008). All observed
data of this study could be selected as independent
variables because these data completely did not affect
each other. Thus, all observed data such as flow,
NO3+NO2, TP, TDS as well as PCP, elevation, main
reach length, the dominant top layer soil texture, and
the dominant sublayer soil texture to consider geo-
graphical characteristics are finally selected as inde-
pendent variables. The geographical characteristics
were considered using the recommendations of Yu
et al. (2014).

As for the performance of the coupling model, it
could have remarkable strength in terms of tracking
vulnerable sites using the spatial distribution of the
river salinity. As seen from Figure 7, salinity got
worse downstream than upstream. In particular, the
salinity became more severe after passing the Hud-
speth canal. On average, the salinity at the Hud-
speth canal increased 127.5% than El Paso. At this
site, as shown in Figure 1, the confluence of irriga-
tion network from both Mexico and the U.S. may
have played an important role in elevated salinity,
which attributes to nonpoint sources and wastewater
discharge from Mexico. Therefore, appropriate salin-
ity control measures should be taken to reduce the
impacts of the salinity downstream from this loca-
tion. This coupling model results of spatial distribu-
tion on river salinity could help us track high
salinity spots and develop strategies for salinity mit-
igation and management.

SUMMARY AND CONCLUSIONS

This study successfully tested a new approach for
assessing salinity distribution within a watershed by
coupling the XGBoost algorithm and the SWAT
model and identifying the reasons why the river
water salinity gets worse at three watching sites from
different perspectives, which could provide guidelines
for water and soil salinity management. The XGBoost
was developed and trained by using observed hydrol-
ogy, water quality, and geographic data at nine gaug-
ing stations. The SWAT model was calibrated and
validated for streamflow and water quality to be used
as input variables of the XGBoost for monthly TDS
prediction. Then, the spatial distribution of the TDS
on the river system within the watershed was pre-
dicted using nine variables selected with the devel-
oped XGBoost algorithm. Finally, TDS changes at
each watching site were analyzed by changing
assumed soil textures.

By improving both bias and variance for TDS esti-
mation, the method used in this study demonstrated
advantages over other methods such as using only
the model and simple regression. Nevertheless, there
were not enough data at most stations. The number
of the data at each station was <150 for 14 years and
there were also a lot of missing water quality data.
Therefore, most data were used to train the XGBoost
model and it might have caused an overfitting prob-
lem in predicting TDS. To solve such a problem, addi-
tional data collection for TDS and other water quality
parameters is recommended.

In addition, due to missing observed data, the
SWAT model was not fully calibrated for streamflow
and water quality, especially in the irrigation net-
work (canals and drains). And if the SWAT model
could consider other water quality components such
as TSS, chloride, and total organic carbon, this
method can become a more useful tool for the study
of salinity dynamics. For future research, it is rec-
ommended to focus on the mitigation and adapta-
tion measures to reduce river salinity, safeguarding
agricultural production and municipal water
supplies.
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